mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 20:42:53 +08:00

fixed problem in concat layer by disabling memory re-use in layers with multiple inputs trying to fix the tests when Halide is used to run deep nets another attempt to fix Halide tests see if the Halide tests will pass with concat layer fusion turned off trying to fix failures in halide tests; another try one more experiment to make halide_concat & halide_enet tests pass continue attempts to fix halide tests moving on uncomment parallel concat layer seemingly fixed failures in Halide tests and re-enabled concat layer fusion; thanks to dkurt for the patch
1224 lines
50 KiB
C++
1224 lines
50 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "op_halide.hpp"
|
|
#include "opencv2/core/hal/hal.hpp"
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
#include <iostream>
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class BaseConvolutionLayerImpl : public ConvolutionLayer
|
|
{
|
|
public:
|
|
BaseConvolutionLayerImpl() {}
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
{
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
backendId == DNN_BACKEND_HALIDE && haveHalide();
|
|
}
|
|
|
|
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
|
|
{
|
|
CV_Assert(inputs.size() > 0);
|
|
|
|
CV_Assert(blobs.size() >= 1 && blobs.size() <= 2);
|
|
CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height);
|
|
|
|
const Mat &input = *inputs[0];
|
|
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F));
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
CV_Assert(inputs[i]->type() == input.type());
|
|
CV_Assert(inputs[i]->dims == 4 && inputs[i]->size[1] == input.size[1]);
|
|
CV_Assert(inputs[i]->size[2] == input.size[2] && inputs[i]->size[3] == input.size[3]);
|
|
}
|
|
|
|
Size outSize = Size(outputs[0].size[3], outputs[0].size[2]);
|
|
getConvPoolPaddings(Size(input.size[3], input.size[2]), outSize,
|
|
kernel, stride, padMode, pad);
|
|
}
|
|
|
|
bool hasBias() const
|
|
{
|
|
return blobs.size() >= 2;
|
|
}
|
|
|
|
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
|
|
bool is1x1() const
|
|
{
|
|
return (kernel.height == 1 && kernel.width == 1) &&
|
|
(stride.height == 1 && stride.width == 1) &&
|
|
(dilation.height == 1 && dilation.width == 1);
|
|
}
|
|
|
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
|
|
const std::vector<Mat*> &inputs,
|
|
const std::vector<Mat> &outputs,
|
|
int targetId) const
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
if (targetId != DNN_TARGET_CPU)
|
|
{
|
|
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
|
|
return;
|
|
}
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci");
|
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
|
|
Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0];
|
|
|
|
int outW, outH, outC, outN;
|
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
|
|
|
|
if (outW == 1 || outH <= 2)
|
|
return;
|
|
|
|
if (is1x1() || outC <= 16)
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.fuse(yo, n, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
else
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.split(c, co, ci, 16)
|
|
.fuse(yo, co, tile).fuse(n, tile, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
padded_input.compute_at(top, yi);
|
|
#endif // HAVE_HALIDE
|
|
}
|
|
};
|
|
|
|
//TODO: simultaneously convolution and bias addition for cache optimization
|
|
class ConvolutionLayerImpl : public BaseConvolutionLayerImpl
|
|
{
|
|
public:
|
|
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
|
|
Mat weightsMat;
|
|
std::vector<float> biasvec;
|
|
std::vector<float> reluslope;
|
|
Ptr<ActivationLayer> activ;
|
|
Ptr<BatchNormLayer> bnorm;
|
|
Ptr<ScaleLayer> scaleLayer;
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
|
|
{
|
|
Size out(outShape[3], outShape[2]);
|
|
int inpGroupCn = blobs[0].size[1];
|
|
int ksize = inpGroupCn * kernel.height * kernel.width;
|
|
return shape(out.area(), ksize);
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
CV_Assert(blobs.size() != 0);
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
|
|
CV_Assert(inputs.size() == (size_t)1);
|
|
|
|
internals.clear();
|
|
|
|
int inpCn = inputs[0][1];
|
|
int inpH = inputs[0][2];
|
|
int inpW = inputs[0][3];
|
|
|
|
int outCn = blobs[0].size[0];
|
|
Size out;
|
|
|
|
if (padMode.empty())
|
|
{
|
|
out.height = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1;
|
|
out.width = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1;
|
|
}
|
|
else
|
|
{
|
|
getConvPoolOutParams(Size(inpH, inpW), kernel, stride, padMode, out);
|
|
}
|
|
|
|
int ngroups = inpCn / blobs[0].size[1];
|
|
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
|
|
|
|
int dims[] = {inputs[0][0], outCn, out.height, out.width};
|
|
outputs.resize(inputs.size(), shape(dims));
|
|
|
|
return false;
|
|
}
|
|
|
|
bool setActivation(const Ptr<ActivationLayer>& layer)
|
|
{
|
|
activ = layer;
|
|
return !activ.empty();
|
|
}
|
|
|
|
bool setBatchNorm(const Ptr<BatchNormLayer>& layer )
|
|
{
|
|
// for now the scale layer followed by the batch norm cannot be fused, only vice versa.
