opencv/modules/core/src/ocl.cpp
2020-09-03 20:34:49 +00:00

7257 lines
234 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifndef HAVE_OPENCL
#include "ocl_disabled.impl.hpp"
#else // HAVE_OPENCL
#include <list>
#include <map>
#include <deque>
#include <set>
#include <string>
#include <sstream>
#include <iostream> // std::cerr
#include <fstream>
#if !(defined _MSC_VER) || (defined _MSC_VER && _MSC_VER > 1700)
#include <inttypes.h>
#endif
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.defines.hpp>
#undef CV_LOG_STRIP_LEVEL
#define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_DEBUG + 1
#include <opencv2/core/utils/logger.hpp>
#include "opencv2/core/ocl_genbase.hpp"
#include "opencl_kernels_core.hpp"
#include "opencv2/core/utils/lock.private.hpp"
#include "opencv2/core/utils/filesystem.hpp"
#include "opencv2/core/utils/filesystem.private.hpp"
#define CV__ALLOCATOR_STATS_LOG(...) CV_LOG_VERBOSE(NULL, 0, "OpenCL allocator: " << __VA_ARGS__)
#include "opencv2/core/utils/allocator_stats.impl.hpp"
#undef CV__ALLOCATOR_STATS_LOG
#define CV_OPENCL_ALWAYS_SHOW_BUILD_LOG 0
#define CV_OPENCL_SHOW_RUN_KERNELS 0
#define CV_OPENCL_TRACE_CHECK 0
#define CV_OPENCL_VALIDATE_BINARY_PROGRAMS 1
#define CV_OPENCL_SHOW_SVM_ERROR_LOG 1
#define CV_OPENCL_SHOW_SVM_LOG 0
#include "opencv2/core/bufferpool.hpp"
#ifndef LOG_BUFFER_POOL
# if 0
# define LOG_BUFFER_POOL printf
# else
# define LOG_BUFFER_POOL(...)
# endif
#endif
#if CV_OPENCL_SHOW_SVM_LOG
// TODO add timestamp logging
#define CV_OPENCL_SVM_TRACE_P printf("line %d (ocl.cpp): ", __LINE__); printf
#else
#define CV_OPENCL_SVM_TRACE_P(...)
#endif
#if CV_OPENCL_SHOW_SVM_ERROR_LOG
// TODO add timestamp logging
#define CV_OPENCL_SVM_TRACE_ERROR_P printf("Error on line %d (ocl.cpp): ", __LINE__); printf
#else
#define CV_OPENCL_SVM_TRACE_ERROR_P(...)
#endif
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#ifdef HAVE_OPENCL_SVM
#include "opencv2/core/opencl/runtime/opencl_svm_20.hpp"
#include "opencv2/core/opencl/runtime/opencl_svm_hsa_extension.hpp"
#include "opencv2/core/opencl/opencl_svm.hpp"
#endif
#include "umatrix.hpp"
namespace cv { namespace ocl {
#define IMPLEMENT_REFCOUNTABLE() \
void addref() { CV_XADD(&refcount, 1); } \
void release() { if( CV_XADD(&refcount, -1) == 1 && !cv::__termination) delete this; } \
int refcount
static cv::utils::AllocatorStatistics opencl_allocator_stats;
CV_EXPORTS cv::utils::AllocatorStatisticsInterface& getOpenCLAllocatorStatistics();
cv::utils::AllocatorStatisticsInterface& getOpenCLAllocatorStatistics()
{
return opencl_allocator_stats;
}
#ifndef _DEBUG
static bool isRaiseError()
{
static bool initialized = false;
static bool value = false;
if (!initialized)
{
value = cv::utils::getConfigurationParameterBool("OPENCV_OPENCL_RAISE_ERROR", false);
initialized = true;
}
return value;
}
#endif
#if CV_OPENCL_TRACE_CHECK
static inline
void traceOpenCLCheck(cl_int status, const char* message)
{
std::cout << "OpenCV(OpenCL:" << status << "): " << message << std::endl << std::flush;
}
#define CV_OCL_TRACE_CHECK_RESULT(status, message) traceOpenCLCheck(status, message)
#else
#define CV_OCL_TRACE_CHECK_RESULT(status, message) /* nothing */
#endif
#define CV_OCL_API_ERROR_MSG(check_result, msg) \
cv::format("OpenCL error %s (%d) during call: %s", getOpenCLErrorString(check_result), check_result, msg)
#define CV_OCL_CHECK_RESULT(check_result, msg) \
do { \
CV_OCL_TRACE_CHECK_RESULT(check_result, msg); \
if (check_result != CL_SUCCESS) \
{ \
static_assert(std::is_convertible<decltype(msg), const char*>::value, "msg of CV_OCL_CHECK_RESULT must be const char*"); \
cv::String error_msg = CV_OCL_API_ERROR_MSG(check_result, msg); \
CV_Error(Error::OpenCLApiCallError, error_msg); \
} \
} while (0)
#define CV_OCL_CHECK_(expr, check_result) do { expr; CV_OCL_CHECK_RESULT(check_result, #expr); } while (0)
#define CV_OCL_CHECK(expr) do { cl_int __cl_result = (expr); CV_OCL_CHECK_RESULT(__cl_result, #expr); } while (0)
#ifdef _DEBUG
#define CV_OCL_DBG_CHECK_RESULT(check_result, msg) CV_OCL_CHECK_RESULT(check_result, msg)
#define CV_OCL_DBG_CHECK(expr) CV_OCL_CHECK(expr)
#define CV_OCL_DBG_CHECK_(expr, check_result) CV_OCL_CHECK_(expr, check_result)
#else
#define CV_OCL_DBG_CHECK_RESULT(check_result, msg) \
do { \
CV_OCL_TRACE_CHECK_RESULT(check_result, msg); \
if (check_result != CL_SUCCESS && isRaiseError()) \
{ \
static_assert(std::is_convertible<decltype(msg), const char*>::value, "msg of CV_OCL_DBG_CHECK_RESULT must be const char*"); \
cv::String error_msg = CV_OCL_API_ERROR_MSG(check_result, msg); \
CV_Error(Error::OpenCLApiCallError, error_msg); \
} \
} while (0)
#define CV_OCL_DBG_CHECK_(expr, check_result) do { expr; CV_OCL_DBG_CHECK_RESULT(check_result, #expr); } while (0)
#define CV_OCL_DBG_CHECK(expr) do { cl_int __cl_result = (expr); CV_OCL_DBG_CHECK_RESULT(__cl_result, #expr); } while (0)
#endif
static const bool CV_OPENCL_CACHE_ENABLE = utils::getConfigurationParameterBool("OPENCV_OPENCL_CACHE_ENABLE", true);
static const bool CV_OPENCL_CACHE_WRITE = utils::getConfigurationParameterBool("OPENCV_OPENCL_CACHE_WRITE", true);
static const bool CV_OPENCL_CACHE_LOCK_ENABLE = utils::getConfigurationParameterBool("OPENCV_OPENCL_CACHE_LOCK_ENABLE", true);
static const bool CV_OPENCL_CACHE_CLEANUP = utils::getConfigurationParameterBool("OPENCV_OPENCL_CACHE_CLEANUP", true);
#if CV_OPENCL_VALIDATE_BINARY_PROGRAMS
static const bool CV_OPENCL_VALIDATE_BINARY_PROGRAMS_VALUE = utils::getConfigurationParameterBool("OPENCV_OPENCL_VALIDATE_BINARY_PROGRAMS", false);
#endif
// Option to disable calls clEnqueueReadBufferRect / clEnqueueWriteBufferRect / clEnqueueCopyBufferRect
static const bool CV_OPENCL_DISABLE_BUFFER_RECT_OPERATIONS = utils::getConfigurationParameterBool("OPENCV_OPENCL_DISABLE_BUFFER_RECT_OPERATIONS",
#ifdef __APPLE__
true
#else
false
#endif
);
static const String getBuildExtraOptions()
{
static String param_buildExtraOptions;
static bool initialized = false;
if (!initialized)
{
param_buildExtraOptions = utils::getConfigurationParameterString("OPENCV_OPENCL_BUILD_EXTRA_OPTIONS", "");
initialized = true;
if (!param_buildExtraOptions.empty())
CV_LOG_WARNING(NULL, "OpenCL: using extra build options: '" << param_buildExtraOptions << "'");
}
return param_buildExtraOptions;
}
static const bool CV_OPENCL_ENABLE_MEM_USE_HOST_PTR = utils::getConfigurationParameterBool("OPENCV_OPENCL_ENABLE_MEM_USE_HOST_PTR", true);
static const size_t CV_OPENCL_ALIGNMENT_MEM_USE_HOST_PTR = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_ALIGNMENT_MEM_USE_HOST_PTR", 4);
struct UMat2D
{
UMat2D(const UMat& m)
{
offset = (int)m.offset;
step = (int)m.step;
rows = m.rows;
cols = m.cols;
}
int offset;
int step;
int rows;
int cols;
};
struct UMat3D
{
UMat3D(const UMat& m)
{
offset = (int)m.offset;
step = (int)m.step.p[1];
slicestep = (int)m.step.p[0];
slices = (int)m.size.p[0];
rows = m.size.p[1];
cols = m.size.p[2];
}
int offset;
int slicestep;
int step;
int slices;
int rows;
int cols;
};
// Computes 64-bit "cyclic redundancy check" sum, as specified in ECMA-182
static uint64 crc64( const uchar* data, size_t size, uint64 crc0=0 )
{
static uint64 table[256];
static bool initialized = false;
if( !initialized )
{
for( int i = 0; i < 256; i++ )
{
uint64 c = i;
for( int j = 0; j < 8; j++ )
c = ((c & 1) ? CV_BIG_UINT(0xc96c5795d7870f42) : 0) ^ (c >> 1);
table[i] = c;
}
initialized = true;
}
uint64 crc = ~crc0;
for( size_t idx = 0; idx < size; idx++ )
crc = table[(uchar)crc ^ data[idx]] ^ (crc >> 8);
return ~crc;
}
#if OPENCV_HAVE_FILESYSTEM_SUPPORT
struct OpenCLBinaryCacheConfigurator
{
cv::String cache_path_;
cv::String cache_lock_filename_;
cv::Ptr<utils::fs::FileLock> cache_lock_;
typedef std::map<std::string, std::string> ContextCacheType;
ContextCacheType prepared_contexts_;
Mutex mutex_prepared_contexts_;
OpenCLBinaryCacheConfigurator()
{
CV_LOG_DEBUG(NULL, "Initializing OpenCL cache configuration...");
if (!CV_OPENCL_CACHE_ENABLE)
{
CV_LOG_INFO(NULL, "OpenCL cache is disabled");
return;
}
cache_path_ = utils::fs::getCacheDirectory("opencl_cache", "OPENCV_OPENCL_CACHE_DIR");
if (cache_path_.empty())
{
CV_LOG_INFO(NULL, "Specify OPENCV_OPENCL_CACHE_DIR configuration parameter to enable OpenCL cache");
}
do
{
try
{
if (cache_path_.empty())
break;
if (cache_path_ == "disabled")
break;
if (!utils::fs::createDirectories(cache_path_))
{
CV_LOG_DEBUG(NULL, "Can't use OpenCL cache directory: " << cache_path_);
clear();
break;
}
if (CV_OPENCL_CACHE_LOCK_ENABLE)
{
cache_lock_filename_ = cache_path_ + ".lock";
if (!utils::fs::exists(cache_lock_filename_))
{
CV_LOG_DEBUG(NULL, "Creating lock file... (" << cache_lock_filename_ << ")");
std::ofstream lock_filename(cache_lock_filename_.c_str(), std::ios::out);
if (!lock_filename.is_open())
{
CV_LOG_WARNING(NULL, "Can't create lock file for OpenCL program cache: " << cache_lock_filename_);
break;
}
}
try
{
cache_lock_ = makePtr<utils::fs::FileLock>(cache_lock_filename_.c_str());
CV_LOG_VERBOSE(NULL, 0, "Checking cache lock... (" << cache_lock_filename_ << ")");
{
utils::shared_lock_guard<utils::fs::FileLock> lock(*cache_lock_);
}
CV_LOG_VERBOSE(NULL, 0, "Checking cache lock... Done!");
}
catch (const cv::Exception& e)
{
CV_LOG_WARNING(NULL, "Can't create OpenCL program cache lock: " << cache_lock_filename_ << std::endl << e.what());
}
catch (...)
