mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 23:19:23 +08:00
291 lines
12 KiB
C++
291 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef OPENCV_CUDALEGACY_HPP
|
|
#define OPENCV_CUDALEGACY_HPP
|
|
|
|
#include "opencv2/core/cuda.hpp"
|
|
#include "opencv2/cudalegacy/NCV.hpp"
|
|
#include "opencv2/cudalegacy/NPP_staging.hpp"
|
|
#include "opencv2/cudalegacy/NCVPyramid.hpp"
|
|
#include "opencv2/cudalegacy/NCVHaarObjectDetection.hpp"
|
|
#include "opencv2/cudalegacy/NCVBroxOpticalFlow.hpp"
|
|
#include "opencv2/video/background_segm.hpp"
|
|
|
|
/**
|
|
@addtogroup cuda
|
|
@{
|
|
@defgroup cudalegacy Legacy support
|
|
@}
|
|
*/
|
|
|
|
namespace cv { namespace cuda {
|
|
|
|
//! @addtogroup cudalegacy
|
|
//! @{
|
|
|
|
//
|
|
// ImagePyramid
|
|
//
|
|
|
|
class CV_EXPORTS ImagePyramid : public Algorithm
|
|
{
|
|
public:
|
|
virtual void getLayer(OutputArray outImg, Size outRoi, Stream& stream = Stream::Null()) const = 0;
|
|
};
|
|
|
|
CV_EXPORTS Ptr<ImagePyramid> createImagePyramid(InputArray img, int nLayers = -1, Stream& stream = Stream::Null());
|
|
|
|
//
|
|
// GMG
|
|
//
|
|
|
|
/** @brief Background/Foreground Segmentation Algorithm.
|
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model
|
|
of the background. Any pixel which does not fit this model is then deemed to be foreground. The
|
|
class implements algorithm described in @cite Gold2012 .
|
|
*/
|
|
class CV_EXPORTS BackgroundSubtractorGMG : public cv::BackgroundSubtractor
|
|
{
|
|
public:
|
|
using cv::BackgroundSubtractor::apply;
|
|
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
|
|
|
|
virtual int getMaxFeatures() const = 0;
|
|
virtual void setMaxFeatures(int maxFeatures) = 0;
|
|
|
|
virtual double getDefaultLearningRate() const = 0;
|
|
virtual void setDefaultLearningRate(double lr) = 0;
|
|
|
|
virtual int getNumFrames() const = 0;
|
|
virtual void setNumFrames(int nframes) = 0;
|
|
|
|
virtual int getQuantizationLevels() const = 0;
|
|
virtual void setQuantizationLevels(int nlevels) = 0;
|
|
|
|
virtual double getBackgroundPrior() const = 0;
|
|
virtual void setBackgroundPrior(double bgprior) = 0;
|
|
|
|
virtual int getSmoothingRadius() const = 0;
|
|
virtual void setSmoothingRadius(int radius) = 0;
|
|
|
|
virtual double getDecisionThreshold() const = 0;
|
|
virtual void setDecisionThreshold(double thresh) = 0;
|
|
|
|
virtual bool getUpdateBackgroundModel() const = 0;
|
|
virtual void setUpdateBackgroundModel(bool update) = 0;
|
|
|
|
virtual double getMinVal() const = 0;
|
|
virtual void setMinVal(double val) = 0;
|
|
|
|
virtual double getMaxVal() const = 0;
|
|
virtual void setMaxVal(double val) = 0;
|
|
};
|
|
|
|
/** @brief Creates GMG Background Subtractor
|
|
|
|
@param initializationFrames Number of frames of video to use to initialize histograms.
|
|
@param decisionThreshold Value above which pixel is determined to be FG.
|
|
*/
|
|
CV_EXPORTS Ptr<cuda::BackgroundSubtractorGMG>
|
|
createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8);
|
|
|
|
//
|
|
// FGD
|
|
//
|
|
|
|
/** @brief The class discriminates between foreground and background pixels by building and maintaining a model
|
|
of the background.
|
|
|
|
Any pixel which does not fit this model is then deemed to be foreground. The class implements
|
|
algorithm described in @cite FGD2003 .
|
|
@sa BackgroundSubtractor
|
|
*/
|
|
class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor
|
|
{
|
|
public:
|
|
/** @brief Returns the output foreground regions calculated by findContours.
|
|
|
|
@param foreground_regions Output array (CPU memory).
|
|
*/
|
|
virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0;
|
|
};
|
|
|
|
struct CV_EXPORTS FGDParams
|
|
{
|
|
int Lc; //!< Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
|
|
int N1c; //!< Number of color vectors used to model normal background color variation at a given pixel.
|
|
int N2c; //!< Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
|
|
//!< Used to allow the first N1c vectors to adapt over time to changing background.
|
|
|
|
int Lcc; //!< Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
|
|
int N1cc; //!< Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
|
|
int N2cc; //!< Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
|
|
//!< Used to allow the first N1cc vectors to adapt over time to changing background.
