opencv/modules/gpu/src/matrix_reductions.cpp

424 lines
17 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA)
void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); }
double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; }
double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; }
Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); }
Scalar cv::gpu::sum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); }
Scalar cv::gpu::sqrSum(const GpuMat&) { throw_nogpu(); return Scalar(); }
Scalar cv::gpu::sqrSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); }
void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&) { throw_nogpu(); }
void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&) { throw_nogpu(); }
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; }
int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; }
#else
////////////////////////////////////////////////////////////////////////
// meanStdDev
void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev)
{
CV_Assert(src.type() == CV_8UC1);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), src.step, sz, mean.val, stddev.val) );
}
////////////////////////////////////////////////////////////////////////
// norm
double cv::gpu::norm(const GpuMat& src1, int normType)
{
return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType);
}
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(src1.type() == CV_8UC1);
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
NppiSize oSizeROI, Npp64f* pRetVal);
static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R};
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
int funcIdx = normType >> 1;
double retVal;
nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), src1.step,
src2.ptr<Npp8u>(), src2.step,
sz, &retVal) );
return retVal;
}
////////////////////////////////////////////////////////////////////////
// Sum
namespace cv { namespace gpu { namespace mathfunc
{
template <typename T>
void sum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn);
template <typename T>
void sum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn);
template <typename T>
void sqsum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn);
template <typename T>
void sqsum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn);
namespace sum
{
void get_buf_size_required(int cols, int rows, int cn, int& bufcols, int& bufrows);
}
}}}
Scalar cv::gpu::sum(const GpuMat& src)
{
GpuMat buf;
return sum(src, buf);
}
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
{
using namespace mathfunc;
typedef void (*Caller)(const DevMem2D, PtrStep, double*, int);
static const Caller callers[2][7] =
{ { sum_multipass_caller<unsigned char>, sum_multipass_caller<char>,
sum_multipass_caller<unsigned short>, sum_multipass_caller<short>,
sum_multipass_caller<int>, sum_multipass_caller<float>, 0 },
{ sum_caller<unsigned char>, sum_caller<char>,
sum_caller<unsigned short>, sum_caller<short>,
sum_caller<int>, sum_caller<float>, 0 } };
Size bufSize;
sum::get_buf_size_required(src.cols, src.rows, src.channels(), bufSize.width, bufSize.height);
buf.create(bufSize, CV_8U);
Caller caller = callers[hasAtomicsSupport(getDevice())][src.depth()];
if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type");
double result[4];
caller(src, buf, result, src.channels());
return Scalar(result[0], result[1], result[2], result[3]);
}
Scalar cv::gpu::sqrSum(const GpuMat& src)
{
GpuMat buf;
return sqrSum(src, buf);
}
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
{
using namespace mathfunc;
typedef void (*Caller)(const DevMem2D, PtrStep, double*, int);
static const Caller callers[2][7] =
{ { sqsum_multipass_caller<unsigned char>, sqsum_multipass_caller<char>,
sqsum_multipass_caller<unsigned short>, sqsum_multipass_caller<short>,
sqsum_multipass_caller<int>, sqsum_multipass_caller<float>, 0 },
{ sqsum_caller<unsigned char>, sqsum_caller<char>,
sqsum_caller<unsigned short>, sqsum_caller<short>,
sqsum_caller<int>, sqsum_caller<float>, 0 } };
Size bufSize;
sum::get_buf_size_required(src.cols, src.rows, src.channels(), bufSize.width, bufSize.height);
buf.create(bufSize, CV_8U);
Caller caller = callers[hasAtomicsSupport(getDevice())][src.depth()];
if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type");
double result[4];
caller(src, buf, result, src.channels());
return Scalar(result[0], result[1], result[2], result[3]);
}
////////////////////////////////////////////////////////////////////////
// Find min or max
namespace cv { namespace gpu { namespace mathfunc { namespace minmax {
void get_buf_size_required(int cols, int rows, int elem_size, int& bufcols, int& bufrows);
template <typename T>
void min_max_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf);
template <typename T>
void min_max_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf);
template <typename T>
void min_max_multipass_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf);
template <typename T>
void min_max_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf);
}}}}
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask)
{
GpuMat buf;
minMax(src, minVal, maxVal, mask, buf);
}
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf)
{
using namespace mathfunc::minmax;
typedef void (*Caller)(const DevMem2D, double*, double*, PtrStep);
typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, PtrStep);
static const Caller callers[2][7] =
{ { min_max_multipass_caller<unsigned char>, min_max_multipass_caller<char>,
min_max_multipass_caller<unsigned short>, min_max_multipass_caller<short>,
min_max_multipass_caller<int>, min_max_multipass_caller<float>, 0 },
{ min_max_caller<unsigned char>, min_max_caller<char>,
min_max_caller<unsigned short>, min_max_caller<short>,