{
CV_LOG_WARNING(NULL, "Can't create OpenCL program cache lock: " << cache_lock_filename_);
}
}
else
{
if (CV_OPENCL_CACHE_WRITE)
{
CV_LOG_WARNING(NULL, "OpenCL cache lock is disabled while cache write is allowed "
"(not safe for multiprocess environment)");
}
else
{
CV_LOG_INFO(NULL, "OpenCL cache lock is disabled");
}
}
}
catch (const cv::Exception& e)
{
CV_LOG_WARNING(NULL, "Can't prepare OpenCL program cache: " << cache_path_ << std::endl << e.what());
clear();
}
} while (0);
if (!cache_path_.empty())
{
if (cache_lock_.empty() && CV_OPENCL_CACHE_LOCK_ENABLE)
{
CV_LOG_WARNING(NULL, "Initialized OpenCL cache directory, but interprocess synchronization lock is not available. "
"Consider to disable OpenCL cache: OPENCV_OPENCL_CACHE_DIR=disabled");
}
else
{
CV_LOG_INFO(NULL, "Successfully initialized OpenCL cache directory: " << cache_path_);
}
}
}
void clear()
{
cache_path_.clear();
cache_lock_filename_.clear();
cache_lock_.release();
}
std::string prepareCacheDirectoryForContext(const std::string& ctx_prefix,
const std::string& cleanup_prefix)
{
if (cache_path_.empty())
return std::string();
AutoLock lock(mutex_prepared_contexts_);
ContextCacheType::iterator found_it = prepared_contexts_.find(ctx_prefix);
if (found_it != prepared_contexts_.end())
return found_it->second;
CV_LOG_INFO(NULL, "Preparing OpenCL cache configuration for context: " << ctx_prefix);
std::string target_directory = cache_path_ + ctx_prefix + "/";
bool result = utils::fs::isDirectory(target_directory);
if (!result)
{
try
{
CV_LOG_VERBOSE(NULL, 0, "Creating directory: " << target_directory);
if (utils::fs::createDirectories(target_directory))
{
result = true;
}
else
{
CV_LOG_WARNING(NULL, "Can't create directory: " << target_directory);
}
}
catch (const cv::Exception& e)
{
CV_LOG_ERROR(NULL, "Can't create OpenCL program cache directory for context: " << target_directory << std::endl << e.what());
}
}
target_directory = result ? target_directory : std::string();
prepared_contexts_.insert(std::pair<std::string, std::string>(ctx_prefix, target_directory));
if (result && CV_OPENCL_CACHE_CLEANUP && CV_OPENCL_CACHE_WRITE && !cleanup_prefix.empty())
{
try
{
std::vector<String> entries;
utils::fs::glob_relative(cache_path_, cleanup_prefix + "*", entries, false, true);
std::vector<String> remove_entries;
for (size_t i = 0; i < entries.size(); i++)
{
const String& name = entries[i];
if (0 == name.find(cleanup_prefix))
{
if (0 == name.find(ctx_prefix))
continue; // skip current
remove_entries.push_back(name);
}
}
if (!remove_entries.empty())
{
CV_LOG_WARNING(NULL, (remove_entries.size() == 1
? "Detected OpenCL cache directory for other version of OpenCL device."
: "Detected OpenCL cache directories for other versions of OpenCL device.")
<< " We assume that these directories are obsolete after OpenCL runtime/drivers upgrade.");
CV_LOG_WARNING(NULL, "Trying to remove these directories...");
for (size_t i = 0; i < remove_entries.size(); i++)
{
CV_LOG_WARNING(NULL, "- " << remove_entries[i]);
}
CV_LOG_WARNING(NULL, "Note: You can disable this behavior via this option: OPENCV_OPENCL_CACHE_CLEANUP=0");
for (size_t i = 0; i < remove_entries.size(); i++)
{
const String& name = remove_entries[i];
cv::String path = utils::fs::join(cache_path_, name);
try
{
utils::fs::remove_all(path);
CV_LOG_WARNING(NULL, "Removed: " << path);
}
catch (const cv::Exception& e)
{
CV_LOG_ERROR(NULL, "Exception during removal of obsolete OpenCL cache directory: " << path << std::endl << e.what());
}
}
}
}
catch (...)
{
CV_LOG_WARNING(NULL, "Can't check for obsolete OpenCL cache directories");
}
}
CV_LOG_VERBOSE(NULL, 1, " Result: " << (target_directory.empty() ? std::string("Failed") : target_directory));
return target_directory;
}
static OpenCLBinaryCacheConfigurator& getSingletonInstance()
{
CV_SINGLETON_LAZY_INIT_REF(OpenCLBinaryCacheConfigurator, new OpenCLBinaryCacheConfigurator());
}
};
class BinaryProgramFile
{
enum { MAX_ENTRIES = 64 };
typedef unsigned int uint32_t;
struct CV_DECL_ALIGNED(4) FileHeader
{
uint32_t sourceSignatureSize;
//char sourceSignature[];
};
struct CV_DECL_ALIGNED(4) FileTable
{
uint32_t numberOfEntries;
//uint32_t firstEntryOffset[];
};
struct CV_DECL_ALIGNED(4) FileEntry
{
uint32_t nextEntryFileOffset; // 0 for the last entry in chain
uint32_t keySize;
uint32_t dataSize;
//char key[];
//char data[];
};
const std::string fileName_;
const char* const sourceSignature_;
const size_t sourceSignatureSize_;
std::fstream f;
uint32_t entryOffsets[MAX_ENTRIES];
uint32_t getHash(const std::string& options)
{
uint64 hash = crc64((const uchar*)options.c_str(), options.size(), 0);
return hash & (MAX_ENTRIES - 1);
}
inline size_t getFileSize()
{
size_t pos = (size_t)f.tellg();
f.seekg(0, std::fstream::end);
size_t fileSize = (size_t)f.tellg();
f.seekg(pos, std::fstream::beg);
return fileSize;
}
inline uint32_t readUInt32()
{
uint32_t res = 0;
f.read((char*)&res, sizeof(uint32_t));
CV_Assert(!f.fail());
return res;
}
inline void writeUInt32(const uint32_t value)
{
uint32_t v = value;
f.write((char*)&v, sizeof(uint32_t));
CV_Assert(!f.fail());
}
inline void seekReadAbsolute(size_t pos)
{
f.seekg(pos, std::fstream::beg);
CV_Assert(!f.fail());
}
inline void seekReadRelative(size_t pos)
{
f.seekg(pos, std::fstream::cur);
CV_Assert(!f.fail());
}
inline void seekWriteAbsolute(size_t pos)
{
f.seekp(pos, std::fstream::beg);
CV_Assert(!f.fail());
}
void clearFile()
{
f.close();
if (0 != remove(fileName_.c_str()))
CV_LOG_ERROR(NULL, "Can't remove: " << fileName_);
return;
}
public:
BinaryProgramFile(const std::string& fileName, const char* sourceSignature)
: fileName_(fileName), sourceSignature_(sourceSignature), sourceSignatureSize_(sourceSignature_ ? strlen(sourceSignature_) : 0)
{
CV_StaticAssert(sizeof(uint32_t) == 4, "");
CV_Assert(sourceSignature_ != NULL);
CV_Assert(sourceSignatureSize_ > 0);
memset(entryOffsets, 0, sizeof(entryOffsets));
f.rdbuf()->pubsetbuf(0, 0); // disable buffering
f.open(fileName_.c_str(), std::ios::in|std::ios::out|std::ios::binary);
if(f.is_open() && getFileSize() > 0)
{
bool isValid = false;
try
{
uint32_t fileSourceSignatureSize = readUInt32();
if (fileSourceSignatureSize == sourceSignatureSize_)
{
cv::AutoBuffer<char> fileSourceSignature(fileSourceSignatureSize + 1);
f.read(fileSourceSignature.data(), fileSourceSignatureSize);
if (f.eof())
{
CV_LOG_ERROR(NULL, "Unexpected EOF");
}
else if (memcmp(sourceSignature, fileSourceSignature.data(), fileSourceSignatureSize) == 0)
{
isValid = true;
}
}
if (!isValid)
{
CV_LOG_ERROR(NULL, "Source code signature/hash mismatch (program source code has been changed/updated)");
}
}
catch (const cv::Exception& e)
{
CV_LOG_ERROR(NULL, "Can't open binary program file: " << fileName << " : " << e.what());
}
catch (...)
{
CV_LOG_ERROR(NULL, "Can't open binary program file: " << fileName << " : Unknown error");
}
if (!isValid)
{
clearFile();
}
else
{
seekReadAbsolute(0);
}
}
}
bool read(const std::string& key, std::vector<char>& buf)
{
if (!f.is_open())
return false;
size_t fileSize = getFileSize();
if (fileSize == 0)
{
CV_LOG_ERROR(NULL, "Invalid file (empty): " << fileName_);
clearFile();
return false;
}
seekReadAbsolute(0);
// bypass FileHeader
uint32_t fileSourceSignatureSize = readUInt32();
CV_Assert(fileSourceSignatureSize > 0);
seekReadRelative(fileSourceSignatureSize);
uint32_t numberOfEntries = readUInt32();
CV_Assert(numberOfEntries > 0);
if (numberOfEntries != MAX_ENTRIES)
{
CV_LOG_ERROR(NULL, "Invalid file: " << fileName_);
clearFile();
return false;
}
f.read((char*)&entryOffsets[0], sizeof(entryOffsets));
CV_Assert(!f.fail());
uint32_t entryNum = getHash(key);
uint32_t entryOffset = entryOffsets[entryNum];
FileEntry entry;
while (entryOffset > 0)
{
seekReadAbsolute(entryOffset);
//CV_StaticAssert(sizeof(entry) == sizeof(uint32_t) * 3, "");
f.read((char*)&entry, sizeof(entry));
CV_Assert(!f.fail());
cv::AutoBuffer<char> fileKey(entry.keySize + 1);
if (key.size() == entry.keySize)
{
if (entry.keySize > 0)
{
f.read(fileKey.data(), entry.keySize);
CV_Assert(!f.fail());
}
if (memcmp(fileKey.data(), key.c_str(), entry.keySize) == 0)
{
buf.resize(entry.dataSize);
f.read(&buf[0], entry.dataSize);
CV_Assert(!f.fail());
seekReadAbsolute(0);
CV_LOG_VERBOSE(NULL, 0, "Read...");
return true;
}
}
if (entry.nextEntryFileOffset == 0)
break;
entryOffset = entry.nextEntryFileOffset;
}
return false;
}
bool write(const std::string& key, std::vector<char>& buf)
{
if (!f.is_open())
{
f.open(fileName_.c_str(), std::ios::in|std::ios::out|std::ios::binary);
if (!f.is_open())
{
f.open(fileName_.c_str(), std::ios::out|std::ios::binary);
if (!f.is_open())
{
CV_LOG_ERROR(NULL, "Can't create file: " << fileName_);
return false;
}
}
}
size_t fileSize = getFileSize();
if (fileSize == 0)
{
// Write header
seekWriteAbsolute(0);
writeUInt32((uint32_t)sourceSignatureSize_);
f.write(sourceSignature_, sourceSignatureSize_);
CV_Assert(!f.fail());
writeUInt32(MAX_ENTRIES);
memset(entryOffsets, 0, sizeof(entryOffsets));
f.write((char*)entryOffsets, sizeof(entryOffsets));
CV_Assert(!f.fail());
f.flush();
CV_Assert(!f.fail());
f.close();
f.open(fileName_.c_str(), std::ios::in|std::ios::out|std::ios::binary);
CV_Assert(f.is_open());
fileSize = getFileSize();
}
seekReadAbsolute(0);
// bypass FileHeader
uint32_t fileSourceSignatureSize = readUInt32();
CV_Assert(fileSourceSignatureSize == sourceSignatureSize_);
seekReadRelative(fileSourceSignatureSize);
uint32_t numberOfEntries = readUInt32();
CV_Assert(numberOfEntries > 0);
if (numberOfEntries != MAX_ENTRIES)
{
CV_LOG_ERROR(NULL, "Invalid file: " << fileName_);
clearFile();
return false;
}
size_t tableEntriesOffset = (size_t)f.tellg();
f.read((char*)&entryOffsets[0], sizeof(entryOffsets));
CV_Assert(!f.fail());
uint32_t entryNum = getHash(key);
uint32_t entryOffset = entryOffsets[entryNum];
FileEntry entry;
while (entryOffset > 0)
{
seekReadAbsolute(entryOffset);
//CV_StaticAssert(sizeof(entry) == sizeof(uint32_t) * 3, "");
f.read((char*)&entry, sizeof(entry));
CV_Assert(!f.fail());
cv::AutoBuffer<char> fileKey(entry.keySize + 1);
if (key.size() == entry.keySize)
{
if (entry.keySize > 0)
{
f.read(fileKey.data(), entry.keySize);
CV_Assert(!f.fail());
}
if (0 == memcmp(fileKey.data(), key.c_str(), entry.keySize))
{
// duplicate
CV_LOG_VERBOSE(NULL, 0, "Duplicate key ignored: " << fileName_);
return false;
}
}
if (entry.nextEntryFileOffset == 0)
break;
entryOffset = entry.nextEntryFileOffset;
}
seekReadAbsolute(0);
if (entryOffset > 0)
{
seekWriteAbsolute(entryOffset);
entry.nextEntryFileOffset = (uint32_t)fileSize;
f.write((char*)&entry, sizeof(entry));
CV_Assert(!f.fail());
}
else
{
entryOffsets[entryNum] = (uint32_t)fileSize;
seekWriteAbsolute(tableEntriesOffset);
f.write((char*)entryOffsets, sizeof(entryOffsets));
CV_Assert(!f.fail());
}
seekWriteAbsolute(fileSize);
entry.nextEntryFileOffset = 0;
entry.dataSize = (uint32_t)buf.size();
entry.keySize = (uint32_t)key.size();
f.write((char*)&entry, sizeof(entry));
CV_Assert(!f.fail());
f.write(key.c_str(), entry.keySize);
CV_Assert(!f.fail());
f.write(&buf[0], entry.dataSize);
CV_Assert(!f.fail());
f.flush();
CV_Assert(!f.fail());
CV_LOG_VERBOSE(NULL, 0, "Write... (" << buf.size() << " bytes)");
return true;
}
};
#endif // OPENCV_HAVE_FILESYSTEM_SUPPORT
struct OpenCLExecutionContext::Impl
{
ocl::Context context_;
int device_; // device index in context
ocl::Queue queue_;
int useOpenCL_;
protected:
Impl() = delete;
void _init_device(cl_device_id deviceID)
{
CV_Assert(deviceID);
int ndevices = (int)context_.ndevices();
CV_Assert(ndevices > 0);
bool found = false;
for (int i = 0; i < ndevices; i++)
{
ocl::Device d = context_.device(i);
cl_device_id dhandle = (cl_device_id)d.ptr();
if (dhandle == deviceID)
{
device_ = i;
found = true;
break;
}
}
CV_Assert(found && "OpenCL device can't work with passed OpenCL context");
}
void _init_device(const ocl::Device& device)
{
CV_Assert(device.ptr());
int ndevices = (int)context_.ndevices();
CV_Assert(ndevices > 0);
bool found = false;
for (int i = 0; i < ndevices; i++)
{
ocl::Device d = context_.device(i);