|
|
if( !scaleLayer.empty() )
|
|
return false;
|
|
bnorm = layer;
|
|
// we will need to re-compute the weights with the batch
|
|
// norm coefficients taken into account
|
|
weightsMat.release();
|
|
return !bnorm.empty();
|
|
}
|
|
|
|
bool setScale(const Ptr<ScaleLayer>& layer)
|
|
{
|
|
scaleLayer = layer;
|
|
// we will need to re-compute the weights with the scaling
|
|
// coefficients taken into account
|
|
weightsMat.release();
|
|
return !scaleLayer.empty();
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
const int inpCn = inputBuffer.channels();
|
|
const int outCn = blobs[0].size[0];
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
const int outGroupCn = outCn / group;
|
|
|
|
Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]);
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
if (pad.width || pad.height)
|
|
{
|
|
Halide::Func bounded =
|
|
Halide::BoundaryConditions::constant_exterior(inputBuffer, 0);
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
}
|
|
else
|
|
{
|
|
padded_input(x, y, c, n) = inputBuffer(x, y, c, n);
|
|
}
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
|
|
|
Halide::Expr kc = r.z;
|
|
if (group > 1)
|
|
{
|
|
int outCnBound = outGroupCn;
|
|
int inpChBound = inpGroupCn;
|
|
Halide::Expr shift = select(c < outCnBound, 0, inpChBound);
|
|
for (int i = 2; i < group; ++i)
|
|
{
|
|
outCnBound += outGroupCn;
|
|
inpChBound += inpGroupCn;
|
|
shift = select(c < outCnBound, shift, inpChBound);
|
|
}
|
|
kc += shift;
|
|
}
|
|
|
|
Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width;
|
|
Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height;
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) *
|
|
weights(r.x, r.y, r.z, c));
|
|
if (hasBias())
|
|
{
|
|
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
Ptr<BackendNode> pp(new HalideBackendNode({ padded_input, top }));
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
class ParallelConv : public cv::ParallelLoopBody
|
|
{
|
|
public:
|
|
enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 };
|
|
|
|
const Mat* input_;
|
|
const Mat* weights_;
|
|
Mat* output_;
|
|
int outShape[4];
|
|
Size kernel_, pad_, stride_, dilation_;
|
|
int ngroups_, nstripes_;
|
|
std::vector<int> ofstab_;
|
|
const std::vector<float>* biasvec_;
|
|
const std::vector<float>* reluslope_;
|
|
const ActivationLayer* activ_;
|
|
bool is1x1_;
|
|
bool useAVX;
|
|
bool useAVX2;
|
|
|
|
ParallelConv()
|
|
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
|
|
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false)
|
|
{}
|
|
|
|
static void run( const Mat& input, Mat& output, const Mat& weights,
|
|
const std::vector<float>& biasvec,
|
|
const std::vector<float>& reluslope,
|
|
Size kernel, Size pad, Size stride, Size dilation,
|
|
const ActivationLayer* activ, int ngroups, int nstripes )
|
|
{
|
|
CV_Assert( input.dims == 4 && output.dims == 4 &&
|
|
input.size[0] == output.size[0] &&
|
|
weights.rows == output.size[1] &&
|
|
weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height &&
|
|
input.type() == output.type() &&
|
|
input.type() == weights.type() &&
|
|
input.type() == CV_32F &&
|
|
input.isContinuous() &&
|
|
output.isContinuous() &&
|
|
biasvec.size() == (size_t)output.size[1]+2);
|
|
ParallelConv p;
|
|
|
|
p.input_ = &input;
|
|
p.weights_ = &weights;
|
|
p.output_ = &output;
|
|
for( int i = 0; i < 4; i++ ) p.outShape[i] = output.size[i];
|
|
p.outShape[1] /= ngroups;
|
|
p.kernel_ = kernel; p.pad_ = pad; p.stride_ = stride; p.dilation_ = dilation;
|
|
p.ngroups_ = ngroups;
|
|
p.nstripes_ = nstripes;
|
|
|
|
int inpCnAll = input.size[1], width = input.size[3], height = input.size[2];
|
|
int inpCn = inpCnAll / ngroups;
|
|
p.is1x1_ = kernel == Size(0,0) && pad == Size(0, 0);
|
|
p.useAVX = checkHardwareSupport(CPU_AVX);
|
|
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
|
|
|
|
int ncn = std::min(inpCn, (int)BLK_SIZE_CN);
|
|
p.ofstab_.resize(kernel.width*kernel.height*ncn);
|
|
int* ofstab = &p.ofstab_[0];
|
|
|
|
for( int k = 0; k < ncn; k++ )
|
|
for( int k_r = 0; k_r < kernel.height; k_r++ )
|
|
for( int k_c = 0; k_c < kernel.width; k_c++ )
|
|
ofstab[(k*kernel.height + k_r)*kernel.width + k_c] =
|
|
(k*height + k_r*dilation.height)*width + k_c*dilation.width;
|
|
|
|
p.biasvec_ = &biasvec;
|
|
p.reluslope_ = &reluslope;
|
|
p.activ_ = p.reluslope_->empty() ? activ : 0;
|
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes);
|
|
}
|
|
|
|
virtual void operator ()(const Range &r0) const
|
|
