mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
667 lines
14 KiB
C++
667 lines
14 KiB
C++
///////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
|
||
// Digital Ltd. LLC
|
||
//
|
||
// All rights reserved.
|
||
//
|
||
// Redistribution and use in source and binary forms, with or without
|
||
// modification, are permitted provided that the following conditions are
|
||
// met:
|
||
// * Redistributions of source code must retain the above copyright
|
||
// notice, this list of conditions and the following disclaimer.
|
||
// * Redistributions in binary form must reproduce the above
|
||
// copyright notice, this list of conditions and the following disclaimer
|
||
// in the documentation and/or other materials provided with the
|
||
// distribution.
|
||
// * Neither the name of Industrial Light & Magic nor the names of
|
||
// its contributors may be used to endorse or promote products derived
|
||
// from this software without specific prior written permission.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
///////////////////////////////////////////////////////////////////////////
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
//
|
||
// class PizCompressor
|
||
//
|
||
//-----------------------------------------------------------------------------
|
||
|
||
#include <ImfPizCompressor.h>
|
||
#include <ImfHeader.h>
|
||
#include <ImfChannelList.h>
|
||
#include <ImfHuf.h>
|
||
#include <ImfWav.h>
|
||
#include <ImfMisc.h>
|
||
#include <ImfCheckedArithmetic.h>
|
||
#include <ImathFun.h>
|
||
#include <ImathBox.h>
|
||
#include <Iex.h>
|
||
#include <ImfIO.h>
|
||
#include <ImfXdr.h>
|
||
#include <ImfAutoArray.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
|
||
namespace Imf {
|
||
|
||
using Imath::divp;
|
||
using Imath::modp;
|
||
using Imath::Box2i;
|
||
using Imath::V2i;
|
||
using Iex::InputExc;
|
||
|
||
namespace {
|
||
|
||
//
|
||
// Functions to compress the range of values in the pixel data
|
||
//
|
||
|
||
const int USHORT_RANGE = (1 << 16);
|
||
const int BITMAP_SIZE = (USHORT_RANGE >> 3);
|
||
|
||
void
|
||
bitmapFromData (const unsigned short data[/*nData*/],
|
||
int nData,
|
||
unsigned char bitmap[BITMAP_SIZE],
|
||
unsigned short &minNonZero,
|
||
unsigned short &maxNonZero)
|
||
{
|
||
for (int i = 0; i < BITMAP_SIZE; ++i)
|
||
bitmap[i] = 0;
|
||
|
||
for (int i = 0; i < nData; ++i)
|
||
bitmap[data[i] >> 3] |= (1 << (data[i] & 7));
|
||
|
||
bitmap[0] &= ~1; // zero is not explicitly stored in
|
||
// the bitmap; we assume that the
|
||
// data always contain zeroes
|
||
minNonZero = BITMAP_SIZE - 1;
|
||
maxNonZero = 0;
|
||
|
||
for (int i = 0; i < BITMAP_SIZE; ++i)
|
||
{
|
||
if (bitmap[i])
|
||
{
|
||
if (minNonZero > i)
|
||
minNonZero = i;
|
||
if (maxNonZero < i)
|
||
maxNonZero = i;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
unsigned short
|
||
forwardLutFromBitmap (const unsigned char bitmap[BITMAP_SIZE],
|
||
unsigned short lut[USHORT_RANGE])
|
||
{
|
||
int k = 0;
|
||
|
||
for (int i = 0; i < USHORT_RANGE; ++i)
|
||
{
|
||
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
|
||
lut[i] = k++;
|
||
else
|
||
lut[i] = 0;
|
||
}
|
||
|
||
return k - 1; // maximum value stored in lut[],
|
||
} // i.e. number of ones in bitmap minus 1
|
||
|
||
|
||
unsigned short
|
||
reverseLutFromBitmap (const unsigned char bitmap[BITMAP_SIZE],
|
||
unsigned short lut[USHORT_RANGE])
|
||
{
|
||
int k = 0;
|
||
|
||
for (int i = 0; i < USHORT_RANGE; ++i)
|
||
{
|
||
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
|
||
lut[k++] = i;
|
||
}
|
||
|
||
int n = k - 1;
|
||
|
||
while (k < USHORT_RANGE)
|
||
lut[k++] = 0;
|
||
|
||
return n; // maximum k where lut[k] is non-zero,