if (d.getImpl() == device.getImpl())
{
device_ = i;
found = true;
break;
}
}
CV_Assert(found && "OpenCL device can't work with passed OpenCL context");
}
public:
Impl(cl_platform_id platformID, cl_context context, cl_device_id deviceID)
: device_(0), useOpenCL_(-1)
{
CV_UNUSED(platformID);
CV_Assert(context);
CV_Assert(deviceID);
context_ = Context::fromHandle(context);
_init_device(deviceID);
queue_ = Queue(context_, context_.device(device_));
}
Impl(const ocl::Context& context, const ocl::Device& device, const ocl::Queue& queue)
: device_(0), useOpenCL_(-1)
{
CV_Assert(context.ptr());
CV_Assert(device.ptr());
context_ = context;
_init_device(device);
queue_ = queue;
}
Impl(const ocl::Context& context, const ocl::Device& device)
: device_(0), useOpenCL_(-1)
{
CV_Assert(context.ptr());
CV_Assert(device.ptr());
context_ = context;
_init_device(device);
queue_ = Queue(context_, context_.device(device_));
}
Impl(const ocl::Context& context, const int device, const ocl::Queue& queue)
: context_(context)
, device_(device)
, queue_(queue)
, useOpenCL_(-1)
{
// nothing
}
Impl(const Impl& other)
: context_(other.context_)
, device_(other.device_)
, queue_(other.queue_)
, useOpenCL_(-1)
{
// nothing
}
inline bool useOpenCL() const { return const_cast<Impl*>(this)->useOpenCL(); }
bool useOpenCL()
{
if (useOpenCL_ < 0)
{
try
{
useOpenCL_ = 0;
if (!context_.empty() && context_.ndevices() > 0)
{
const Device& d = context_.device(device_);
useOpenCL_ = d.available();
}
}
catch (const cv::Exception&)
{
// nothing
}
if (!useOpenCL_)
CV_LOG_INFO(NULL, "OpenCL: can't use OpenCL execution context");
}
return useOpenCL_ > 0;
}
void setUseOpenCL(bool flag)
{
if (!flag)
useOpenCL_ = 0;
else
useOpenCL_ = -1;
}
static const std::shared_ptr<Impl>& getInitializedExecutionContext()
{
CV_TRACE_FUNCTION();
CV_LOG_INFO(NULL, "OpenCL: initializing thread execution context");
static bool initialized = false;
static std::shared_ptr<Impl> g_primaryExecutionContext;
if (!initialized)
{
cv::AutoLock lock(getInitializationMutex());
if (!initialized)
{
CV_LOG_INFO(NULL, "OpenCL: creating new execution context...");
try
{
Context c = ocl::Context::create(std::string());
if (c.ndevices())
{
int deviceId = 0;
auto& d = c.device(deviceId);
if (d.available())
{
auto q = ocl::Queue(c, d);
if (!q.ptr())
{
CV_LOG_ERROR(NULL, "OpenCL: Can't create default OpenCL queue");
}
else
{
g_primaryExecutionContext = std::make_shared<Impl>(c, deviceId, q);
CV_LOG_INFO(NULL, "OpenCL: device=" << d.name());
}
}
else
{
CV_LOG_ERROR(NULL, "OpenCL: OpenCL device is not available (CL_DEVICE_AVAILABLE returns false)");
}
}
else
{
CV_LOG_INFO(NULL, "OpenCL: context is not available/disabled");
}
}
catch (const std::exception& e)
{
CV_LOG_INFO(NULL, "OpenCL: Can't initialize OpenCL context/device/queue: " << e.what());
}
catch (...)
{
CV_LOG_WARNING(NULL, "OpenCL: Can't initialize OpenCL context/device/queue: unknown C++ exception");
}
initialized = true;
}
}
return g_primaryExecutionContext;
}
};
Context& OpenCLExecutionContext::getContext() const
{
CV_Assert(p);
return p->context_;
}
Device& OpenCLExecutionContext::getDevice() const
{
CV_Assert(p);
return p->context_.device(p->device_);
}
Queue& OpenCLExecutionContext::getQueue() const
{
CV_Assert(p);
return p->queue_;
}
bool OpenCLExecutionContext::useOpenCL() const
{
if (p)
return p->useOpenCL();
return false;
}
void OpenCLExecutionContext::setUseOpenCL(bool flag)
{
CV_Assert(p);
p->setUseOpenCL(flag);
}
/* static */
OpenCLExecutionContext& OpenCLExecutionContext::getCurrent()
{
CV_TRACE_FUNCTION();
CoreTLSData& data = getCoreTlsData();
OpenCLExecutionContext& c = data.oclExecutionContext;
if (!data.oclExecutionContextInitialized)
{
data.oclExecutionContextInitialized = true;
if (c.empty() && haveOpenCL())
c.p = Impl::getInitializedExecutionContext();
}
return c;
}
/* static */
OpenCLExecutionContext& OpenCLExecutionContext::getCurrentRef()
{
CV_TRACE_FUNCTION();
CoreTLSData& data = getCoreTlsData();
OpenCLExecutionContext& c = data.oclExecutionContext;
return c;
}
void OpenCLExecutionContext::bind() const
{
CV_TRACE_FUNCTION();
CV_Assert(p);
CoreTLSData& data = getCoreTlsData();
data.oclExecutionContext = *this;
data.oclExecutionContextInitialized = true;
data.useOpenCL = p->useOpenCL_; // propagate "-1", avoid call useOpenCL()
}
OpenCLExecutionContext OpenCLExecutionContext::cloneWithNewQueue() const
{
CV_TRACE_FUNCTION();
CV_Assert(p);
const Queue q(getContext(), getDevice());
return cloneWithNewQueue(q);
}
OpenCLExecutionContext OpenCLExecutionContext::cloneWithNewQueue(const ocl::Queue& q) const
{
CV_TRACE_FUNCTION();
CV_Assert(p);
CV_Assert(q.ptr() != NULL);
OpenCLExecutionContext c;
c.p = std::make_shared<Impl>(p->context_, p->device_, q);
return c;
}
/* static */
OpenCLExecutionContext OpenCLExecutionContext::create(const Context& context, const Device& device, const ocl::Queue& queue)
{
CV_TRACE_FUNCTION();
if (!haveOpenCL())
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL runtime is not available!");
CV_Assert(!context.empty());
CV_Assert(context.ptr());
CV_Assert(!device.empty());
CV_Assert(device.ptr());
OpenCLExecutionContext ctx;
ctx.p = std::make_shared<OpenCLExecutionContext::Impl>(context, device, queue);
return ctx;
}
/* static */
OpenCLExecutionContext OpenCLExecutionContext::create(const Context& context, const Device& device)
{
CV_TRACE_FUNCTION();
if (!haveOpenCL())
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL runtime is not available!");
CV_Assert(!context.empty());
CV_Assert(context.ptr());
CV_Assert(!device.empty());
CV_Assert(device.ptr());
OpenCLExecutionContext ctx;
ctx.p = std::make_shared<OpenCLExecutionContext::Impl>(context, device);
return ctx;
}
void OpenCLExecutionContext::release()
{
CV_TRACE_FUNCTION();
p.reset();
}
// true if we have initialized OpenCL subsystem with available platforms
static bool g_isOpenCVActivated = false;
bool haveOpenCL()
{
CV_TRACE_FUNCTION();
static bool g_isOpenCLInitialized = false;
static bool g_isOpenCLAvailable = false;
if (!g_isOpenCLInitialized)
{
CV_TRACE_REGION("Init_OpenCL_Runtime");
const char* envPath = getenv("OPENCV_OPENCL_RUNTIME");
if (envPath)
{
if (cv::String(envPath) == "disabled")
{
g_isOpenCLAvailable = false;
g_isOpenCLInitialized = true;
return false;
}
}
cv::AutoLock lock(getInitializationMutex());
CV_LOG_INFO(NULL, "Initialize OpenCL runtime...");
try
{
cl_uint n = 0;
g_isOpenCLAvailable = ::clGetPlatformIDs(0, NULL, &n) == CL_SUCCESS;
g_isOpenCVActivated = n > 0;
CV_LOG_INFO(NULL, "OpenCL: found " << n << " platforms");
}
catch (...)
{
g_isOpenCLAvailable = false;
}
g_isOpenCLInitialized = true;
}
return g_isOpenCLAvailable;
}
bool useOpenCL()
{
CoreTLSData& data = getCoreTlsData();
if (data.useOpenCL < 0)
{
try
{
data.useOpenCL = 0;
if (haveOpenCL())
{
auto c = OpenCLExecutionContext::getCurrent();
data.useOpenCL = c.useOpenCL();
}
}
catch (...)
{
CV_LOG_INFO(NULL, "OpenCL: can't initialize thread OpenCL execution context");
}
}
return data.useOpenCL > 0;
}
bool isOpenCLActivated()
{
if (!g_isOpenCVActivated)
return false; // prevent unnecessary OpenCL activation via useOpenCL()->haveOpenCL() calls
return useOpenCL();
}
void setUseOpenCL(bool flag)
{
CV_TRACE_FUNCTION();
CoreTLSData& data = getCoreTlsData();
auto& c = OpenCLExecutionContext::getCurrentRef();
if (!c.empty())
{
c.setUseOpenCL(flag);
data.useOpenCL = c.useOpenCL();
}
else
{
if (!flag)
data.useOpenCL = 0;
else
data.useOpenCL = -1; // enabled by default (if context is not initialized)
}
}
#ifdef HAVE_CLAMDBLAS
class AmdBlasHelper
{
public:
static AmdBlasHelper & getInstance()
{
CV_SINGLETON_LAZY_INIT_REF(AmdBlasHelper, new AmdBlasHelper())
}
bool isAvailable() const
{
return g_isAmdBlasAvailable;
}
~AmdBlasHelper()
{
try
{
clAmdBlasTeardown();
}
catch (...) { }
}
protected:
AmdBlasHelper()
{
if (!g_isAmdBlasInitialized)
{
AutoLock lock(getInitializationMutex());
if (!g_isAmdBlasInitialized)
{
if (haveOpenCL())
{
try
{
g_isAmdBlasAvailable = clAmdBlasSetup() == clAmdBlasSuccess;
}
catch (...)
{
g_isAmdBlasAvailable = false;
}
}
else
g_isAmdBlasAvailable = false;
g_isAmdBlasInitialized = true;
}
}
}
private:
static bool g_isAmdBlasInitialized;
static bool g_isAmdBlasAvailable;
};
bool AmdBlasHelper::g_isAmdBlasAvailable = false;
bool AmdBlasHelper::g_isAmdBlasInitialized = false;
bool haveAmdBlas()
{
return AmdBlasHelper::getInstance().isAvailable();
}
#else
bool haveAmdBlas()
{
return false;
}
#endif
#ifdef HAVE_CLAMDFFT
class AmdFftHelper
{
public:
static AmdFftHelper & getInstance()
{
CV_SINGLETON_LAZY_INIT_REF(AmdFftHelper, new AmdFftHelper())
}
bool isAvailable() const
{
return g_isAmdFftAvailable;
}
~AmdFftHelper()
{
try
{
// clAmdFftTeardown();
}
catch (...) { }
}
protected:
AmdFftHelper()
{
if (!g_isAmdFftInitialized)
{
AutoLock lock(getInitializationMutex());
if (!g_isAmdFftInitialized)
{
if (haveOpenCL())
{
try
{
cl_uint major, minor, patch;
CV_Assert(clAmdFftInitSetupData(&setupData) == CLFFT_SUCCESS);
// it throws exception in case AmdFft binaries are not found
CV_Assert(clAmdFftGetVersion(&major, &minor, &patch) == CLFFT_SUCCESS);
g_isAmdFftAvailable = true;
}
catch (const Exception &)
{
g_isAmdFftAvailable = false;
}
}
else
g_isAmdFftAvailable = false;
g_isAmdFftInitialized = true;
}
}
}
private:
static clAmdFftSetupData setupData;
static bool g_isAmdFftInitialized;
static bool g_isAmdFftAvailable;
};
clAmdFftSetupData AmdFftHelper::setupData;
bool AmdFftHelper::g_isAmdFftAvailable = false;
bool AmdFftHelper::g_isAmdFftInitialized = false;
bool haveAmdFft()
{
return AmdFftHelper::getInstance().isAvailable();
}
#else
bool haveAmdFft()
{
return false;
}
#endif
bool haveSVM()
{
#ifdef HAVE_OPENCL_SVM
return true;
#else
return false;
#endif
}
void finish()
{
Queue::getDefault().finish();
}
/////////////////////////////////////////// Platform /////////////////////////////////////////////
struct Platform::Impl
{
Impl()
{
refcount = 1;
handle = 0;
initialized = false;
}
~Impl() {}
void init()
{
if( !initialized )
{
//cl_uint num_entries
cl_uint n = 0;
if( clGetPlatformIDs(1, &handle, &n) != CL_SUCCESS || n == 0 )
handle = 0;
if( handle != 0 )
{
char buf[1000];
size_t len = 0;
CV_OCL_DBG_CHECK(clGetPlatformInfo(handle, CL_PLATFORM_VENDOR, sizeof(buf), buf, &len));
buf[len] = '\0';
vendor = String(buf);
}
initialized = true;
}
}
IMPLEMENT_REFCOUNTABLE();
cl_platform_id handle;
String vendor;
bool initialized;
};
Platform::Platform()
{
p = 0;
}
Platform::~Platform()
{
if(p)
p->release();
}
Platform::Platform(const Platform& pl)
{
p = (Impl*)pl.p;
if(p)
p->addref();
}
Platform& Platform::operator = (const Platform& pl)
{
Impl* newp = (Impl*)pl.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
void* Platform::ptr() const
{
return p ? p->handle : 0;
}
Platform& Platform::getDefault()
{
CV_LOG_ONCE_WARNING(NULL, "OpenCL: Platform::getDefault() is deprecated and will be removed. Use cv::ocl::getPlatfomsInfo() for enumeration of available platforms");
static Platform p;
if( !p.p )
{
p.p = new Impl;
p.p->init();
}
return p;
}
/////////////////////////////////////// Device ////////////////////////////////////////////
// deviceVersion has format
// OpenCL<space><major_version.minor_version><space><vendor-specific information>
// by specification
// http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clGetDeviceInfo.html
// http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetDeviceInfo.html
static void parseDeviceVersion(const String &deviceVersion, int &major, int &minor)
{
major = minor = 0;
if (10 >= deviceVersion.length())
return;
const char *pstr = deviceVersion.c_str();
if (0 != strncmp(pstr, "OpenCL ", 7))
return;
size_t ppos = deviceVersion.find('.', 7);
if (String::npos == ppos)
return;
String temp = deviceVersion.substr(7, ppos - 7);
major = atoi(temp.c_str());
temp = deviceVersion.substr(ppos + 1);
minor = atoi(temp.c_str());
}
struct Device::Impl
{
Impl(void* d)
: refcount(1)
, handle(0)
{
try
{
cl_device_id device = (cl_device_id)d;
_init(device);
CV_OCL_CHECK(clRetainDevice(device)); // increment reference counter on success only
}
catch (...)
