opencv/doc/features2d_object_categorization.tex
2010-11-08 15:27:56 +00:00

201 lines
6.1 KiB
TeX
Executable File

\ifCpp
\section{Object Categorization}
Some approaches based on local 2D features and used to object categorization
are described in this section.
\cvclass{BOWTrainer}
Abstract base class for training ''bag of visual words'' vocabulary from a set of descriptors.
See e.g. ''Visual Categorization with Bags of Keypoints'' of Gabriella Csurka, Christopher R. Dance,
Lixin Fan, Jutta Willamowski, Cedric Bray, 2004.
\begin{lstlisting}
class BOWTrainer
{
public:
BOWTrainer(){}
virtual ~BOWTrainer(){}
void add( const Mat& descriptors );
const vector<Mat>& getDescriptors() const;
int descripotorsCount() const;
virtual void clear();
virtual Mat cluster() const = 0;
virtual Mat cluster( const Mat& descriptors ) const = 0;
protected:
...
};
\end{lstlisting}
\cvCppFunc{BOWTrainer::add}
Add descriptors to training set. The training set will be clustered using \texttt{cluster}
method to construct vocabulary.
\cvdefCpp{
void BOWTrainer::add( const Mat\& descriptors );
}
\begin{description}
\cvarg{descriptors}{Descriptors to add to training set. Each row of \texttt{descriptors}
matrix is a one descriptor.}
\end{description}
\cvCppFunc{BOWTrainer::getDescriptors}
Returns training set of descriptors.
\cvdefCpp{
const vector<Mat>\& BOWTrainer::getDescriptors() const;
}
\cvCppFunc{BOWTrainer::descripotorsCount}
Returns count of all descriptors stored in the training set.
\cvdefCpp{
const vector<Mat>\& BOWTrainer::descripotorsCount() const;
}
\cvCppFunc{BOWTrainer::cluster}
Cluster train descriptors. Vocabulary consists from cluster centers. So this method
returns vocabulary. In first method variant the stored in object train descriptors will be
clustered, in second variant -- input descriptors will be clustered.
\cvdefCpp{
Mat BOWTrainer::cluster() const;
}
\cvdefCpp{
Mat BOWTrainer::cluster( const Mat\& descriptors ) const;
}
\begin{description}
\cvarg{descriptors}{Descriptors to cluster. Each row of \texttt{descriptors}
matrix is a one descriptor. Descriptors will not be added
to the inner train descriptor set.}
\end{description}
\cvclass{BOWKMeansTrainer}
\cvCppCross{kmeans} based class to train visual vocabulary using the ''bag of visual words'' approach.
\begin{lstlisting}
class BOWKMeansTrainer : public BOWTrainer
{
public:
BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
int attempts=3, int flags=KMEANS_PP_CENTERS );
virtual ~BOWKMeansTrainer(){}
// Returns trained vocabulary (i.e. cluster centers).
virtual Mat cluster() const;
virtual Mat cluster( const Mat& descriptors ) const;
protected:
...
};
\end{lstlisting}
To gain an understanding of constructor parameters see \cvCppCross{kmeans} function
arguments.
\cvclass{BOWImgDescriptorExtractor}
Class to compute image descriptor using ''bad of visual words''. In few,
such computing consists from the following steps:
1. Compute descriptors for given image and it's keypoints set, \\
2. Find nearest visual words from vocabulary for each keypoint descriptor, \\
3. Image descriptor is a normalized histogram of vocabulary words encountered in the image. I.e.
\texttt{i}-bin of the histogram is a frequency of \texttt{i}-word of vocabulary in the given image.
\begin{lstlisting}
class BOWImgDescriptorExtractor
{
public:
BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
const Ptr<DescriptorMatcher>& dmatcher );
virtual ~BOWImgDescriptorExtractor(){}
void setVocabulary( const Mat& vocabulary );
const Mat& getVocabulary() const;
void compute( const Mat& image, vector<KeyPoint>& keypoints,
Mat& imgDescriptor,
vector<vector<int> >* pointIdxsOfClusters=0,
Mat* descriptors=0 );
int descriptorSize() const;
int descriptorType() const;
protected:
...
};
\end{lstlisting}
\cvCppFunc{BOWImgDescriptorExtractor::BOWImgDescriptorExtractor}
Constructor.
\cvdefCpp{
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor(
\par const Ptr<DescriptorExtractor>\& dextractor,
\par const Ptr<DescriptorMatcher>\& dmatcher );
}
\begin{description}
\cvarg{dextractor}{Descriptor extractor that will be used to compute descriptors
for input image and it's keypoints.}
\cvarg{dmatcher}{Descriptor matcher that will be used to find nearest word of trained vocabulary to
each keupoints descriptor of the image.}
\end{description}
\cvCppFunc{BOWImgDescriptorExtractor::setVocabulary}
Method to set visual vocabulary.
\cvdefCpp{
void BOWImgDescriptorExtractor::setVocabulary( const Mat\& vocabulary );
}
\begin{description}
\cvarg{vocabulary}{Vocabulary (can be trained using inheritor of \cvCppCross{BOWTrainer}).
Each row of vocabulary is a one visual word (cluster center).}
\end{description}
\cvCppFunc{BOWImgDescriptorExtractor::getVocabulary}
Returns set vocabulary.
\cvdefCpp{
const Mat\& BOWImgDescriptorExtractor::getVocabulary() const;
}
\cvCppFunc{BOWImgDescriptorExtractor::compute}
Compute image descriptor using set visual vocabulary.
\cvdefCpp{
void BOWImgDescriptorExtractor::compute( const Mat\& image,
\par vector<KeyPoint>\& keypoints, Mat\& imgDescriptor,
\par vector<vector<int> >* pointIdxsOfClusters=0,
\par Mat* descriptors=0 );
}
\begin{description}
\cvarg{image}{The image. Image descriptor will be computed for this.}
\cvarg{keypoints}{Keypoints detected in the input image.}
\cvarg{imgDescriptor}{This is output, i.e. computed image descriptor.}
\cvarg{pointIdxsOfClusters}{Indices of keypoints which belong to the cluster, i.e.
\texttt{pointIdxsOfClusters[i]} is keypoint indices which belong
to the \texttt{i-}cluster (word of vocabulary) (returned if it is not 0.)}
\cvarg{descriptors}{Descriptors of the image keypoints (returned if it is not 0.)}
\end{description}
\cvCppFunc{BOWImgDescriptorExtractor::descriptorSize}
Returns image discriptor size, if vocabulary was set, and 0 otherwise.
\cvdefCpp{
int BOWImgDescriptorExtractor::descriptorSize() const;
}
\cvCppFunc{BOWImgDescriptorExtractor::descriptorType}
Returns image descriptor type.
\cvdefCpp{
int BOWImgDescriptorExtractor::descriptorType() const;
}
\fi