{
|
|
const int valign = ConvolutionLayerImpl::VEC_ALIGN;
|
|
int ngroups = ngroups_, batchSize = input_->size[0]*ngroups;
|
|
int outW = output_->size[3], outH = output_->size[2], outCn = output_->size[1]/ngroups;
|
|
int width = input_->size[3], height = input_->size[2], inpCn = input_->size[1]/ngroups;
|
|
int nstripes = nstripes_;
|
|
int kernel_w = kernel_.width, kernel_h = kernel_.height;
|
|
int pad_w = pad_.width, pad_h = pad_.height;
|
|
int stride_w = stride_.width, stride_h = stride_.height;
|
|
int dilation_w = dilation_.width, dilation_h = dilation_.height;
|
|
int karea = kernel_w*kernel_h;
|
|
int i, j, k;
|
|
size_t inpPlaneSize = width*height;
|
|
size_t outPlaneSize = outW*outH;
|
|
bool is1x1 = is1x1_;
|
|
|
|
int stripesPerSample;
|
|
size_t stripeSize;
|
|
Range r = r0;
|
|
|
|
if( nstripes >= batchSize*2 )
|
|
{
|
|
stripesPerSample = nstripes/batchSize;
|
|
stripeSize = alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign);
|
|
stripeSize = std::min(stripeSize, outPlaneSize);
|
|
}
|
|
else
|
|
{
|
|
stripesPerSample = 1;
|
|
int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1);
|
|
r.start *= samplesPerStripe;
|
|
r.end *= samplesPerStripe;
|
|
nstripes *= samplesPerStripe;
|
|
stripeSize = outPlaneSize;
|
|
}
|
|
|
|
const float* data_inp0_ = input_->ptr<float>();
|
|
const int* ofstab = &ofstab_[0];
|
|
const float* wptr_orig_ = weights_->ptr<float>();
|
|
size_t wstep = weights_->step1();
|
|
const float* biasptr_ = &biasvec_->at(0);
|
|
const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0);
|
|
float* data_out0_ = output_->ptr<float>();
|
|
size_t rowbufsz = (size_t)karea*BLK_SIZE_CN*BLK_SIZE;
|
|
AutoBuffer<float> rowbuf0_(rowbufsz + valign);
|
|
float* rowbuf0 = alignPtr((float*)rowbuf0_, (int)(valign*sizeof(float)));
|
|
|
|
// we clear the buffer once; ultimately, it lets us to avoid
|
|
// tail processing after running the unrolled/vectorized loop.
|
|
// the main idea is to make sure that the tail (a.k.a. padding) of each row
|
|
// (i.e. the elements with indices between vsz=karea*ncn and vsz_a)
|
|
// does not contain NaNs or Infs. Because the padding in the weights
|
|
// matrix is explicitly initialized with 0's, we handle all other
|
|
// cases nicely, i.e. we can skip expliciting re-initialization
|
|
// of the padding - we just retain elements from the previous iteration
|
|
// of the loop over channels (cn0).
|
|
memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) );
|
|
|
|
for( int stripe = r.start; stripe < r.end; stripe++ )
|
|
{
|
|
int subsampleIdx = stripe/stripesPerSample;
|
|
if( subsampleIdx >= batchSize )
|
|
break;
|
|
int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize);
|
|
int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize);
|
|
const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn;
|
|
float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn;
|
|
int startOutCn = (subsampleIdx % ngroups)*outCn;
|
|
const float* wptr_orig = wptr_orig_ + wstep*startOutCn;
|
|
const float* biasptr = biasptr_ + startOutCn;
|
|
|
|
for( int cn0 = 0; cn0 < inpCn; cn0 += BLK_SIZE_CN )
|
|
{
|
|
int cn1 = std::min(cn0 + BLK_SIZE_CN, inpCn);
|
|
int ncn = cn1 - cn0, vsz = karea*ncn;
|
|
int vsz_a = (int)alignSize(vsz, valign);
|
|
const float* wptr = wptr_orig + cn0*karea;
|
|
// we apply [Channels][P]ReLU (if any) during the final pass only.
|
|
const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0;
|
|
|
|
for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += BLK_SIZE )
|
|
{
|
|
int ofs, ofs1 = std::min(ofs0 + BLK_SIZE, stripeEnd);
|
|
int out_i = ofs0 / outW;
|
|
int out_j = ofs0 - out_i * outW;
|
|
|
|
// do im2row for a part of input tensor
|
|
float* rowbuf = rowbuf0;
|
|
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
|
|
{
|
|
int delta = std::min(ofs1 - ofs, outW - out_j);
|
|
int out_j1 = out_j + delta;
|
|
int in_i = out_i * stride_h - pad_h;
|
|
int in_j = out_j * stride_w - pad_w;
|
|
const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j;
|
|
ofs += delta;
|
|
|
|
// do im2row for a part of input tensor
|
|
if( is1x1 )
|
|
{
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
rowbuf[k] = imgptr[k*inpPlaneSize];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h;
|
|
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
|
|
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
|
|
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
|
|
{
|
|
// this condition should be true for most of the tensor elements, i.e.