{
throw;
}
}
void _init(cl_device_id d)
{
handle = (cl_device_id)d;
name_ = getStrProp(CL_DEVICE_NAME);
version_ = getStrProp(CL_DEVICE_VERSION);
extensions_ = getStrProp(CL_DEVICE_EXTENSIONS);
doubleFPConfig_ = getProp<cl_device_fp_config, int>(CL_DEVICE_DOUBLE_FP_CONFIG);
hostUnifiedMemory_ = getBoolProp(CL_DEVICE_HOST_UNIFIED_MEMORY);
maxComputeUnits_ = getProp<cl_uint, int>(CL_DEVICE_MAX_COMPUTE_UNITS);
maxWorkGroupSize_ = getProp<size_t, size_t>(CL_DEVICE_MAX_WORK_GROUP_SIZE);
type_ = getProp<cl_device_type, int>(CL_DEVICE_TYPE);
driverVersion_ = getStrProp(CL_DRIVER_VERSION);
addressBits_ = getProp<cl_uint, int>(CL_DEVICE_ADDRESS_BITS);
String deviceVersion_ = getStrProp(CL_DEVICE_VERSION);
parseDeviceVersion(deviceVersion_, deviceVersionMajor_, deviceVersionMinor_);
size_t pos = 0;
while (pos < extensions_.size())
{
size_t pos2 = extensions_.find(' ', pos);
if (pos2 == String::npos)
pos2 = extensions_.size();
if (pos2 > pos)
{
std::string extensionName = extensions_.substr(pos, pos2 - pos);
extensions_set_.insert(extensionName);
}
pos = pos2 + 1;
}
intelSubgroupsSupport_ = isExtensionSupported("cl_intel_subgroups");
vendorName_ = getStrProp(CL_DEVICE_VENDOR);
if (vendorName_ == "Advanced Micro Devices, Inc." ||
vendorName_ == "AMD")
vendorID_ = VENDOR_AMD;
else if (vendorName_ == "Intel(R) Corporation" || vendorName_ == "Intel" || strstr(name_.c_str(), "Iris") != 0)
vendorID_ = VENDOR_INTEL;
else if (vendorName_ == "NVIDIA Corporation")
vendorID_ = VENDOR_NVIDIA;
else
vendorID_ = UNKNOWN_VENDOR;
const size_t CV_OPENCL_DEVICE_MAX_WORK_GROUP_SIZE = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_DEVICE_MAX_WORK_GROUP_SIZE", 0);
if (CV_OPENCL_DEVICE_MAX_WORK_GROUP_SIZE > 0)
{
const size_t new_maxWorkGroupSize = std::min(maxWorkGroupSize_, CV_OPENCL_DEVICE_MAX_WORK_GROUP_SIZE);
if (new_maxWorkGroupSize != maxWorkGroupSize_)
CV_LOG_WARNING(NULL, "OpenCL: using workgroup size: " << new_maxWorkGroupSize << " (was " << maxWorkGroupSize_ << ")");
maxWorkGroupSize_ = new_maxWorkGroupSize;
}
#if 0
if (isExtensionSupported("cl_khr_spir"))
{
#ifndef CL_DEVICE_SPIR_VERSIONS
#define CL_DEVICE_SPIR_VERSIONS 0x40E0
#endif
cv::String spir_versions = getStrProp(CL_DEVICE_SPIR_VERSIONS);
std::cout << spir_versions << std::endl;
}
#endif
}
~Impl()
{
#ifdef _WIN32
if (!cv::__termination)
#endif
{
if (handle)
{
CV_OCL_CHECK(clReleaseDevice(handle));
handle = 0;
}
}
}
template<typename _TpCL, typename _TpOut>
_TpOut getProp(cl_device_info prop) const
{
_TpCL temp=_TpCL();
size_t sz = 0;
return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) == CL_SUCCESS &&
sz == sizeof(temp) ? _TpOut(temp) : _TpOut();
}
bool getBoolProp(cl_device_info prop) const
{
cl_bool temp = CL_FALSE;
size_t sz = 0;
return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) == CL_SUCCESS &&
sz == sizeof(temp) ? temp != 0 : false;
}
String getStrProp(cl_device_info prop) const
{
char buf[4096];
size_t sz=0;
return clGetDeviceInfo(handle, prop, sizeof(buf)-16, buf, &sz) == CL_SUCCESS &&
sz < sizeof(buf) ? String(buf) : String();
}
bool isExtensionSupported(const std::string& extensionName) const
{
return extensions_set_.count(extensionName) > 0;
}
IMPLEMENT_REFCOUNTABLE();
cl_device_id handle;
String name_;
String version_;
std::string extensions_;
int doubleFPConfig_;
bool hostUnifiedMemory_;
int maxComputeUnits_;
size_t maxWorkGroupSize_;
int type_;
int addressBits_;
int deviceVersionMajor_;
int deviceVersionMinor_;
String driverVersion_;
String vendorName_;
int vendorID_;
bool intelSubgroupsSupport_;
std::set<std::string> extensions_set_;
};
Device::Device()
{
p = 0;
}
Device::Device(void* d)
{
p = 0;
set(d);
}
Device::Device(const Device& d)
{
p = d.p;
if(p)
p->addref();
}
Device& Device::operator = (const Device& d)
{
Impl* newp = (Impl*)d.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Device::~Device()
{
if(p)
p->release();
}
void Device::set(void* d)
{
if(p)
p->release();
p = new Impl(d);
if (p->handle)
{
CV_OCL_CHECK(clReleaseDevice((cl_device_id)d));
}
}
Device Device::fromHandle(void* d)
{
Device device(d);
return device;
}
void* Device::ptr() const
{
return p ? p->handle : 0;
}
String Device::name() const
{ return p ? p->name_ : String(); }
String Device::extensions() const
{ return p ? String(p->extensions_) : String(); }
bool Device::isExtensionSupported(const String& extensionName) const
{ return p ? p->isExtensionSupported(extensionName) : false; }
String Device::version() const
{ return p ? p->version_ : String(); }
String Device::vendorName() const
{ return p ? p->vendorName_ : String(); }
int Device::vendorID() const
{ return p ? p->vendorID_ : 0; }
String Device::OpenCL_C_Version() const
{ return p ? p->getStrProp(CL_DEVICE_OPENCL_C_VERSION) : String(); }
String Device::OpenCLVersion() const
{ return p ? p->getStrProp(CL_DEVICE_VERSION) : String(); }
int Device::deviceVersionMajor() const
{ return p ? p->deviceVersionMajor_ : 0; }
int Device::deviceVersionMinor() const
{ return p ? p->deviceVersionMinor_ : 0; }
String Device::driverVersion() const
{ return p ? p->driverVersion_ : String(); }
int Device::type() const
{ return p ? p->type_ : 0; }
int Device::addressBits() const
{ return p ? p->addressBits_ : 0; }
bool Device::available() const
{ return p ? p->getBoolProp(CL_DEVICE_AVAILABLE) : false; }
bool Device::compilerAvailable() const
{ return p ? p->getBoolProp(CL_DEVICE_COMPILER_AVAILABLE) : false; }
bool Device::linkerAvailable() const
#ifdef CL_VERSION_1_2
{ return p ? p->getBoolProp(CL_DEVICE_LINKER_AVAILABLE) : false; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
int Device::doubleFPConfig() const
{ return p ? p->doubleFPConfig_ : 0; }
int Device::singleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_SINGLE_FP_CONFIG) : 0; }
int Device::halfFPConfig() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_HALF_FP_CONFIG) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
bool Device::endianLittle() const
{ return p ? p->getBoolProp(CL_DEVICE_ENDIAN_LITTLE) : false; }
bool Device::errorCorrectionSupport() const
{ return p ? p->getBoolProp(CL_DEVICE_ERROR_CORRECTION_SUPPORT) : false; }
int Device::executionCapabilities() const
{ return p ? p->getProp<cl_device_exec_capabilities, int>(CL_DEVICE_EXECUTION_CAPABILITIES) : 0; }
size_t Device::globalMemCacheSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE) : 0; }
int Device::globalMemCacheType() const
{ return p ? p->getProp<cl_device_mem_cache_type, int>(CL_DEVICE_GLOBAL_MEM_CACHE_TYPE) : 0; }
int Device::globalMemCacheLineSize() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE) : 0; }
size_t Device::globalMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_SIZE) : 0; }
size_t Device::localMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_LOCAL_MEM_SIZE) : 0; }
int Device::localMemType() const
{ return p ? p->getProp<cl_device_local_mem_type, int>(CL_DEVICE_LOCAL_MEM_TYPE) : 0; }
bool Device::hostUnifiedMemory() const
{ return p ? p->hostUnifiedMemory_ : false; }
bool Device::imageSupport() const
{ return p ? p->getBoolProp(CL_DEVICE_IMAGE_SUPPORT) : false; }
bool Device::imageFromBufferSupport() const
{
return p ? p->isExtensionSupported("cl_khr_image2d_from_buffer") : false;
}
uint Device::imagePitchAlignment() const
{
#ifdef CL_DEVICE_IMAGE_PITCH_ALIGNMENT
return p ? p->getProp<cl_uint, uint>(CL_DEVICE_IMAGE_PITCH_ALIGNMENT) : 0;
#else
return 0;
#endif
}
uint Device::imageBaseAddressAlignment() const
{
#ifdef CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT
return p ? p->getProp<cl_uint, uint>(CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT) : 0;
#else
return 0;
#endif
}
size_t Device::image2DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_WIDTH) : 0; }
size_t Device::image2DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_HEIGHT) : 0; }
size_t Device::image3DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_WIDTH) : 0; }
size_t Device::image3DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_HEIGHT) : 0; }
size_t Device::image3DMaxDepth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_DEPTH) : 0; }
size_t Device::imageMaxBufferSize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_BUFFER_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
size_t Device::imageMaxArraySize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_ARRAY_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
bool Device::intelSubgroupsSupport() const
{ return p ? p->intelSubgroupsSupport_ : false; }
int Device::maxClockFrequency() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CLOCK_FREQUENCY) : 0; }
int Device::maxComputeUnits() const
{ return p ? p->maxComputeUnits_ : 0; }
int Device::maxConstantArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CONSTANT_ARGS) : 0; }
size_t Device::maxConstantBufferSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE) : 0; }
size_t Device::maxMemAllocSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_MEM_ALLOC_SIZE) : 0; }
size_t Device::maxParameterSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_PARAMETER_SIZE) : 0; }
int Device::maxReadImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_READ_IMAGE_ARGS) : 0; }
int Device::maxWriteImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WRITE_IMAGE_ARGS) : 0; }
int Device::maxSamplers() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_SAMPLERS) : 0; }
size_t Device::maxWorkGroupSize() const
{ return p ? p->maxWorkGroupSize_ : 0; }
int Device::maxWorkItemDims() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) : 0; }
void Device::maxWorkItemSizes(size_t* sizes) const
{
if(p)
{
const int MAX_DIMS = 32;
size_t retsz = 0;
CV_OCL_DBG_CHECK(clGetDeviceInfo(p->handle, CL_DEVICE_MAX_WORK_ITEM_SIZES,
MAX_DIMS*sizeof(sizes[0]), &sizes[0], &retsz));
}
}
int Device::memBaseAddrAlign() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MEM_BASE_ADDR_ALIGN) : 0; }
int Device::nativeVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR) : 0; }
int Device::nativeVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT) : 0; }
int Device::nativeVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_INT) : 0; }
int Device::nativeVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG) : 0; }
int Device::nativeVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT) : 0; }
int Device::nativeVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE) : 0; }
int Device::nativeVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF) : 0; }
int Device::preferredVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR) : 0; }
int Device::preferredVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT) : 0; }
int Device::preferredVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT) : 0; }
int Device::preferredVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG) : 0; }
int Device::preferredVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT) : 0; }
int Device::preferredVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE) : 0; }
int Device::preferredVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF) : 0; }
size_t Device::printfBufferSize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PRINTF_BUFFER_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