min_max_caller<int>, min_max_caller<float>, min_max_caller<double> } };
static const MaskedCaller masked_callers[2][7] =
{ { min_max_mask_multipass_caller<unsigned char>, min_max_mask_multipass_caller<char>,
min_max_mask_multipass_caller<unsigned short>, min_max_mask_multipass_caller<short>,
min_max_mask_multipass_caller<int>, min_max_mask_multipass_caller<float>, 0 },
{ min_max_mask_caller<unsigned char>, min_max_mask_caller<char>,
min_max_mask_caller<unsigned short>, min_max_mask_caller<short>,
min_max_mask_caller<int>, min_max_mask_caller<float>,
min_max_mask_caller<double> } };
CV_Assert(src.channels() == 1);
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice()));
double minVal_; if (!minVal) minVal = &minVal_;
double maxVal_; if (!maxVal) maxVal = &maxVal_;
Size bufSize;
get_buf_size_required(src.cols, src.rows, src.elemSize(), bufSize.width, bufSize.height);
buf.create(bufSize, CV_8U);
if (mask.empty())
{
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
caller(src, minVal, maxVal, buf);
}
else
{
MaskedCaller caller = masked_callers[hasAtomicsSupport(getDevice())][src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
caller(src, mask, minVal, maxVal, buf);
}
}
////////////////////////////////////////////////////////////////////////
// Locate min and max
namespace cv { namespace gpu { namespace mathfunc { namespace minmaxloc {
void get_buf_size_required(int cols, int rows, int elem_size, int& b1cols,
int& b1rows, int& b2cols, int& b2rows);
template <typename T>
void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf);
template <typename T>
void min_max_loc_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf);
template <typename T>
void min_max_loc_multipass_caller(const DevMem2D src, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf);
template <typename T>
void min_max_loc_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf);
}}}}
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask)
{
GpuMat valbuf, locbuf;
minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valbuf, locbuf);
}
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
const GpuMat& mask, GpuMat& valbuf, GpuMat& locbuf)
{
using namespace mathfunc::minmaxloc;
typedef void (*Caller)(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
static const Caller callers[2][7] =
{ { min_max_loc_multipass_caller<unsigned char>, min_max_loc_multipass_caller<char>,
min_max_loc_multipass_caller<unsigned short>, min_max_loc_multipass_caller<short>,
min_max_loc_multipass_caller<int>, min_max_loc_multipass_caller<float>, 0 },
{ min_max_loc_caller<unsigned char>, min_max_loc_caller<char>,
min_max_loc_caller<unsigned short>, min_max_loc_caller<short>,
min_max_loc_caller<int>, min_max_loc_caller<float>, min_max_loc_caller<double> } };
static const MaskedCaller masked_callers[2][7] =
{ { min_max_loc_mask_multipass_caller<unsigned char>, min_max_loc_mask_multipass_caller<char>,
min_max_loc_mask_multipass_caller<unsigned short>, min_max_loc_mask_multipass_caller<short>,
min_max_loc_mask_multipass_caller<int>, min_max_loc_mask_multipass_caller<float>, 0 },
{ min_max_loc_mask_caller<unsigned char>, min_max_loc_mask_caller<char>,
min_max_loc_mask_caller<unsigned short>, min_max_loc_mask_caller<short>,
min_max_loc_mask_caller<int>, min_max_loc_mask_caller<float>, min_max_loc_mask_caller<double> } };
CV_Assert(src.channels() == 1);
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice()));
double minVal_; if (!minVal) minVal = &minVal_;
double maxVal_; if (!maxVal) maxVal = &maxVal_;
int minLoc_[2];
int maxLoc_[2];
Size valbuf_size, locbuf_size;
get_buf_size_required(src.cols, src.rows, src.elemSize(), valbuf_size.width,
valbuf_size.height, locbuf_size.width, locbuf_size.height);
valbuf.create(valbuf_size, CV_8U);
locbuf.create(locbuf_size, CV_8U);
if (mask.empty())
{
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
caller(src, minVal, maxVal, minLoc_, maxLoc_, valbuf, locbuf);
}
else
{
MaskedCaller caller = masked_callers[hasAtomicsSupport(getDevice())][src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valbuf, locbuf);
}
if (minLoc) { minLoc->x = minLoc_[0]; minLoc->y = minLoc_[1]; }
if (maxLoc) { maxLoc->x = maxLoc_[0]; maxLoc->y = maxLoc_[1]; }
}
//////////////////////////////////////////////////////////////////////////////
// Count non-zero elements
namespace cv { namespace gpu { namespace mathfunc { namespace countnonzero {
void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows);
template <typename T>
int count_non_zero_caller(const DevMem2D src, PtrStep buf);
template <typename T>
int count_non_zero_multipass_caller(const DevMem2D src, PtrStep buf);
}}}}
int cv::gpu::countNonZero(const GpuMat& src)
{
GpuMat buf;
return countNonZero(src, buf);
}
int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
{
using namespace mathfunc::countnonzero;
typedef int (*Caller)(const DevMem2D src, PtrStep buf);
static const Caller callers[2][7] =
{ { count_non_zero_multipass_caller<unsigned char>, count_non_zero_multipass_caller<char>,
count_non_zero_multipass_caller<unsigned short>, count_non_zero_multipass_caller<short>,
count_non_zero_multipass_caller<int>, count_non_zero_multipass_caller<float>, 0},
{ count_non_zero_caller<unsigned char>, count_non_zero_caller<char>,
count_non_zero_caller<unsigned short>, count_non_zero_caller<short>,
count_non_zero_caller<int>, count_non_zero_caller<float>, count_non_zero_caller<double> } };
CV_Assert(src.channels() == 1);
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice()));
Size buf_size;
get_buf_size_required(src.cols, src.rows, buf_size.width, buf_size.height);
buf.create(buf_size, CV_8U);
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()];
if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type");
return caller(src, buf);
}
#endif