|
|
// most of the time the kernel aperture is inside the tensor X-Y plane.
|
|
if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
{
|
|
int k1 = ofstab[k];
|
|
float v0 = imgptr[k1];
|
|
float v1 = imgptr[k1 + stride_w];
|
|
rowbuf[k] = v0;
|
|
rowbuf[k+vsz_a] = v1;
|
|
}
|
|
out_j++;
|
|
rowbuf += vsz_a;
|
|
imgptr += stride_w;
|
|
in_j += stride_w;
|
|
}
|
|
else
|
|
{
|
|
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
|
|
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
|
|
|
|
// here some non-continous sub-row of the row will not be
|
|
// filled from the tensor; we need to make sure that the uncovered
|
|
// elements are explicitly set to 0's. the easiest way is to
|
|
// set all the elements to 0's before the loop.
|
|
memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
|
|
for( k = 0; k < ncn; k++ )
|
|
{
|
|
for( i = i0; i < i1; i++ )
|
|
{
|
|
for( j = j0; j < j1; j++ )
|
|
{
|
|
int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w;
|
|
rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// now compute dot product of the weights
|
|
// and im2row-transformed part of the tensor
|
|
int bsz = ofs1 - ofs0;
|
|
#if CV_TRY_AVX2
|
|
if(useAVX2)
|
|
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX
|
|
if(useAVX)
|
|
opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
else
|
|
#endif
|
|
for( int i = 0; i < outCn; i += 2 )
|
|
{
|
|
const float* wptr0 = wptr + i*wstep;
|
|
const float* wptr1 = wptr0 + wstep;
|
|
float* outptr0 = data_out0 + ofs0 + i*outPlaneSize;
|
|
float* outptr1 = outptr0 + outPlaneSize;
|
|
float bias0 = biasptr[i], bias1 = biasptr[i+1];
|
|
float r0 = 1.f, r1 = 1.f;
|
|
|
|
if( i+1 >= outCn )
|
|
{
|
|
wptr1 = wptr0;
|
|
outptr1 = outptr0;
|
|
bias1 = bias0;
|
|
}
|
|
|
|
if( relu )
|
|
{
|
|
r0 = relu[i];
|
|
r1 = relu[i+1];
|
|
}
|
|
|
|
int j = 0;
|
|
#if CV_SIMD128
|
|
v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32();
|
|
|
|
for( ; j <= bsz - 4; j += 4 )
|
|
{
|
|
const float* rptr = rowbuf0 + j*vsz_a;
|
|
v_float32x4 s0, s1;
|
|
|
|
if( cn0 == 0 )
|
|
{
|
|
s0 = v_setall_f32(bias0);
|
|
s1 = v_setall_f32(bias1);
|
|
}
|
|
else
|
|
{
|
|
s0 = v_load(outptr0 + j);
|
|
s1 = v_load(outptr1 + j);
|
|
}
|
|
|
|
v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(),
|
|
vs02 = v_setzero_f32(), vs03 = v_setzero_f32(),
|
|
vs10 = v_setzero_f32(), vs11 = v_setzero_f32(),
|
|
vs12 = v_setzero_f32(), vs13 = v_setzero_f32();
|
|
for( k = 0; k < vsz; k += 4, rptr += 4 )
|
|
{
|
|
v_float32x4 w0 = v_load_aligned(wptr0 + k), w1 = v_load_aligned(wptr1 + k);
|
|
v_float32x4 r0 = v_load_aligned(rptr), r1 = v_load_aligned(rptr + vsz_a),
|
|
r2 = v_load_aligned(rptr + vsz_a*2), r3 = v_load_aligned(rptr + vsz_a*3);
|
|
|
|
vs00 += w0*r0;
|
|
vs01 += w0*r1;
|
|
vs02 += w0*r2;
|
|
vs03 += w0*r3;
|
|
|
|
vs10 += w1*r0;
|
|
vs11 += w1*r1;
|
|
vs12 += w1*r2;
|
|
vs13 += w1*r3;
|
|
}
|
|
s0 += v_reduce_sum4(vs00, vs01, vs02, vs03);
|
|
s1 += v_reduce_sum4(vs10, vs11, vs12, vs13);
|
|
if( relu )
|
|
{
|
|
s0 = v_select(s0 > z, s0, s0*vr0);
|
|
s1 = v_select(s1 > z, s1, s1*vr1);
|
|
}
|
|
|
|
v_store(outptr0 + j, s0);
|
|
v_store(outptr1 + j, s1);
|
|
}
|
|
#endif
|
|
for( ; j < bsz; j++ )
|
|
{
|
|
const float* rptr = rowbuf0 + j*vsz_a;
|
|
float s00, s10;
|
|
|
|
if( cn0 == 0 )
|
|
{
|
|
s00 = bias0;
|
|
s10 = bias1;
|
|
}
|
|
else
|
|
{
|
|
s00 = outptr0[j];
|
|
s10 = outptr1[j];
|
|
}
|
|
|
|
for( k = 0; k < vsz; k++ )
|
|
{
|
|
float r0 = rptr[k];
|
|
s00 += wptr0[k]*r0;
|
|
s10 += wptr1[k]*r0;
|
|
}
|
|
if( relu )
|
|
{
|
|
s00 = s00 > 0.f ? s00 : s00*r0;
|
|
s10 = s10 > 0.f ? s10 : s10*r1;
|
|
}
|
|
|
|
outptr0[j] = s00;
|
|
outptr1[j] = s10;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( activ_ )
|
|
activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart,
|
|
(int)(stripeEnd - stripeStart),
|
|
outPlaneSize, startOutCn, startOutCn + outCn);
|
|
}
|
|
}
|
|
};
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