size_t Device::profilingTimerResolution() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PROFILING_TIMER_RESOLUTION) : 0; }
const Device& Device::getDefault()
{
auto& c = OpenCLExecutionContext::getCurrent();
if (!c.empty())
{
return c.getDevice();
}
static Device dummy;
return dummy;
}
////////////////////////////////////// Context ///////////////////////////////////////////////////
template <typename Functor, typename ObjectType>
inline cl_int getStringInfo(Functor f, ObjectType obj, cl_uint name, std::string& param)
{
::size_t required;
cl_int err = f(obj, name, 0, NULL, &required);
if (err != CL_SUCCESS)
return err;
param.clear();
if (required > 0)
{
AutoBuffer<char> buf(required + 1);
char* ptr = buf.data(); // cleanup is not needed
err = f(obj, name, required, ptr, NULL);
if (err != CL_SUCCESS)
return err;
param = ptr;
}
return CL_SUCCESS;
}
static void split(const std::string &s, char delim, std::vector<std::string> &elems)
{
elems.clear();
if (s.size() == 0)
return;
std::istringstream ss(s);
std::string item;
while (!ss.eof())
{
std::getline(ss, item, delim);
elems.push_back(item);
}
}
// Layout: <Platform>:<CPU|GPU|ACCELERATOR|nothing=GPU/CPU>:<deviceName>
// Sample: AMD:GPU:
// Sample: AMD:GPU:Tahiti
// Sample: :GPU|CPU: = '' = ':' = '::'
static bool parseOpenCLDeviceConfiguration(const std::string& configurationStr,
std::string& platform, std::vector<std::string>& deviceTypes, std::string& deviceNameOrID)
{
std::vector<std::string> parts;
split(configurationStr, ':', parts);
if (parts.size() > 3)
{
CV_LOG_ERROR(NULL, "OpenCL: Invalid configuration string for OpenCL device: " << configurationStr);
return false;
}
if (parts.size() > 2)
deviceNameOrID = parts[2];
if (parts.size() > 1)
{
split(parts[1], '|', deviceTypes);
}
if (parts.size() > 0)
{
platform = parts[0];
}
return true;
}
#if defined WINRT || defined _WIN32_WCE
static cl_device_id selectOpenCLDevice(const char* configuration = NULL)
{
CV_UNUSED(configuration)
return NULL;
}
#else
static cl_device_id selectOpenCLDevice(const char* configuration = NULL)
{
std::string platform, deviceName;
std::vector<std::string> deviceTypes;
if (!configuration)
configuration = getenv("OPENCV_OPENCL_DEVICE");
if (configuration &&
(strcmp(configuration, "disabled") == 0 ||
!parseOpenCLDeviceConfiguration(std::string(configuration), platform, deviceTypes, deviceName)
))
return NULL;
bool isID = false;
int deviceID = -1;
if (deviceName.length() == 1)
// We limit ID range to 0..9, because we want to write:
// - '2500' to mean i5-2500
// - '8350' to mean AMD FX-8350
// - '650' to mean GeForce 650
// To extend ID range change condition to '> 0'
{
isID = true;
for (size_t i = 0; i < deviceName.length(); i++)
{
if (!isdigit(deviceName[i]))
{
isID = false;
break;
}
}
if (isID)
{
deviceID = atoi(deviceName.c_str());
if (deviceID < 0)
return NULL;
}
}
std::vector<cl_platform_id> platforms;
{
cl_uint numPlatforms = 0;
CV_OCL_DBG_CHECK(clGetPlatformIDs(0, NULL, &numPlatforms));
if (numPlatforms == 0)
return NULL;
platforms.resize((size_t)numPlatforms);
CV_OCL_DBG_CHECK(clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms));
platforms.resize(numPlatforms);
}
int selectedPlatform = -1;
if (platform.length() > 0)
{
for (size_t i = 0; i < platforms.size(); i++)
{
std::string name;
CV_OCL_DBG_CHECK(getStringInfo(clGetPlatformInfo, platforms[i], CL_PLATFORM_NAME, name));
if (name.find(platform) != std::string::npos)
{
selectedPlatform = (int)i;
break;
}
}
if (selectedPlatform == -1)
{
CV_LOG_ERROR(NULL, "OpenCL: Can't find OpenCL platform by name: " << platform);
goto not_found;
}
}
if (deviceTypes.size() == 0)
{
if (!isID)
{
deviceTypes.push_back("GPU");
if (configuration)
deviceTypes.push_back("CPU");
}
else
deviceTypes.push_back("ALL");
}
for (size_t t = 0; t < deviceTypes.size(); t++)
{
int deviceType = 0;
std::string tempStrDeviceType = deviceTypes[t];
std::transform(tempStrDeviceType.begin(), tempStrDeviceType.end(), tempStrDeviceType.begin(), details::char_tolower);
if (tempStrDeviceType == "gpu" || tempStrDeviceType == "dgpu" || tempStrDeviceType == "igpu")
deviceType = Device::TYPE_GPU;
else if (tempStrDeviceType == "cpu")
deviceType = Device::TYPE_CPU;
else if (tempStrDeviceType == "accelerator")
deviceType = Device::TYPE_ACCELERATOR;
else if (tempStrDeviceType == "all")
deviceType = Device::TYPE_ALL;
else
{
CV_LOG_ERROR(NULL, "OpenCL: Unsupported device type for OpenCL device (GPU, CPU, ACCELERATOR): " << deviceTypes[t]);
goto not_found;
}
std::vector<cl_device_id> devices; // TODO Use clReleaseDevice to cleanup
for (int i = selectedPlatform >= 0 ? selectedPlatform : 0;
(selectedPlatform >= 0 ? i == selectedPlatform : true) && (i < (int)platforms.size());
i++)
{
cl_uint count = 0;
cl_int status = clGetDeviceIDs(platforms[i], deviceType, 0, NULL, &count);
if (!(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND))
{
CV_OCL_DBG_CHECK_RESULT(status, "clGetDeviceIDs get count");
}
if (count == 0)
continue;
size_t base = devices.size();
devices.resize(base + count);
status = clGetDeviceIDs(platforms[i], deviceType, count, &devices[base], &count);
if (!(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND))
{
CV_OCL_DBG_CHECK_RESULT(status, "clGetDeviceIDs get IDs");
}
}
for (size_t i = (isID ? deviceID : 0);
(isID ? (i == (size_t)deviceID) : true) && (i < devices.size());
i++)
{
std::string name;
CV_OCL_DBG_CHECK(getStringInfo(clGetDeviceInfo, devices[i], CL_DEVICE_NAME, name));
cl_bool useGPU = true;
if(tempStrDeviceType == "dgpu" || tempStrDeviceType == "igpu")
{
cl_bool isIGPU = CL_FALSE;
CV_OCL_DBG_CHECK(clGetDeviceInfo(devices[i], CL_DEVICE_HOST_UNIFIED_MEMORY, sizeof(isIGPU), &isIGPU, NULL));
useGPU = tempStrDeviceType == "dgpu" ? !isIGPU : isIGPU;
}
if ( (isID || name.find(deviceName) != std::string::npos) && useGPU)
{
// TODO check for OpenCL 1.1
return devices[i];
}
}
}
not_found:
if (!configuration)
return NULL; // suppress messages on stderr
std::ostringstream msg;
msg << "ERROR: Requested OpenCL device not found, check configuration: '" << configuration << "'" << std::endl
<< " Platform: " << (platform.length() == 0 ? "any" : platform) << std::endl
<< " Device types:";
for (size_t t = 0; t < deviceTypes.size(); t++)
msg << ' ' << deviceTypes[t];
msg << std::endl << " Device name: " << (deviceName.length() == 0 ? "any" : deviceName);
CV_LOG_ERROR(NULL, msg.str());
return NULL;
}
#endif
#ifdef HAVE_OPENCL_SVM
namespace svm {
enum AllocatorFlags { // don't use first 16 bits
OPENCL_SVM_COARSE_GRAIN_BUFFER = 1 << 16, // clSVMAlloc + SVM map/unmap
OPENCL_SVM_FINE_GRAIN_BUFFER = 2 << 16, // clSVMAlloc
OPENCL_SVM_FINE_GRAIN_SYSTEM = 3 << 16, // direct access
OPENCL_SVM_BUFFER_MASK = 3 << 16,
OPENCL_SVM_BUFFER_MAP = 4 << 16
};
static bool checkForceSVMUmatUsage()
{
static bool initialized = false;
static bool force = false;
if (!initialized)
{
force = utils::getConfigurationParameterBool("OPENCV_OPENCL_SVM_FORCE_UMAT_USAGE", false);
initialized = true;
}
return force;
}
static bool checkDisableSVMUMatUsage()
{
static bool initialized = false;
static bool force = false;
if (!initialized)
{
force = utils::getConfigurationParameterBool("OPENCV_OPENCL_SVM_DISABLE_UMAT_USAGE", false);
initialized = true;
}
return force;
}
static bool checkDisableSVM()
{
static bool initialized = false;
static bool force = false;
if (!initialized)
{
force = utils::getConfigurationParameterBool("OPENCV_OPENCL_SVM_DISABLE", false);
initialized = true;
}
return force;
}
// see SVMCapabilities
static unsigned int getSVMCapabilitiesMask()
{
static bool initialized = false;
static unsigned int mask = 0;
if (!initialized)
{
const char* envValue = getenv("OPENCV_OPENCL_SVM_CAPABILITIES_MASK");
if (envValue == NULL)
{
return ~0U; // all bits 1
}
mask = atoi(envValue);
initialized = true;
}
return mask;
}
} // namespace
#endif
static size_t getProgramCountLimit()
{
static bool initialized = false;
static size_t count = 0;
if (!initialized)
{
count = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_PROGRAM_CACHE", 0);
initialized = true;
}
return count;
}
static int g_contextId = 0;
class OpenCLBufferPoolImpl;
class OpenCLSVMBufferPoolImpl;
struct Context::Impl
{
static Context::Impl* get(Context& context) { return context.p; }
typedef std::deque<Context::Impl*> container_t;
static container_t& getGlobalContainer()
{
// never delete this container (Impl lifetime is greater due to TLS storage)
static container_t* g_contexts = new container_t();
return *g_contexts;
}
protected:
Impl(const std::string& configuration_)
: refcount(1)
, contextId(CV_XADD(&g_contextId, 1))
, configuration(configuration_)
, handle(0)
#ifdef HAVE_OPENCL_SVM
, svmInitialized(false)
#endif
{
if (!haveOpenCL())
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL runtime is not available!");
cv::AutoLock lock(cv::getInitializationMutex());
auto& container = getGlobalContainer();
container.resize(std::max(container.size(), (size_t)contextId + 1));
container[contextId] = this;
}
~Impl()
{
#ifdef _WIN32
if (!cv::__termination)
#endif
{
if (handle)
{
CV_OCL_DBG_CHECK(clReleaseContext(handle));
handle = NULL;
}
devices.clear();
}
{
cv::AutoLock lock(cv::getInitializationMutex());
auto& container = getGlobalContainer();
CV_CheckLT((size_t)contextId, container.size(), "");
container[contextId] = NULL;
}
}
void init_device_list()
{
CV_Assert(handle);
cl_uint ndevices = 0;
CV_OCL_CHECK(clGetContextInfo(handle, CL_CONTEXT_NUM_DEVICES, sizeof(ndevices), &ndevices, NULL));
CV_Assert(ndevices > 0);
cv::AutoBuffer<cl_device_id> cl_devices(ndevices);
size_t devices_ret_size = 0;
CV_OCL_CHECK(clGetContextInfo(handle, CL_CONTEXT_DEVICES, cl_devices.size() * sizeof(cl_device_id), &cl_devices[0], &devices_ret_size));
CV_CheckEQ(devices_ret_size, cl_devices.size() * sizeof(cl_device_id), "");
devices.clear();
for (unsigned i = 0; i < ndevices; i++)
{
devices.emplace_back(Device::fromHandle(cl_devices[i]));
}
}
void __init_buffer_pools(); // w/o synchronization
void _init_buffer_pools() const
{
if (!bufferPool_)
{
cv::AutoLock lock(cv::getInitializationMutex());
if (!bufferPool_)
{
const_cast<Impl*>(this)->__init_buffer_pools();
}
}
}
public:
static Impl* findContext(const std::string& configuration)
{
CV_TRACE_FUNCTION();
cv::AutoLock lock(cv::getInitializationMutex());
auto& container = getGlobalContainer();
if (configuration.empty() && !container.empty())
return container[0];
for (auto it = container.begin(); it != container.end(); ++it)
{
Impl* i = *it;
if (i && i->configuration == configuration)
{
return i;
}
}
return NULL;
}
static Impl* findOrCreateContext(const std::string& configuration_)
{
CV_TRACE_FUNCTION();
std::string configuration = configuration_;
if (configuration_.empty())
{
const char* c = getenv("OPENCV_OPENCL_DEVICE");
if (c)
configuration = c;
}
Impl* impl = findContext(configuration);
if (impl)
{
CV_LOG_INFO(NULL, "OpenCL: reuse context@" << impl->contextId << " for configuration: " << configuration)
return impl;
}
cl_device_id d = selectOpenCLDevice(configuration.empty() ? NULL : configuration.c_str());
if (d == NULL)
return NULL;
impl = new Impl(configuration);
try
{
impl->createFromDevice(d);
if (impl->handle)
return impl;
delete impl;
return NULL;
}
catch (...)