|
||
} // i.e. number of ones in bitmap minus 1
|
||
|
||
|
||
void
|
||
applyLut (const unsigned short lut[USHORT_RANGE],
|
||
unsigned short data[/*nData*/],
|
||
int nData)
|
||
{
|
||
for (int i = 0; i < nData; ++i)
|
||
data[i] = lut[data[i]];
|
||
}
|
||
|
||
|
||
} // namespace
|
||
|
||
|
||
struct PizCompressor::ChannelData
|
||
{
|
||
unsigned short * start;
|
||
unsigned short * end;
|
||
int nx;
|
||
int ny;
|
||
int ys;
|
||
int size;
|
||
};
|
||
|
||
|
||
PizCompressor::PizCompressor
|
||
(const Header &hdr,
|
||
size_t maxScanLineSize,
|
||
size_t numScanLines)
|
||
:
|
||
Compressor (hdr),
|
||
_maxScanLineSize (maxScanLineSize),
|
||
_format (XDR),
|
||
_numScanLines (numScanLines),
|
||
_tmpBuffer (0),
|
||
_outBuffer (0),
|
||
_numChans (0),
|
||
_channels (hdr.channels()),
|
||
_channelData (0)
|
||
{
|
||
size_t tmpBufferSize =
|
||
uiMult (maxScanLineSize, numScanLines) / 2;
|
||
|
||
size_t outBufferSize =
|
||
uiAdd (uiMult (maxScanLineSize, numScanLines),
|
||
size_t (65536 + 8192));
|
||
|
||
_tmpBuffer = new unsigned short
|
||
[checkArraySize (tmpBufferSize, sizeof (unsigned short))];
|
||
|
||
_outBuffer = new char [outBufferSize];
|
||
|
||
const ChannelList &channels = header().channels();
|
||
bool onlyHalfChannels = true;
|
||
|
||
for (ChannelList::ConstIterator c = channels.begin();
|
||
c != channels.end();
|
||
++c)
|
||
{
|
||
_numChans++;
|
||
|
||
assert (pixelTypeSize (c.channel().type) % pixelTypeSize (HALF) == 0);
|
||
|
||
if (c.channel().type != HALF)
|
||
onlyHalfChannels = false;
|
||
}
|
||
|
||
_channelData = new ChannelData[_numChans];
|
||
|
||
const Box2i &dataWindow = hdr.dataWindow();
|
||
|
||
_minX = dataWindow.min.x;
|
||
_maxX = dataWindow.max.x;
|
||
_maxY = dataWindow.max.y;
|
||
|
||
//
|
||
// We can support uncompressed data in the machine's native format
|
||
// if all image channels are of type HALF, and if the Xdr and the
|
||
// native represenations of a half have the same size.
|
||
//
|
||
|
||
if (onlyHalfChannels && (sizeof (half) == pixelTypeSize (HALF)))
|
||
_format = NATIVE;
|
||
}
|
||
|
||
|
||
PizCompressor::~PizCompressor ()
|
||
{
|
||
delete [] _tmpBuffer;
|
||
delete [] _outBuffer;
|
||
delete [] _channelData;
|
||
}
|
||
|
||
|
||
int
|
||
PizCompressor::numScanLines () const
|
||
{
|
||
return _numScanLines;
|
||
}
|
||
|
||
|
||
Compressor::Format
|
||
PizCompressor::format () const
|
||
{
|
||
return _format;
|
||
}
|
||
|
||
|
||
int
|
||
PizCompressor::compress (const char *inPtr,
|
||
int inSize,
|
||
int minY,
|
||
const char *&outPtr)
|
||
{
|
||
return compress (inPtr,
|
||
inSize,
|
||
Box2i (V2i (_minX, minY),
|
||
V2i (_maxX, minY + numScanLines() - 1)),
|
||
outPtr);
|
||
}
|
||
|
||
|
||
int
|
||
PizCompressor::compressTile (const char *inPtr,
|
||
int inSize,
|
||
Imath::Box2i range,
|
||
const char *&outPtr)
|
||
{
|
||
return compress (inPtr, inSize, range, outPtr);
|
||
}
|
||
|
||
|
||
int
|
||
PizCompressor::uncompress (const char *inPtr,
|
||
int inSize,
|
||
int minY,
|
||
const char *&outPtr)
|
||
{
|
||
return uncompress (inPtr,
|
||
inSize,
|
||
Box2i (V2i (_minX, minY),
|
||
V2i (_maxX, minY + numScanLines() - 1)),
|
||
outPtr);
|
||
}
|
||
|
||
|
||
int
|
||
PizCompressor::uncompressTile (const char *inPtr,
|
||
int inSize,
|
||
Imath::Box2i range,
|
||
const char *&outPtr)
|
||
{
|
||
return uncompress (inPtr, inSize, range, outPtr);
|
||
}
|
||
|
||
|
||
int
|
||
PizCompressor::compress (const char *inPtr,
|
||
int inSize,
|
||
Imath::Box2i range,
|
||
const char *&outPtr)
|
||
{
|
||
//
|
||
// This is the compress function which is used by both the tiled and
|
||
// scanline compression routines.