/*printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
|
|
name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3],
|
|
kernel.width, kernel.height, pad.width, pad.height,
|
|
stride.width, stride.height, dilation.width, dilation.height);*/
|
|
CV_Assert(inputs.size() == (size_t)1 && inputs[0]->size[1] % blobs[0].size[1] == 0);
|
|
int ngroups = inputs[0]->size[1]/blobs[0].size[1];
|
|
CV_Assert(outputs[0].size[1] % ngroups == 0);
|
|
|
|
int k, outCn = blobs[0].size[0];
|
|
|
|
if( weightsMat.empty() )
|
|
{
|
|
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
|
|
// use vectorized (i.e. with intrinsics) loops without tail processing
|
|
Mat wm = blobs[0].reshape(1, outCn).clone();
|
|
if( wm.step1() % VEC_ALIGN != 0 )
|
|
{
|
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
|
Mat wm_buffer = Mat(outCn, newcols, wm.type());
|
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
|
|
wm_padding.setTo(Scalar::all(0.));
|
|
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
|
|
wm.copyTo(wm_aligned);
|
|
wm = wm_aligned;
|
|
}
|
|
weightsMat = wm;
|
|
|
|
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
|
|
biasvec.resize(outCn+2);
|
|
if( biasMat.empty() )
|
|
{
|
|
for( k = 0; k < outCn; k++ )
|
|
biasvec[k] = 0.f;
|
|
}
|
|
else
|
|
{
|
|
for( k = 0; k < outCn; k++ )
|
|
biasvec[k] = biasMat.at<float>(k);
|
|
}
|
|
|
|
if( !bnorm.empty() || !scaleLayer.empty() )
|
|
{
|
|
Mat scale, shift, scale2, shift2;
|
|
const float *scaleptr = 0, *shiftptr = 0;
|
|
const float *scaleptr2 = 0, *shiftptr2 = 0;
|
|
|
|
if( !bnorm.empty() )
|
|
{
|
|
bnorm->getScaleShift(scale, shift);
|
|
CV_Assert( scale.isContinuous() && shift.isContinuous() &&
|
|
scale.type() == CV_32F && shift.type() == CV_32F &&
|
|
scale.total() == (size_t)outCn &&
|
|
shift.total() == (size_t)outCn );
|
|
scaleptr = scale.ptr<float>();
|
|
shiftptr = shift.ptr<float>();
|
|
}
|
|
if( !scaleLayer.empty() )
|
|
{
|
|
scale2 = scaleLayer->blobs[0];
|
|
CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F &&
|
|
scale2.total() == (size_t)outCn );
|
|
scaleptr2 = scale2.ptr<float>();
|
|
if( scaleLayer->hasBias )
|
|
{
|
|
shift2 = scaleLayer->blobs[1];
|
|
CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F &&
|
|
shift2.total() == (size_t)outCn );
|
|
shiftptr2 = shift2.ptr<float>();
|
|
}
|
|
}
|
|
|
|
for( int i = 0; i < outCn; i++ )
|
|
{
|
|
float s1 = scaleptr ? scaleptr[i] : 1.f;
|
|
float delta1 = shiftptr ? shiftptr[i] : 0.f;
|
|
float s2 = scaleptr2 ? scaleptr2[i] : 1.f;
|
|
float delta2 = shiftptr2 ? shiftptr2[i] : 0.f;
|
|
float* w_i = weightsMat.ptr<float>(i);
|
|
int j, wcols = weightsMat.cols;
|
|
|
|
for( j = 0; j < wcols; j++ )
|
|
w_i[j] *= (s1*s2);
|
|
|
|
biasvec[i] = biasvec[i]*(s1*s2) + (delta1*s2 + delta2);
|
|
}
|
|
}
|
|
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
|
|
}
|
|
|
|
reluslope.clear();
|
|
if( activ )
|
|
{
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
if( !activ_relu.empty() )
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
if( !activ_chprelu.empty() )
|
|
{
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
const float* mdata = m.ptr<float>();
|
|
reluslope.resize(outCn+2);
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
}
|
|
}
|
|
|
|
int nstripes = std::max(getNumThreads(), 1);
|
|
|
|
ParallelConv::run(*inputs[0], outputs[0], weightsMat, biasvec, reluslope,
|
|
kernel, pad, stride, dilation, activ.get(), ngroups, nstripes);
|
|
}
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const
|
|
{
|
|
CV_Assert(inputs.size() == outputs.size());
|
|
|
|
int64 flops = 0;
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += total(outputs[i])*(2*kernel.area()*inputs[i][1] + 1);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
class DeConvolutionLayerImpl : public BaseConvolutionLayerImpl
|
|
{
|
|
public:
|
|
Mat weightsMat, biasesMat;
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
|
|
{
|
|
int inpCn = inpShape[1];
|
|