{
delete impl;
throw;
}
}
static Impl* findOrCreateContext(cl_context h)
{
CV_TRACE_FUNCTION();
CV_Assert(h);
std::string configuration = cv::format("@ctx-%p", (void*)h);
Impl* impl = findContext(configuration);
if (impl)
{
CV_LOG_INFO(NULL, "OpenCL: reuse context@" << impl->contextId << " for configuration: " << configuration)
impl->addref();
return impl;
}
impl = new Impl(configuration);
try
{
CV_OCL_CHECK(clRetainContext(h));
impl->handle = h;
impl->init_device_list();
return impl;
}
catch (...)
{
delete impl;
throw;
}
}
static Impl* findOrCreateContext(const ocl::Device& device)
{
CV_TRACE_FUNCTION();
CV_Assert(!device.empty());
cl_device_id d = (cl_device_id)device.ptr();
CV_Assert(d);
std::string configuration = cv::format("@dev-%p", (void*)d);
Impl* impl = findContext(configuration);
if (impl)
{
CV_LOG_INFO(NULL, "OpenCL: reuse context@" << impl->contextId << " for configuration: " << configuration)
impl->addref();
return impl;
}
impl = new Impl(configuration);
try
{
impl->createFromDevice(d);
CV_Assert(impl->handle);
return impl;
}
catch (...)
{
delete impl;
throw;
}
}
void setDefault()
{
CV_TRACE_FUNCTION();
cl_device_id d = selectOpenCLDevice();
if (d == NULL)
return;
createFromDevice(d);
}
void createFromDevice(cl_device_id d)
{
CV_TRACE_FUNCTION();
CV_Assert(handle == NULL);
cl_platform_id pl = NULL;
CV_OCL_DBG_CHECK(clGetDeviceInfo(d, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &pl, NULL));
cl_context_properties prop[] =
{
CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
0
};
// !!! in the current implementation force the number of devices to 1 !!!
cl_uint nd = 1;
cl_int status;
handle = clCreateContext(prop, nd, &d, 0, 0, &status);
CV_OCL_DBG_CHECK_RESULT(status, "clCreateContext");
bool ok = handle != 0 && status == CL_SUCCESS;
if( ok )
{
devices.resize(nd);
devices[0].set(d);
}
else
handle = NULL;
}
Program getProg(const ProgramSource& src, const String& buildflags, String& errmsg);
void unloadProg(Program& prog)
{
cv::AutoLock lock(program_cache_mutex);
for (CacheList::iterator i = cacheList.begin(); i != cacheList.end(); ++i)
{
phash_t::iterator it = phash.find(*i);
if (it != phash.end())
{
if (it->second.ptr() == prog.ptr())
{
phash.erase(*i);
cacheList.erase(i);
return;
}
}
}
}
std::string& getPrefixString()
{
if (prefix.empty())
{
cv::AutoLock lock(program_cache_mutex);
if (prefix.empty())
{
CV_Assert(!devices.empty());
const Device& d = devices[0];
int bits = d.addressBits();
if (bits > 0 && bits != 64)
prefix = cv::format("%d-bit--", bits);
prefix += d.vendorName() + "--" + d.name() + "--" + d.driverVersion();
// sanitize chars
for (size_t i = 0; i < prefix.size(); i++)
{
char c = prefix[i];
if (!((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_' || c == '-'))
{
prefix[i] = '_';
}
}
}
}
return prefix;
}
std::string& getPrefixBase()
{
if (prefix_base.empty())
{
cv::AutoLock lock(program_cache_mutex);
if (prefix_base.empty())
{
const Device& d = devices[0];
int bits = d.addressBits();
if (bits > 0 && bits != 64)
prefix_base = cv::format("%d-bit--", bits);
prefix_base += d.vendorName() + "--" + d.name() + "--";
// sanitize chars
for (size_t i = 0; i < prefix_base.size(); i++)
{
char c = prefix_base[i];
if (!((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_' || c == '-'))
{
prefix_base[i] = '_';
}
}
}
}
return prefix_base;
}
IMPLEMENT_REFCOUNTABLE();
const int contextId; // global unique ID
const std::string configuration;
cl_context handle;
std::vector<Device> devices;
std::string prefix;
std::string prefix_base;
cv::Mutex program_cache_mutex;
typedef std::map<std::string, Program> phash_t;
phash_t phash;
typedef std::list<cv::String> CacheList;
CacheList cacheList;
std::shared_ptr<OpenCLBufferPoolImpl> bufferPool_;
std::shared_ptr<OpenCLBufferPoolImpl> bufferPoolHostPtr_;
OpenCLBufferPoolImpl& getBufferPool() const
{
_init_buffer_pools();
CV_DbgAssert(bufferPool_);
return *bufferPool_.get();
}
OpenCLBufferPoolImpl& getBufferPoolHostPtr() const
{
_init_buffer_pools();
CV_DbgAssert(bufferPoolHostPtr_);
return *bufferPoolHostPtr_.get();
}
#ifdef HAVE_OPENCL_SVM
bool svmInitialized;
bool svmAvailable;
bool svmEnabled;
svm::SVMCapabilities svmCapabilities;
svm::SVMFunctions svmFunctions;
void svmInit()
{
CV_Assert(handle != NULL);
const Device& device = devices[0];
cl_device_svm_capabilities deviceCaps = 0;
CV_Assert(((void)0, CL_DEVICE_SVM_CAPABILITIES == CL_DEVICE_SVM_CAPABILITIES_AMD)); // Check assumption
cl_int status = clGetDeviceInfo((cl_device_id)device.ptr(), CL_DEVICE_SVM_CAPABILITIES, sizeof(deviceCaps), &deviceCaps, NULL);
if (status != CL_SUCCESS)
{
CV_OPENCL_SVM_TRACE_ERROR_P("CL_DEVICE_SVM_CAPABILITIES via clGetDeviceInfo failed: %d\n", status);
goto noSVM;
}
CV_OPENCL_SVM_TRACE_P("CL_DEVICE_SVM_CAPABILITIES returned: 0x%x\n", (int)deviceCaps);
CV_Assert(((void)0, CL_DEVICE_SVM_COARSE_GRAIN_BUFFER == CL_DEVICE_SVM_COARSE_GRAIN_BUFFER_AMD)); // Check assumption
svmCapabilities.value_ =
((deviceCaps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER) ? svm::SVMCapabilities::SVM_COARSE_GRAIN_BUFFER : 0) |
((deviceCaps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER) ? svm::SVMCapabilities::SVM_FINE_GRAIN_BUFFER : 0) |
((deviceCaps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) ? svm::SVMCapabilities::SVM_FINE_GRAIN_SYSTEM : 0) |
((deviceCaps & CL_DEVICE_SVM_ATOMICS) ? svm::SVMCapabilities::SVM_ATOMICS : 0);
svmCapabilities.value_ &= svm::getSVMCapabilitiesMask();
if (svmCapabilities.value_ == 0)
{
CV_OPENCL_SVM_TRACE_ERROR_P("svmCapabilities is empty\n");
goto noSVM;
}
try
{
// Try OpenCL 2.0
CV_OPENCL_SVM_TRACE_P("Try SVM from OpenCL 2.0 ...\n");
void* ptr = clSVMAlloc(handle, CL_MEM_READ_WRITE, 100, 0);
if (!ptr)
{
CV_OPENCL_SVM_TRACE_ERROR_P("clSVMAlloc returned NULL...\n");
CV_Error(Error::StsBadArg, "clSVMAlloc returned NULL");
}
try
{
bool error = false;
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if (CL_SUCCESS != clEnqueueSVMMap(q, CL_TRUE, CL_MAP_WRITE, ptr, 100, 0, NULL, NULL))
{
CV_OPENCL_SVM_TRACE_ERROR_P("clEnqueueSVMMap failed...\n");
CV_Error(Error::StsBadArg, "clEnqueueSVMMap FAILED");
}
clFinish(q);
try
{
((int*)ptr)[0] = 100;
}
catch (...)
{
CV_OPENCL_SVM_TRACE_ERROR_P("SVM buffer access test FAILED\n");
error = true;
}
if (CL_SUCCESS != clEnqueueSVMUnmap(q, ptr, 0, NULL, NULL))
{
CV_OPENCL_SVM_TRACE_ERROR_P("clEnqueueSVMUnmap failed...\n");
CV_Error(Error::StsBadArg, "clEnqueueSVMUnmap FAILED");
}
clFinish(q);
if (error)
{
CV_Error(Error::StsBadArg, "OpenCL SVM buffer access test was FAILED");
}
}
catch (...)
{
CV_OPENCL_SVM_TRACE_ERROR_P("OpenCL SVM buffer access test was FAILED\n");
clSVMFree(handle, ptr);
throw;
}
clSVMFree(handle, ptr);
svmFunctions.fn_clSVMAlloc = clSVMAlloc;
svmFunctions.fn_clSVMFree = clSVMFree;
svmFunctions.fn_clSetKernelArgSVMPointer = clSetKernelArgSVMPointer;
//svmFunctions.fn_clSetKernelExecInfo = clSetKernelExecInfo;
//svmFunctions.fn_clEnqueueSVMFree = clEnqueueSVMFree;
svmFunctions.fn_clEnqueueSVMMemcpy = clEnqueueSVMMemcpy;
svmFunctions.fn_clEnqueueSVMMemFill = clEnqueueSVMMemFill;
svmFunctions.fn_clEnqueueSVMMap = clEnqueueSVMMap;
svmFunctions.fn_clEnqueueSVMUnmap = clEnqueueSVMUnmap;
}
catch (...)
{
CV_OPENCL_SVM_TRACE_P("clSVMAlloc failed, trying HSA extension...\n");
try
{
// Try HSA extension
String extensions = device.extensions();
if (extensions.find("cl_amd_svm") == String::npos)
{
CV_OPENCL_SVM_TRACE_P("Device extension doesn't have cl_amd_svm: %s\n", extensions.c_str());
goto noSVM;
}
cl_platform_id p = NULL;
CV_OCL_CHECK(status = clGetDeviceInfo((cl_device_id)device.ptr(), CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &p, NULL));
svmFunctions.fn_clSVMAlloc = (clSVMAllocAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSVMAllocAMD");
svmFunctions.fn_clSVMFree = (clSVMFreeAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSVMFreeAMD");
svmFunctions.fn_clSetKernelArgSVMPointer = (clSetKernelArgSVMPointerAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSetKernelArgSVMPointerAMD");
//svmFunctions.fn_clSetKernelExecInfo = (clSetKernelExecInfoAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSetKernelExecInfoAMD");
//svmFunctions.fn_clEnqueueSVMFree = (clEnqueueSVMFreeAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMFreeAMD");
svmFunctions.fn_clEnqueueSVMMemcpy = (clEnqueueSVMMemcpyAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMemcpyAMD");
svmFunctions.fn_clEnqueueSVMMemFill = (clEnqueueSVMMemFillAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMemFillAMD");
svmFunctions.fn_clEnqueueSVMMap = (clEnqueueSVMMapAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMapAMD");
svmFunctions.fn_clEnqueueSVMUnmap = (clEnqueueSVMUnmapAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMUnmapAMD");
CV_Assert(svmFunctions.isValid());
}
catch (...)