|
|
|
|
bool is_obj_without_holes; //!< If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
|
|
int perform_morphing; //!< Number of erode-dilate-erode foreground-blob cleanup iterations.
|
|
//!< These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
|
|
|
|
float alpha1; //!< How quickly we forget old background pixel values seen. Typically set to 0.1.
|
|
float alpha2; //!< "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
|
|
float alpha3; //!< Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
|
|
|
|
float delta; //!< Affects color and color co-occurrence quantization, typically set to 2.
|
|
float T; //!< A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
|
|
float minArea; //!< Discard foreground blobs whose bounding box is smaller than this threshold.
|
|
|
|
//! default Params
|
|
FGDParams();
|
|
};
|
|
|
|
/** @brief Creates FGD Background Subtractor
|
|
|
|
@param params Algorithm's parameters. See @cite FGD2003 for explanation.
|
|
*/
|
|
CV_EXPORTS Ptr<cuda::BackgroundSubtractorFGD>
|
|
createBackgroundSubtractorFGD(const FGDParams& params = FGDParams());
|
|
|
|
//
|
|
// Optical flow
|
|
//
|
|
|
|
//! Calculates optical flow for 2 images using block matching algorithm */
|
|
CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
|
|
Size block_size, Size shift_size, Size max_range, bool use_previous,
|
|
GpuMat& velx, GpuMat& vely, GpuMat& buf,
|
|
Stream& stream = Stream::Null());
|
|
|
|
class CV_EXPORTS FastOpticalFlowBM
|
|
{
|
|
public:
|
|
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());
|
|
|
|
private:
|
|
GpuMat buffer;
|
|
GpuMat extended_I0;
|
|
GpuMat extended_I1;
|
|
};
|
|
|
|
/** @brief Interpolates frames (images) using provided optical flow (displacement field).
|
|
|
|
@param frame0 First frame (32-bit floating point images, single channel).
|
|
@param frame1 Second frame. Must have the same type and size as frame0 .
|
|
@param fu Forward horizontal displacement.
|
|
@param fv Forward vertical displacement.
|
|
@param bu Backward horizontal displacement.
|
|
@param bv Backward vertical displacement.
|
|
@param pos New frame position.
|
|
@param newFrame Output image.
|
|
@param buf Temporary buffer, will have width x 6\*height size, CV_32FC1 type and contain 6
|
|
GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward
|
|
horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow,
|
|
interpolated backward vertical flow.
|
|
@param stream Stream for the asynchronous version.
|
|
*/
|
|
CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
|
|
const GpuMat& fu, const GpuMat& fv,
|
|
const GpuMat& bu, const GpuMat& bv,
|
|
float pos, GpuMat& newFrame, GpuMat& buf,
|
|
Stream& stream = Stream::Null());
|
|
|
|
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
|
|
|
|
//
|
|
// Labeling
|
|
//
|
|
|
|
//!performs labeling via graph cuts of a 2D regular 4-connected graph.
|
|
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
|
|
GpuMat& buf, Stream& stream = Stream::Null());
|
|
|
|
//!performs labeling via graph cuts of a 2D regular 8-connected graph.
|
|
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
|
|
GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight,
|
|
GpuMat& labels,
|
|
GpuMat& buf, Stream& stream = Stream::Null());
|
|
|
|
//! compute mask for Generalized Flood fill componetns labeling.
|
|
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());
|
|
|
|
//! performs connected componnents labeling.
|
|
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());
|
|
|
|
//
|
|
// Calib3d
|
|
//
|
|
|
|
CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
|
GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
|
const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
|
|
Stream& stream = Stream::Null());
|
|
|
|
/** @brief Finds the object pose from 3D-2D point correspondences.
|
|
|
|
@param object Single-row matrix of object points.
|
|
@param image Single-row matrix of image points.
|
|
@param camera_mat 3x3 matrix of intrinsic camera parameters.
|
|
@param dist_coef Distortion coefficients. See undistortPoints for details.
|
|
@param rvec Output 3D rotation vector.
|
|
@param tvec Output 3D translation vector.
|
|
@param use_extrinsic_guess Flag to indicate that the function must use rvec and tvec as an
|
|
initial transformation guess. It is not supported for now.
|
|
@param num_iters Maximum number of RANSAC iterations.
|
|
@param max_dist Euclidean distance threshold to detect whether point is inlier or not.
|
|
@param min_inlier_count Flag to indicate that the function must stop if greater or equal number
|
|
of inliers is achieved. It is not supported for now.
|
|
@param inliers Output vector of inlier indices.
|
|
*/
|
|
CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
|
|
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
|
|
int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
|
|
std::vector<int>* inliers=NULL);
|
|
|
|
//! @}
|
|
|
|
}}
|
|
|
|
#endif /* OPENCV_CUDALEGACY_HPP */
|