|
||
//
|
||
|
||
//
|
||
// Special case <20>- empty input buffer
|
||
//
|
||
|
||
if (inSize == 0)
|
||
{
|
||
outPtr = _outBuffer;
|
||
return 0;
|
||
}
|
||
|
||
//
|
||
// Rearrange the pixel data so that the wavelet
|
||
// and Huffman encoders can process them easily.
|
||
//
|
||
// The wavelet and Huffman encoders both handle only
|
||
// 16-bit data, so 32-bit data must be split into smaller
|
||
// pieces. We treat each 32-bit channel (UINT, FLOAT) as
|
||
// two interleaved 16-bit channels.
|
||
//
|
||
|
||
int minX = range.min.x;
|
||
int maxX = range.max.x;
|
||
int minY = range.min.y;
|
||
int maxY = range.max.y;
|
||
|
||
if (maxY > _maxY)
|
||
maxY = _maxY;
|
||
|
||
if (maxX > _maxX)
|
||
maxX = _maxX;
|
||
|
||
unsigned short *tmpBufferEnd = _tmpBuffer;
|
||
int i = 0;
|
||
|
||
for (ChannelList::ConstIterator c = _channels.begin();
|
||
c != _channels.end();
|
||
++c, ++i)
|
||
{
|
||
ChannelData &cd = _channelData[i];
|
||
|
||
cd.start = tmpBufferEnd;
|
||
cd.end = cd.start;
|
||
|
||
cd.nx = numSamples (c.channel().xSampling, minX, maxX);
|
||
cd.ny = numSamples (c.channel().ySampling, minY, maxY);
|
||
cd.ys = c.channel().ySampling;
|
||
|
||
cd.size = pixelTypeSize (c.channel().type) / pixelTypeSize (HALF);
|
||
|
||
tmpBufferEnd += cd.nx * cd.ny * cd.size;
|
||
}
|
||
|
||
if (_format == XDR)
|
||
{
|
||
//
|
||
// Machine-independent (Xdr) data format
|
||
//
|
||
|
||
for (int y = minY; y <= maxY; ++y)
|
||
{
|
||
for (int i = 0; i < _numChans; ++i)
|
||
{
|
||
ChannelData &cd = _channelData[i];
|
||
|
||
if (modp (y, cd.ys) != 0)
|
||
continue;
|
||
|
||
for (int x = cd.nx * cd.size; x > 0; --x)
|
||
{
|
||
Xdr::read <CharPtrIO> (inPtr, *cd.end);
|
||
++cd.end;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
//
|
||
// Native, machine-dependent data format
|
||
//
|
||
|
||
for (int y = minY; y <= maxY; ++y)
|
||
{
|
||
for (int i = 0; i < _numChans; ++i)
|
||
{
|
||
ChannelData &cd = _channelData[i];
|
||
|
||
if (modp (y, cd.ys) != 0)
|
||
continue;
|
||
|
||
int n = cd.nx * cd.size;
|
||
memcpy (cd.end, inPtr, n * sizeof (unsigned short));
|
||
inPtr += n * sizeof (unsigned short);
|
||
cd.end += n;
|
||
}
|
||
}
|
||
}
|
||
|
||
#if defined (DEBUG)
|
||
|
||
for (int i = 1; i < _numChans; ++i)
|
||
assert (_channelData[i-1].end == _channelData[i].start);
|
||
|
||
assert (_channelData[_numChans-1].end == tmpBufferEnd);
|
||
|
||
#endif
|
||
|
||
//
|
||
// Compress the range of the pixel data
|
||
//
|
||
|
||
AutoArray <unsigned char, BITMAP_SIZE> bitmap;
|
||
unsigned short minNonZero;
|
||
unsigned short maxNonZero;
|
||
|
||
bitmapFromData (_tmpBuffer,
|
||
tmpBufferEnd - _tmpBuffer,