{
CV_OPENCL_SVM_TRACE_P("Something is totally wrong\n");
goto noSVM;
}
}
svmAvailable = true;
svmEnabled = !svm::checkDisableSVM();
svmInitialized = true;
CV_OPENCL_SVM_TRACE_P("OpenCV OpenCL SVM support initialized\n");
return;
noSVM:
CV_OPENCL_SVM_TRACE_P("OpenCL SVM is not detected\n");
svmAvailable = false;
svmEnabled = false;
svmCapabilities.value_ = 0;
svmInitialized = true;
svmFunctions.fn_clSVMAlloc = NULL;
return;
}
std::shared_ptr<OpenCLSVMBufferPoolImpl> bufferPoolSVM_;
OpenCLSVMBufferPoolImpl& getBufferPoolSVM() const
{
_init_buffer_pools();
CV_DbgAssert(bufferPoolSVM_);
return *bufferPoolSVM_.get();
}
#endif
friend class Program;
};
Context::Context()
{
p = 0;
}
Context::~Context()
{
release();
}
// deprecated
Context::Context(int dtype)
{
p = 0;
create(dtype);
}
void Context::release()
{
if (p)
{
p->release();
p = NULL;
}
}
bool Context::create()
{
release();
if (!haveOpenCL())
return false;
p = Impl::findOrCreateContext(std::string());
if (p && p->handle)
return true;
release();
return false;
}
// deprecated
bool Context::create(int dtype)
{
if( !haveOpenCL() )
return false;
release();
if (dtype == CL_DEVICE_TYPE_DEFAULT || (unsigned)dtype == (unsigned)CL_DEVICE_TYPE_ALL)
{
p = Impl::findOrCreateContext("");
}
else if (dtype == CL_DEVICE_TYPE_GPU)
{
p = Impl::findOrCreateContext(":GPU:");
}
else if (dtype == CL_DEVICE_TYPE_CPU)
{
p = Impl::findOrCreateContext(":CPU:");
}
else
{
CV_LOG_ERROR(NULL, "OpenCL: Can't recognize OpenCV device type=" << dtype);
}
if (p && !p->handle)
{
release();
}
return p != 0;
}
Context::Context(const Context& c)
{
p = (Impl*)c.p;
if(p)
p->addref();
}
Context& Context::operator = (const Context& c)
{
Impl* newp = (Impl*)c.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
void* Context::ptr() const
{
return p == NULL ? NULL : p->handle;
}
size_t Context::ndevices() const
{
return p ? p->devices.size() : 0;
}
Device& Context::device(size_t idx) const
{
static Device dummy;
return !p || idx >= p->devices.size() ? dummy : p->devices[idx];
}
Context& Context::getDefault(bool initialize)
{
auto& c = OpenCLExecutionContext::getCurrent();
if (!c.empty())
{
auto& ctx = c.getContext();
return ctx;
}
CV_UNUSED(initialize);
static Context dummy;
return dummy;
}
Program Context::getProg(const ProgramSource& prog,
const String& buildopts, String& errmsg)
{
return p ? p->getProg(prog, buildopts, errmsg) : Program();
}
void Context::unloadProg(Program& prog)
{
if (p)
p->unloadProg(prog);
}
/* static */
Context Context::fromHandle(void* context)
{
Context ctx;
ctx.p = Impl::findOrCreateContext((cl_context)context);
return ctx;
}
/* static */
Context Context::fromDevice(const ocl::Device& device)
{
Context ctx;
ctx.p = Impl::findOrCreateContext(device);
return ctx;
}
/* static */
Context Context::create(const std::string& configuration)
{
Context ctx;
ctx.p = Impl::findOrCreateContext(configuration);
return ctx;
}
#ifdef HAVE_OPENCL_SVM
bool Context::useSVM() const
{
Context::Impl* i = p;
CV_Assert(i);
if (!i->svmInitialized)
i->svmInit();
return i->svmEnabled;
}
void Context::setUseSVM(bool enabled)
{
Context::Impl* i = p;
CV_Assert(i);
if (!i->svmInitialized)
i->svmInit();
if (enabled && !i->svmAvailable)
{
CV_Error(Error::StsError, "OpenCL Shared Virtual Memory (SVM) is not supported by OpenCL device");
}
i->svmEnabled = enabled;
}
#else
bool Context::useSVM() const { return false; }
void Context::setUseSVM(bool enabled) { CV_Assert(!enabled); }
#endif
#ifdef HAVE_OPENCL_SVM
namespace svm {
const SVMCapabilities getSVMCapabilitites(const ocl::Context& context)
{
Context::Impl* i = context.p;
CV_Assert(i);
if (!i->svmInitialized)
i->svmInit();
return i->svmCapabilities;
}
CV_EXPORTS const SVMFunctions* getSVMFunctions(const ocl::Context& context)
{
Context::Impl* i = context.p;
CV_Assert(i);
CV_Assert(i->svmInitialized); // getSVMCapabilitites() must be called first
CV_Assert(i->svmFunctions.fn_clSVMAlloc != NULL);
return &i->svmFunctions;
}
CV_EXPORTS bool useSVM(UMatUsageFlags usageFlags)
{
if (checkForceSVMUmatUsage())
return true;
if (checkDisableSVMUMatUsage())
return false;
if ((usageFlags & USAGE_ALLOCATE_SHARED_MEMORY) != 0)
return true;
return false; // don't use SVM by default
}
} // namespace cv::ocl::svm
#endif // HAVE_OPENCL_SVM
static void get_platform_name(cl_platform_id id, String& name)
{
// get platform name string length
size_t sz = 0;
CV_OCL_CHECK(clGetPlatformInfo(id, CL_PLATFORM_NAME, 0, 0, &sz));
// get platform name string
AutoBuffer<char> buf(sz + 1);
CV_OCL_CHECK(clGetPlatformInfo(id, CL_PLATFORM_NAME, sz, buf.data(), 0));
// just in case, ensure trailing zero for ASCIIZ string
buf[sz] = 0;
name = buf.data();
}
/*
// Attaches OpenCL context to OpenCV
*/
void attachContext(const String& platformName, void* platformID, void* context, void* deviceID)
{
auto ctx = OpenCLExecutionContext::create(platformName, platformID, context, deviceID);
ctx.bind();
}
/* static */
OpenCLExecutionContext OpenCLExecutionContext::create(
const std::string& platformName, void* platformID, void* context, void* deviceID
)
{
if (!haveOpenCL())
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL runtime is not available!");
cl_uint cnt = 0;
CV_OCL_CHECK(clGetPlatformIDs(0, 0, &cnt));
if (cnt == 0)
CV_Error(cv::Error::OpenCLApiCallError, "No OpenCL platform available!");
std::vector<cl_platform_id> platforms(cnt);
CV_OCL_CHECK(clGetPlatformIDs(cnt, &platforms[0], 0));
bool platformAvailable = false;
// check if external platformName contained in list of available platforms in OpenCV
for (unsigned int i = 0; i < cnt; i++)
{
String availablePlatformName;
get_platform_name(platforms[i], availablePlatformName);
// external platform is found in the list of available platforms
if (platformName == availablePlatformName)
{
platformAvailable = true;
break;
}
}
if (!platformAvailable)
CV_Error(cv::Error::OpenCLApiCallError, "No matched platforms available!");
// check if platformID corresponds to platformName
String actualPlatformName;
get_platform_name((cl_platform_id)platformID, actualPlatformName);
if (platformName != actualPlatformName)
CV_Error(cv::Error::OpenCLApiCallError, "No matched platforms available!");
OpenCLExecutionContext ctx;
ctx.p = std::make_shared<OpenCLExecutionContext::Impl>((cl_platform_id)platformID, (cl_context)context, (cl_device_id)deviceID);
CV_OCL_CHECK(clReleaseContext((cl_context)context));
CV_OCL_CHECK(clReleaseDevice((cl_device_id)deviceID));
return ctx;
}
void initializeContextFromHandle(Context& ctx, void* _platform, void* _context, void* _device)
{
// internal call, less checks
cl_platform_id platformID = (cl_platform_id)_platform;
cl_context context = (cl_context)_context;
cl_device_id deviceID = (cl_device_id)_device;
std::string platformName = PlatformInfo(platformID).name();
auto clExecCtx = OpenCLExecutionContext::create(platformName, platformID, context, deviceID);
CV_Assert(!clExecCtx.empty());
ctx = clExecCtx.getContext();
}
/////////////////////////////////////////// Queue /////////////////////////////////////////////
struct Queue::Impl
{
inline void __init()
{
refcount = 1;
handle = 0;
isProfilingQueue_ = false;
}
Impl(cl_command_queue q)
{
__init();
handle = q;
cl_command_queue_properties props = 0;
CV_OCL_CHECK(clGetCommandQueueInfo(handle, CL_QUEUE_PROPERTIES, sizeof(cl_command_queue_properties), &props, NULL));
isProfilingQueue_ = !!(props & CL_QUEUE_PROFILING_ENABLE);
}
Impl(cl_command_queue q, bool isProfilingQueue)
{
__init();
handle = q;
isProfilingQueue_ = isProfilingQueue;
}
Impl(const Context& c, const Device& d, bool withProfiling = false)
{
__init();
const Context* pc = &c;
cl_context ch = (cl_context)pc->ptr();
if( !ch )
{
pc = &Context::getDefault();
ch = (cl_context)pc->ptr();
}
cl_device_id dh = (cl_device_id)d.ptr();
if( !dh )
dh = (cl_device_id)pc->device(0).ptr();
cl_int retval = 0;
cl_command_queue_properties props = withProfiling ? CL_QUEUE_PROFILING_ENABLE : 0;
CV_OCL_DBG_CHECK_(handle = clCreateCommandQueue(ch, dh, props, &retval), retval);
isProfilingQueue_ = withProfiling;
}
~Impl()
{
#ifdef _WIN32
if (!cv::__termination)
#endif
{
if(handle)
{
CV_OCL_DBG_CHECK(clFinish(handle));
CV_OCL_DBG_CHECK(clReleaseCommandQueue(handle));
handle = NULL;
}
}
}
const cv::ocl::Queue& getProfilingQueue(const cv::ocl::Queue& self)
{
if (isProfilingQueue_)
return self;
if (profiling_queue_.ptr())
return profiling_queue_;
cl_context ctx = 0;
CV_OCL_CHECK(clGetCommandQueueInfo(handle, CL_QUEUE_CONTEXT, sizeof(cl_context), &ctx, NULL));
cl_device_id device = 0;
CV_OCL_CHECK(clGetCommandQueueInfo(handle, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device, NULL));
cl_int result = CL_SUCCESS;
cl_command_queue_properties props = CL_QUEUE_PROFILING_ENABLE;
cl_command_queue q = clCreateCommandQueue(ctx, device, props, &result);
CV_OCL_DBG_CHECK_RESULT(result, "clCreateCommandQueue(with CL_QUEUE_PROFILING_ENABLE)");
Queue queue;
queue.p = new Impl(q, true);
profiling_queue_ = queue;
return profiling_queue_;
}
IMPLEMENT_REFCOUNTABLE();
cl_command_queue handle;
bool isProfilingQueue_;
cv::ocl::Queue profiling_queue_;
};
Queue::Queue()
{
p = 0;
}
Queue::Queue(const Context& c, const Device& d)
{
p = 0;
create(c, d);
}
Queue::Queue(const Queue& q)
{
p = q.p;
if(p)
p->addref();
}
Queue& Queue::operator = (const Queue& q)
{
Impl* newp = (Impl*)q.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Queue::~Queue()
{
if(p)
p->release();
}
bool Queue::create(const Context& c, const Device& d)
{
if(p)
p->release();
p = new Impl(c, d);
return p->handle != 0;
}
void Queue::finish()
{
if(p && p->handle)
{
CV_OCL_DBG_CHECK(clFinish(p->handle));
}
}
const Queue& Queue::getProfilingQueue() const
{
CV_Assert(p);
return p->getProfilingQueue(*this);
}
void* Queue::ptr() const
{
return p ? p->handle : 0;
}
Queue& Queue::getDefault()
{
auto& c = OpenCLExecutionContext::getCurrent();
if (!c.empty())
{
auto& q = c.getQueue();
return q;
}
static Queue dummy;
return dummy;
}
static cl_command_queue getQueue(const Queue& q)
{
cl_command_queue qq = (cl_command_queue)q.ptr();
if(!qq)
qq = (cl_command_queue)Queue::getDefault().ptr();
return qq;
}
/////////////////////////////////////////// KernelArg /////////////////////////////////////////////
KernelArg::KernelArg()
: flags(0), m(0), obj(0), sz(0), wscale(1), iwscale(1)
{
}
KernelArg::KernelArg(int _flags, UMat* _m, int _wscale, int _iwscale, const void* _obj, size_t _sz)
: flags(_flags), m(_m), obj(_obj), sz(_sz), wscale(_wscale), iwscale(_iwscale)
{
CV_Assert(_flags == LOCAL || _flags == CONSTANT || _m != NULL);
}
KernelArg KernelArg::Constant(const Mat& m)
{
CV_Assert(m.isContinuous());
return KernelArg(CONSTANT, 0, 0, 0, m.ptr(), m.total()*m.elemSize());
}
/////////////////////////////////////////// Kernel /////////////////////////////////////////////
struct Kernel::Impl
{
Impl(const char* kname, const Program& prog) :
refcount(1), handle(NULL), isInProgress(false), nu(0)
{
cl_program ph = (cl_program)prog.ptr();
cl_int retval = 0;
name = kname;
if (ph)
{
handle = clCreateKernel(ph, kname, &retval);
CV_OCL_DBG_CHECK_RESULT(retval, cv::format("clCreateKernel('%s')", kname).c_str());
}
for( int i = 0; i < MAX_ARRS; i++ )
u[i] = 0;
haveTempDstUMats = false;
haveTempSrcUMats = false;
}
void cleanupUMats()
{
for( int i = 0; i < MAX_ARRS; i++ )
if( u[i] )
{
if( CV_XADD(&u[i]->urefcount, -1) == 1 )
{
u[i]->flags |= UMatData::ASYNC_CLEANUP;
u[i]->currAllocator->deallocate(u[i]);
}
u[i] = 0;
}
nu = 0;
haveTempDstUMats = false;
haveTempSrcUMats = false;
}
void addUMat(const UMat& m, bool dst)
{
CV_Assert(nu < MAX_ARRS && m.u && m.u->urefcount > 0);
u[nu] = m.u;
CV_XADD(&m.u->urefcount, 1);
nu++;
if(dst && m.u->tempUMat())
haveTempDstUMats = true;
if(m.u->originalUMatData == NULL && m.u->tempUMat())
haveTempSrcUMats = true; // UMat is created on RAW memory (without proper lifetime management, even from Mat)
}
void addImage(const Image2D& image)
{
images.push_back(image);
}
void finit(cl_event e)
{
CV_UNUSED(e);
cleanupUMats();
images.clear();
isInProgress = false;
release();
}
bool run(int dims, size_t _globalsize[], size_t _localsize[],
bool sync, int64* timeNS, const Queue& q);
~Impl()
{
if(handle)
{
CV_OCL_DBG_CHECK(clReleaseKernel(handle));
}
}
IMPLEMENT_REFCOUNTABLE();
cv::String name;
cl_kernel handle;
enum { MAX_ARRS = 16 };
UMatData* u[MAX_ARRS];
bool isInProgress;
int nu;
std::list<Image2D> images;
bool haveTempDstUMats;
bool haveTempSrcUMats;
};
}} // namespace cv::ocl
extern "C" {
static void CL_CALLBACK oclCleanupCallback(cl_event e, cl_int, void *p)
{
try
{
((cv::ocl::Kernel::Impl*)p)->finit(e);
}
catch (const cv::Exception& exc)
{
CV_LOG_ERROR(NULL, "OCL: Unexpected OpenCV exception in OpenCL callback: " << exc.what());
}
catch (const std::exception& exc)
{
CV_LOG_ERROR(NULL, "OCL: Unexpected C++ exception in OpenCL callback: " << exc.what());
}
catch (...)