int inpH = inpShape[2];
|
|
int inpW = inpShape[3];
|
|
int outCn = outShape[1];
|
|
int ngroups = inpCn / blobs[0].size[1];
|
|
int outGroupCn = outCn / ngroups;
|
|
int ksize = outGroupCn * kernel.height * kernel.width;
|
|
return shape(ksize, inpH * inpW);
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
|
|
CV_Assert(inputs.size() != 0);
|
|
|
|
int inpCn = inputs[0][1];
|
|
int inpH = inputs[0][2];
|
|
int inpW = inputs[0][3];
|
|
|
|
int outH = stride.height * (inpH - 1) + kernel.height - 2 * pad.height + adjustPad.height;
|
|
int outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width;
|
|
int outCn = blobs[0].size[0];
|
|
|
|
int ngroups = inpCn / blobs[0].size[1];
|
|
|
|
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
|
|
CV_Assert(blobs[0].size[0] == outCn && blobs[0].size[1] == inpCn / ngroups);
|
|
|
|
int dims[] = {inputs[0][0], outCn, outH, outW};
|
|
outputs.resize(inputs.size(), shape(dims));
|
|
|
|
internals.push_back(MatShape());
|
|
if (!is1x1())
|
|
internals[0] = computeColRowShape(inputs[0], outputs[0]);
|
|
|
|
if (hasBias())
|
|
internals.push_back(shape(1, outH*outW));
|
|
|
|
return false;
|
|
}
|
|
|
|
class MatMulInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
|
|
{
|
|
a_ = &a;
|
|
b_ = &b;
|
|
c_ = &c;
|
|
nstripes_ = nstripes;
|
|
useAVX = checkHardwareSupport(CPU_AVX);
|
|
useAVX2 = checkHardwareSupport(CPU_AVX2);
|
|
}
|
|
|
|
void operator()(const Range& range_) const
|
|
{
|
|
int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
|
|
Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
|
|
int mmax = a_->rows;
|
|
int nmax = range.end - range.start;
|
|
int kmax = a_->cols;
|
|
int m, n, k;
|
|
const float* aptr = a_->ptr<float>();
|
|
const float* bptr = b_->ptr<float>() + range.start;
|
|
float* cptr = c_->ptr<float>() + range.start;
|
|
size_t astep = a_->step1();
|
|
size_t bstep = b_->step1();
|
|
size_t cstep = c_->step1();
|
|
|
|
#if CV_TRY_AVX2
|
|
if( useAVX2 )
|
|
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX
|
|
if( useAVX )
|
|
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
for( m = 0; m < mmax; m += 2 )
|
|
{
|
|
float* dst0 = cptr + cstep*m;
|
|
float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
|
|
const float* aptr0 = aptr + astep*m;
|
|
const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);
|
|
|
|
for( n = 0; n < nmax; n++ )
|
|
{
|
|
dst0[n] = 0.f;
|
|
dst1[n] = 0.f;
|
|
}
|
|
|
|
for( k = 0; k < kmax; k += 4 )
|
|
{
|
|
float alpha00 = aptr0[k];
|
|
float alpha01 = aptr1[k];
|
|
float alpha10 = 0.f, alpha11 = 0.f;
|
|
float alpha20 = 0.f, alpha21 = 0.f;
|
|
float alpha30 = 0.f, alpha31 = 0.f;
|
|
const float* bptr0 = bptr + k*bstep;
|
|
const float* bptr1 = bptr0;
|
|
const float* bptr2 = bptr0;
|
|
const float* bptr3 = bptr0;
|
|
|
|
if( k+1 < kmax )
|
|
{
|
|
alpha10 = aptr0[k+1];
|
|
alpha11 = aptr1[k+1];
|
|
bptr1 = bptr0 + bstep;
|
|
if( k+2 < kmax )
|
|
{
|
|
alpha20 = aptr0[k+2];
|
|
alpha21 = aptr1[k+2];
|
|
bptr2 = bptr1 + bstep;
|
|
if( k+3 < kmax )
|
|
{
|
|
alpha30 = aptr0[k+3];
|
|
alpha31 = aptr1[k+3];
|
|
bptr3 = bptr2 + bstep;
|
|
}
|
|
}
|
|
}
|
|
n = 0;
|
|
|
|
#if CV_SIMD128
|
|
v_float32x4 a00 = v_setall_f32(alpha00);
|
|
v_float32x4 a01 = v_setall_f32(alpha01);
|
|
v_float32x4 a10 = v_setall_f32(alpha10);
|
|
v_float32x4 a11 = v_setall_f32(alpha11);
|
|
v_float32x4 a20 = v_setall_f32(alpha20);
|
|
v_float32x4 a21 = v_setall_f32(alpha21);
|
|
v_float32x4 a30 = v_setall_f32(alpha30);
|
|
v_float32x4 a31 = v_setall_f32(alpha31);
|
|
|
|
for( ; n <= nmax - 4; n += 4 )
|
|
{
|
|
v_float32x4 b0 = v_load(bptr0 + n);
|
|
v_float32x4 b1 = v_load(bptr1 + n);
|
|
v_float32x4 b2 = v_load(bptr2 + n);
|
|
v_float32x4 b3 = v_load(bptr3 + n);
|
|
v_float32x4 d0 = v_load(dst0 + n);
|
|
v_float32x4 d1 = v_load(dst1 + n);
|
|
d0 += b0*a00;
|
|
d1 += b0*a01;
|
|
d0 += b1*a10;
|
|
d1 += b1*a11;
|
|
d0 += b2*a20;
|
|
d1 += b2*a21;
|
|
d0 += b3*a30;
|
|
d1 += b3*a31;
|
|
v_store(dst0 + n, d0);