|
||
bitmap,
|
||
minNonZero, maxNonZero);
|
||
|
||
AutoArray <unsigned short, USHORT_RANGE> lut;
|
||
unsigned short maxValue = forwardLutFromBitmap (bitmap, lut);
|
||
applyLut (lut, _tmpBuffer, tmpBufferEnd - _tmpBuffer);
|
||
|
||
//
|
||
// Store range compression info in _outBuffer
|
||
//
|
||
|
||
char *buf = _outBuffer;
|
||
|
||
Xdr::write <CharPtrIO> (buf, minNonZero);
|
||
Xdr::write <CharPtrIO> (buf, maxNonZero);
|
||
|
||
if (minNonZero <= maxNonZero)
|
||
{
|
||
Xdr::write <CharPtrIO> (buf, (char *) &bitmap[0] + minNonZero,
|
||
maxNonZero - minNonZero + 1);
|
||
}
|
||
|
||
//
|
||
// Apply wavelet encoding
|
||
//
|
||
|
||
for (int i = 0; i < _numChans; ++i)
|
||
{
|
||
ChannelData &cd = _channelData[i];
|
||
|
||
for (int j = 0; j < cd.size; ++j)
|
||
{
|
||
wav2Encode (cd.start + j,
|
||
cd.nx, cd.size,
|
||
cd.ny, cd.nx * cd.size,
|
||
maxValue);
|
||
}
|
||
}
|
||
|
||
//
|
||
// Apply Huffman encoding; append the result to _outBuffer
|
||
//
|
||
|
||
char *lengthPtr = buf;
|
||
Xdr::write <CharPtrIO> (buf, int(0));
|
||
|
||
int length = hufCompress (_tmpBuffer, tmpBufferEnd - _tmpBuffer, buf);
|
||
Xdr::write <CharPtrIO> (lengthPtr, length);
|
||
|
||
outPtr = _outBuffer;
|
||
return buf - _outBuffer + length;
|
||
}
|
||
|
||
|
||
int
|
||
PizCompressor::uncompress (const char *inPtr,
|
||
int inSize,
|
||
Imath::Box2i range,
|
||
const char *&outPtr)
|
||
{
|
||
//
|
||
// This is the cunompress function which is used by both the tiled and
|
||
// scanline decompression routines.
|
||
//
|
||
|
||
//
|
||
// Special case - empty input buffer
|
||
//
|
||
|
||
if (inSize == 0)
|
||
{
|
||
outPtr = _outBuffer;
|
||
return 0;
|
||
}
|
||
|
||
//
|
||
// Determine the layout of the compressed pixel data
|
||
//
|
||
|
||
int minX = range.min.x;
|
||
int maxX = range.max.x;
|
||
int minY = range.min.y;
|
||
int maxY = range.max.y;
|
||
|
||
if (maxY > _maxY)
|
||
maxY = _maxY;
|
||
|
||
if (maxX > _maxX)
|
||
maxX = _maxX;
|
||
|
||
unsigned short *tmpBufferEnd = _tmpBuffer;
|
||
int i = 0;
|
||
|
||
for (ChannelList::ConstIterator c = _channels.begin();
|
||
c != _channels.end();
|
||
++c, ++i)
|
||
{
|
||
ChannelData &cd = _channelData[i];
|
||
|
||
cd.start = tmpBufferEnd;
|
||
cd.end = cd.start;
|
||
|
||
cd.nx = numSamples (c.channel().xSampling, minX, maxX);
|
||
cd.ny = numSamples (c.channel().ySampling, minY, maxY);
|
||
cd.ys = c.channel().ySampling;
|
||
|
||
cd.size = pixelTypeSize (c.channel().type) / pixelTypeSize (HALF);
|
||
|
||
tmpBufferEnd += cd.nx * cd.ny * cd.size;
|
||
}
|
||
|
||
//
|
||
// Read range compression data
|
||
//
|
||
|
||
unsigned short minNonZero;
|
||
unsigned short maxNonZero;
|
||
|
||
AutoArray <unsigned char, BITMAP_SIZE> bitmap;
|
||
memset (bitmap, 0, sizeof (unsigned char) * BITMAP_SIZE);
|
||
|
||
Xdr::read <CharPtrIO> (inPtr, minNonZero);
|
||
Xdr::read <CharPtrIO> (inPtr, maxNonZero);
|
||
|
||
if (maxNonZero >= BITMAP_SIZE)
|
||
{
|
||
throw InputExc ("Error in header for PIZ-compressed data "
|
||
"(invalid bitmap size).");
|
||
}
|
||
|
||
if (minNonZero <= maxNonZero)
|
||
{
|
||
Xdr::read <CharPtrIO> (inPtr, (char *) &bitmap[0] + minNonZero,
|
||
maxNonZero - minNonZero + 1);
|
||
}
|
||
|
||
AutoArray <unsigned short, USHORT_RANGE> lut;
|
||
unsigned short maxValue = reverseLutFromBitmap (bitmap, lut);
|
||
|
||
//
|
||
// Huffman decoding
|
||
//
|
||
|
||
int length;
|
||
Xdr::read <CharPtrIO> (inPtr, length);
|
||
|
||
hufUncompress (inPtr, length, _tmpBuffer, tmpBufferEnd - _tmpBuffer);
|
||
|
||
//
|
||
// Wavelet decoding
|
||
//
|
||
|
||
for (int i = 0; i < _numChans; ++i)
|
||
{
|
||
ChannelData &cd = _channelData[i];
|
||
|
||
for (int j = 0; j < cd.size; ++j)
|
||
{
|
||
wav2Decode (cd.start + j,
|
||
cd.nx, cd.size,
|
||
cd.ny, cd.nx * cd.size,
|
||
maxValue);
|
||
}
|
||
}
|
||
|
||
//
|
||
// Expand the pixel data to their original range
|
||
//
|
||
|
||
applyLut (lut, _tmpBuffer, tmpBufferEnd - _tmpBuffer);
|
||
|
||
//
|
||
// Rearrange the pixel data into the format expected by the caller.
|
||
//
|
||
|
||
char *outEnd = _outBuffer;
|
||
|
||
if (_format == XDR)
|
||
{
|
||
//
|
||
// Machine-independent (Xdr) data format
|
||
//
|
||
|
||
for (int y = minY; y <= maxY; ++y)
|
||
{
|
||
for (int i = 0; i < _numChans; ++i)
|
||
{
|
||
ChannelData &cd = _channelData[i];
|
||
|
||
if (modp (y, cd.ys) != 0)
|
||
continue;
|
||
|
||
for (int x = cd.nx * cd.size; x > 0; --x)
|
||
{
|
||
Xdr::write <CharPtrIO> (outEnd, *cd.end);
|
||
++cd.end;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
//
|
||
// Native, machine-dependent data format
|
||
//
|
||
|
||
for (int y = minY; y <= maxY; ++y)
|
||
{
|
||
for (int i = 0; i < _numChans; ++i)
|
||
{
|
||
ChannelData &cd = _channelData[i];
|
||
|
||
if (modp (y, cd.ys) != 0)
|
||
continue;
|
||
|
||
int n = cd.nx * cd.size;
|
||
memcpy (outEnd, cd.end, n * sizeof (unsigned short));
|
||
outEnd += n * sizeof (unsigned short);
|
||
cd.end += n;
|
||
}
|
||
}
|
||
}
|
||
|
||
#if defined (DEBUG)
|
||
|
||
for (int i = 1; i < _numChans; ++i)
|
||
assert (_channelData[i-1].end == _channelData[i].start);
|
||
|
||
assert (_channelData[_numChans-1].end == tmpBufferEnd);
|
||
|
||
#endif
|
||
|
||
outPtr = _outBuffer;
|
||
return outEnd - _outBuffer;
|
||
}
|
||
|
||
|
||
} // namespace Imf
|