|
|
v_store(dst1 + n, d1);
|
|
}
|
|
#endif
|
|
|
|
for( ; n < nmax; n++ )
|
|
{
|
|
float b0 = bptr0[n], b1 = bptr1[n];
|
|
float b2 = bptr2[n], b3 = bptr3[n];
|
|
float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
|
|
float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
|
|
dst0[n] = d0;
|
|
dst1[n] = d1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Mat *a_, *b_;
|
|
Mat* c_;
|
|
int nstripes_;
|
|
bool useAVX;
|
|
bool useAVX2;
|
|
};
|
|
|
|
class Col2ImInvoker : public cv::ParallelLoopBody
|
|
{
|
|
public:
|
|
const float* data_col;
|
|
const float* biasvec;
|
|
int channels, height, width;
|
|
int kernel_h, kernel_w;
|
|
int pad_h, pad_w;
|
|
int stride_h, stride_w;
|
|
float* data_im;
|
|
int height_col, width_col;
|
|
int nstripes;
|
|
bool is1x1;
|
|
|
|
Col2ImInvoker()
|
|
: data_col(0), biasvec(0), channels(0), height(0), width(0),
|
|
kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
|
|
height_col(0), width_col(0), nstripes(0), is1x1(0)
|
|
{}
|
|
|
|
static void run(const float* data_col,
|
|
int channels, int height, int width,
|
|
int kernel_h, int kernel_w,
|
|
int pad_h, int pad_w,
|
|
int stride_h, int stride_w,
|
|
float* data_im,
|
|
const float* biasvec,
|
|
bool is1x1)
|
|
{
|
|
const int nstripes = getNumThreads();
|
|
|
|
Col2ImInvoker t;
|
|
t.data_col = data_col;
|
|
t.data_im = data_im;
|
|
t.channels = channels; t.height = height; t.width = width;
|
|
t.kernel_h = kernel_h; t.kernel_w = kernel_w;
|
|
t.pad_h = pad_h; t.pad_w = pad_w;
|
|
t.stride_h = stride_h; t.stride_w = stride_w;
|
|
t.height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1;
|
|
t.width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1;
|
|
t.nstripes = nstripes;
|
|
t.is1x1 = is1x1;
|
|
t.biasvec = biasvec;
|
|
|
|
parallel_for_(Range(0, nstripes), t, nstripes);
|
|
}
|
|
|
|
virtual void operator ()(const Range &r) const
|
|
{
|
|
const float* data_col_ = data_col;
|
|
float* data_im_ = data_im;
|
|
int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
|
|
int coeff_w = (1 - stride_w * height_col * width_col);
|
|
size_t total = (size_t)channels * height * width;
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
size_t startIndex = r.start*stripeSize;
|
|
size_t endIndex = std::min(r.end*stripeSize, total);
|
|
int w = (int)(startIndex % width + pad_w);
|
|
int h = (int)((startIndex / width) % height + pad_h);
|
|
int c = (int)(startIndex / (width * height));
|
|
int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
int h_col_end = std::min(h / stride_h + 1, height_col);
|
|
int plane_size_col = height_col * width_col;
|
|
int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
bool is1x1_ = is1x1;
|
|
const float* biasvec_ = biasvec;
|
|
|
|
for (size_t index = startIndex; index < endIndex; index++)
|
|
{
|
|
// compute the start and end of the output
|
|
int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
|
|
int w_col_end = std::min(w / stride_w + 1, width_col);
|
|
float val;
|
|
|
|
if( is1x1_ )
|
|
val = data_im_[index];
|
|
else
|
|
{
|
|
val = 0.f;
|
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
|
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
|
|
val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
|
|
}
|
|
}
|
|
}
|
|
data_im_[index] = val + biasvec_[c];
|
|
|
|
offset += plane_size_col;
|
|
if( ++w >= width + pad_w )
|
|
{
|
|
w = (int)((index + 1)% width + pad_w);
|
|
h = (int)(((index + 1) / width) % height + pad_h);
|
|
c = (int)((index + 1) / (width * height));
|
|
h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
h_col_end = std::min(h / stride_h + 1, height_col);
|
|
offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
int outCn = blobs[0].size[0];
|
|
int inpCn = inputs[0]->size[1];
|
|
bool is1x1flag = is1x1();
|
|
int nstripes = getNumThreads();
|
|
|
|
if( weightsMat.empty() )
|
|
{
|
|
transpose(blobs[0].reshape(1, inpCn), weightsMat);
|
|
biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
|
|
}
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
{
|
|
int ngroups = inpCn / blobs[0].size[1];
|
|
int inpGroupCn = blobs[0].size[1];
|
|
int outGroupCn = outCn / ngroups;
|
|
const Mat& inp = *inputs[ii];
|
|
Mat& out = outputs[ii];
|
|
int numImg = inp.size[0];
|
|
int outH = out.size[2], outW = out.size[3];
|
|
|
|
Mat convBlob = inputs[ii]->reshape(1, numImg*inpCn);
|
|
Mat decnBlob = out.reshape(1, numImg*outCn);
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
{
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn));
|
|
Mat &colMat = is1x1flag ? dstMat : internals[0];
|
|
|
|
Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
|
|
Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
|
|
Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
|
|
|
|
//gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
|
|
MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
|
|
parallel_for_(Range(0, nstripes), mminvoker, nstripes);
|
|
|
|
Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
|
|
kernel.height, kernel.width, pad.height, pad.width,
|
|
stride.height, stride.width, dstMat.ptr<float>(),
|
|
curBiasMat.ptr<float>(), is1x1flag);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
int inW, inH, inC, inN, outC = blobs[0].size[0];
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
|
|
|
if (inC / blobs[0].size[1] != 1)
|
|
CV_Error(cv::Error::StsNotImplemented,
|
|
"Halide backend for Deconvolution with group > 1 is not implemented");
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
auto weights = wrapToHalideBuffer(blobs[0], {kernel.width,
|
|
kernel.height, outC, inC});
|
|
|
|
Halide::Func dilated_input("dilated_input");
|
|
dilated_input(x, y, c, n) = 0.0f;
|
|
Halide::RDom r1(0, inW, 0, inH);
|
|
dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) =
|
|
inputBuffer(r1.x, r1.y, c, n);
|
|
dilated_input.compute_root();
|
|
|
|
Halide::Func bounded =
|
|
Halide::BoundaryConditions::constant_exterior(dilated_input, 0,
|
|
0, (inW - 1) * stride.width + 1,
|
|
0, (inH - 1) * stride.height + 1,
|
|
0, inC, 0, inN);
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inC);
|
|
Halide::Expr topExpr = sum(
|
|
padded_input(x + pad.width - r.x, y + pad.height - r.y, r.z, n) *
|
|
weights(r.x, r.y, c, r.z));
|
|
if (hasBias())
|
|
{
|
|
auto bias = wrapToHalideBuffer(blobs[1], {outC});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const
|
|
{
|
|
CV_Assert(inputs.size() == outputs.size());
|
|
|
|
float flops = 0;
|
|
int outChannels = blobs[0].size[0];
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += 2*outChannels*kernel.area()*total(inputs[i]);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
//Convolution and Deconvolution
|
|
static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, const LayerParams ¶ms)
|
|
{
|
|
l->setParamsFrom(params);
|
|
getConvolutionKernelParams(params, l->kernel.height, l->kernel.width, l->pad.height,
|
|
l->pad.width, l->stride.height, l->stride.width, l->dilation.height,
|
|
l->dilation.width, l->padMode);
|
|
|
|
bool bias = params.get<bool>("bias_term", true);
|
|
int numOutput = params.get<int>("num_output");
|
|
int ngroups = params.get<int>("group", 1);
|
|
|
|
l->adjustPad.height = params.get<int>("adj_h", 0);
|
|
l->adjustPad.width = params.get<int>("adj_w", 0);
|
|
|
|
CV_Assert(numOutput % ngroups == 0);
|
|
CV_Assert((bias && l->blobs.size() == 2) || (!bias && l->blobs.size() == 1));
|
|
CV_Assert(l->adjustPad.width < l->stride.width &&
|
|
l->adjustPad.height < l->stride.height);
|
|
}
|
|
|
|
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams ¶ms)
|
|
{
|
|
Ptr<BaseConvolutionLayer> l(new ConvolutionLayerImpl);
|
|
initConvDeconvLayerFromCaffe(l, params);
|
|
return l;
|
|
}
|
|
|
|
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams ¶ms)
|
|
{
|
|
Ptr<BaseConvolutionLayer> l(new DeConvolutionLayerImpl);
|
|
initConvDeconvLayerFromCaffe(l, params);
|
|
|
|
return l;
|
|
}
|
|
|
|
}
|
|
}
|