{
CV_LOG_ERROR(NULL, "OCL: Unexpected unknown C++ exception in OpenCL callback");
}
}
}
namespace cv { namespace ocl {
Kernel::Kernel()
{
p = 0;
}
Kernel::Kernel(const char* kname, const Program& prog)
{
p = 0;
create(kname, prog);
}
Kernel::Kernel(const char* kname, const ProgramSource& src,
const String& buildopts, String* errmsg)
{
p = 0;
create(kname, src, buildopts, errmsg);
}
Kernel::Kernel(const Kernel& k)
{
p = k.p;
if(p)
p->addref();
}
Kernel& Kernel::operator = (const Kernel& k)
{
Impl* newp = (Impl*)k.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Kernel::~Kernel()
{
if(p)
p->release();
}
bool Kernel::create(const char* kname, const Program& prog)
{
if(p)
p->release();
p = new Impl(kname, prog);
if(p->handle == 0)
{
p->release();
p = 0;
}
#ifdef CV_OPENCL_RUN_ASSERT // check kernel compilation fails
CV_Assert(p);
#endif
return p != 0;
}
bool Kernel::create(const char* kname, const ProgramSource& src,
const String& buildopts, String* errmsg)
{
if(p)
{
p->release();
p = 0;
}
String tempmsg;
if( !errmsg ) errmsg = &tempmsg;
const Program prog = Context::getDefault().getProg(src, buildopts, *errmsg);
return create(kname, prog);
}
void* Kernel::ptr() const
{
return p ? p->handle : 0;
}
bool Kernel::empty() const
{
return ptr() == 0;
}
int Kernel::set(int i, const void* value, size_t sz)
{
if (!p || !p->handle)
return -1;
if (i < 0)
return i;
if( i == 0 )
p->cleanupUMats();
cl_int retval = clSetKernelArg(p->handle, (cl_uint)i, sz, value);
CV_OCL_DBG_CHECK_RESULT(retval, cv::format("clSetKernelArg('%s', arg_index=%d, size=%d, value=%p)", p->name.c_str(), (int)i, (int)sz, (void*)value).c_str());
if (retval != CL_SUCCESS)
return -1;
return i+1;
}
int Kernel::set(int i, const Image2D& image2D)
{
p->addImage(image2D);
cl_mem h = (cl_mem)image2D.ptr();
return set(i, &h, sizeof(h));
}
int Kernel::set(int i, const UMat& m)
{
return set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m));
}
int Kernel::set(int i, const KernelArg& arg)
{
if( !p || !p->handle )
return -1;
if (i < 0)
{
CV_LOG_ERROR(NULL, cv::format("OpenCL: Kernel(%s)::set(arg_index=%d): negative arg_index",
p->name.c_str(), (int)i));
return i;
}
if( i == 0 )
p->cleanupUMats();
cl_int status = 0;
if( arg.m )
{
AccessFlag accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : static_cast<AccessFlag>(0)) |
((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : static_cast<AccessFlag>(0));
bool ptronly = (arg.flags & KernelArg::PTR_ONLY) != 0;
if (ptronly && arg.m->empty())
{
cl_mem h_null = (cl_mem)NULL;
status = clSetKernelArg(p->handle, (cl_uint)i, sizeof(h_null), &h_null);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, cl_mem=NULL)", p->name.c_str(), (int)i).c_str());
return i + 1;
}
cl_mem h = (cl_mem)arg.m->handle(accessFlags);
if (!h)
{
CV_LOG_ERROR(NULL, cv::format("OpenCL: Kernel(%s)::set(arg_index=%d, flags=%d): can't create cl_mem handle for passed UMat buffer (addr=%p)",
p->name.c_str(), (int)i, (int)arg.flags, arg.m));
p->release();
p = 0;
return -1;
}
#ifdef HAVE_OPENCL_SVM
if ((arg.m->u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
const Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
uchar*& svmDataPtr = (uchar*&)arg.m->u->handle;
CV_OPENCL_SVM_TRACE_P("clSetKernelArgSVMPointer: %p\n", svmDataPtr);
#if 1 // TODO
status = svmFns->fn_clSetKernelArgSVMPointer(p->handle, (cl_uint)i, svmDataPtr);
#else
status = svmFns->fn_clSetKernelArgSVMPointer(p->handle, (cl_uint)i, &svmDataPtr);
#endif
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArgSVMPointer('%s', arg_index=%d, ptr=%p)", p->name.c_str(), (int)i, (void*)svmDataPtr).c_str());
}
else
#endif
{
status = clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, cl_mem=%p)", p->name.c_str(), (int)i, (void*)h).c_str());
}
if (ptronly)
{
i++;
}
else if( arg.m->dims <= 2 )
{
UMat2D u2d(*arg.m);
status = clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u2d.step), &u2d.step);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, step_value=%d)", p->name.c_str(), (int)(i+1), (int)u2d.step).c_str());
status = clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u2d.offset), &u2d.offset);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, offset_value=%d)", p->name.c_str(), (int)(i+2), (int)u2d.offset).c_str());
i += 3;
if( !(arg.flags & KernelArg::NO_SIZE) )
{
int cols = u2d.cols*arg.wscale/arg.iwscale;
status = clSetKernelArg(p->handle, (cl_uint)i, sizeof(u2d.rows), &u2d.rows);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, rows_value=%d)", p->name.c_str(), (int)i, (int)u2d.rows).c_str());
status = clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(cols), &cols);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, cols_value=%d)", p->name.c_str(), (int)(i+1), (int)cols).c_str());
i += 2;
}
}
else
{
UMat3D u3d(*arg.m);
status = clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.slicestep), &u3d.slicestep);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, slicestep_value=%d)", p->name.c_str(), (int)(i+1), (int)u3d.slicestep).c_str());
status = clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.step), &u3d.step);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, step_value=%d)", p->name.c_str(), (int)(i+2), (int)u3d.step).c_str());
status = clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(u3d.offset), &u3d.offset);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, offset_value=%d)", p->name.c_str(), (int)(i+3), (int)u3d.offset).c_str());
i += 4;
if( !(arg.flags & KernelArg::NO_SIZE) )
{
int cols = u3d.cols*arg.wscale/arg.iwscale;
status = clSetKernelArg(p->handle, (cl_uint)i, sizeof(u3d.slices), &u3d.slices);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, slices_value=%d)", p->name.c_str(), (int)i, (int)u3d.slices).c_str());
status = clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.rows), &u3d.rows);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, rows_value=%d)", p->name.c_str(), (int)(i+1), (int)u3d.rows).c_str());
status = clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.cols), &cols);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, cols_value=%d)", p->name.c_str(), (int)(i+2), (int)cols).c_str());
i += 3;
}
}
p->addUMat(*arg.m, !!(accessFlags & ACCESS_WRITE));
return i;
}
status = clSetKernelArg(p->handle, (cl_uint)i, arg.sz, arg.obj);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, size=%d, obj=%p)", p->name.c_str(), (int)i, (int)arg.sz, (void*)arg.obj).c_str());
return i+1;
}
bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
bool sync, const Queue& q)
{
if (!p)
return false;
size_t globalsize[CV_MAX_DIM] = {1,1,1};
size_t total = 1;
CV_Assert(_globalsize != NULL);
for (int i = 0; i < dims; i++)
{
size_t val = _localsize ? _localsize[i] :
dims == 1 ? 64 : dims == 2 ? (i == 0 ? 256 : 8) : dims == 3 ? (8>>(int)(i>0)) : 1;
CV_Assert( val > 0 );
total *= _globalsize[i];
if (_globalsize[i] == 1 && !_localsize)
val = 1;
globalsize[i] = divUp(_globalsize[i], (unsigned int)val) * val;
}
CV_Assert(total > 0);
return p->run(dims, globalsize, _localsize, sync, NULL, q);
}
bool Kernel::Impl::run(int dims, size_t globalsize[], size_t localsize[],
bool sync, int64* timeNS, const Queue& q)
{
CV_INSTRUMENT_REGION_OPENCL_RUN(name.c_str());
if (!handle || isInProgress)
return false;
cl_command_queue qq = getQueue(q);
if (haveTempDstUMats)
sync = true;
if (haveTempSrcUMats)
sync = true;
if (timeNS)
sync = true;
cl_event asyncEvent = 0;
cl_int retval = clEnqueueNDRangeKernel(qq, handle, (cl_uint)dims,
NULL, globalsize, localsize, 0, 0,
(sync && !timeNS) ? 0 : &asyncEvent);
#if !CV_OPENCL_SHOW_RUN_KERNELS
if (retval != CL_SUCCESS)
#endif
{
cv::String msg = cv::format("clEnqueueNDRangeKernel('%s', dims=%d, globalsize=%zux%zux%zu, localsize=%s) sync=%s", name.c_str(), (int)dims,
globalsize[0], (dims > 1 ? globalsize[1] : 1), (dims > 2 ? globalsize[2] : 1),
(localsize ? cv::format("%zux%zux%zu", localsize[0], (dims > 1 ? localsize[1] : 1), (dims > 2 ? localsize[2] : 1)) : cv::String("NULL")).c_str(),
sync ? "true" : "false"
);
if (retval != CL_SUCCESS)
{
msg = CV_OCL_API_ERROR_MSG(retval, msg.c_str());
}
#if CV_OPENCL_TRACE_CHECK
CV_OCL_TRACE_CHECK_RESULT(retval, msg.c_str());
#else
printf("%s\n", msg.c_str());
fflush(stdout);
#endif
}
if (sync || retval != CL_SUCCESS)
{
CV_OCL_DBG_CHECK(clFinish(qq));
if (timeNS)
{
if (retval == CL_SUCCESS)
{
CV_OCL_DBG_CHECK(clWaitForEvents(1, &asyncEvent));
cl_ulong startTime, stopTime;
CV_OCL_CHECK(clGetEventProfilingInfo(asyncEvent, CL_PROFILING_COMMAND_START, sizeof(startTime), &startTime, NULL));
CV_OCL_CHECK(clGetEventProfilingInfo(asyncEvent, CL_PROFILING_COMMAND_END, sizeof(stopTime), &stopTime, NULL));
*timeNS = (int64)(stopTime - startTime);
}
else
{
*timeNS = -1;
}
}
cleanupUMats();
}
else
{
addref();
isInProgress = true;
CV_OCL_CHECK(clSetEventCallback(asyncEvent, CL_COMPLETE, oclCleanupCallback, this));
}
if (asyncEvent)
CV_OCL_DBG_CHECK(clReleaseEvent(asyncEvent));
return retval == CL_SUCCESS;
}
bool Kernel::runTask(bool sync, const Queue& q)
{
if(!p || !p->handle || p->isInProgress)
return false;
cl_command_queue qq = getQueue(q);
cl_event asyncEvent = 0;
cl_int retval = clEnqueueTask(qq, p->handle, 0, 0, sync ? 0 : &asyncEvent);
CV_OCL_DBG_CHECK_RESULT(retval, cv::format("clEnqueueTask('%s') sync=%s", p->name.c_str(), sync ? "true" : "false").c_str());
if (sync || retval != CL_SUCCESS)
{
CV_OCL_DBG_CHECK(clFinish(qq));
p->cleanupUMats();
}
else
{
p->addref();
p->isInProgress = true;
CV_OCL_CHECK(clSetEventCallback(asyncEvent, CL_COMPLETE, oclCleanupCallback, p));
}
if (asyncEvent)
CV_OCL_DBG_CHECK(clReleaseEvent(asyncEvent));
return retval == CL_SUCCESS;
}
int64 Kernel::runProfiling(int dims, size_t globalsize[], size_t localsize[], const Queue& q_)
{
CV_Assert(p && p->handle && !p->isInProgress);
Queue q = q_.ptr() ? q_ : Queue::getDefault();
CV_Assert(q.ptr());
q.finish(); // call clFinish() on base queue
Queue profilingQueue = q.getProfilingQueue();
int64 timeNs = -1;
bool res = p->run(dims, globalsize, localsize, true, &timeNs, profilingQueue);
return res ? timeNs : -1;
}
size_t Kernel::workGroupSize() const
{
if(!p || !p->handle)
return 0;
size_t val = 0, retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
cl_int status = clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_WORK_GROUP_SIZE, sizeof(val), &val, &retsz);
CV_OCL_CHECK_RESULT(status, "clGetKernelWorkGroupInfo(CL_KERNEL_WORK_GROUP_SIZE)");
return status == CL_SUCCESS ? val : 0;
}
size_t Kernel::preferedWorkGroupSizeMultiple() const
{
if(!p || !p->handle)
return 0;
size_t val = 0, retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
cl_int status = clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(val), &val, &retsz);
CV_OCL_CHECK_RESULT(status, "clGetKernelWorkGroupInfo(CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE)");
return status == CL_SUCCESS ? val : 0;
}
bool Kernel::compileWorkGroupSize(size_t wsz[]) const
{
if(!p || !p->handle || !wsz)
return 0;
size_t retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
cl_int status = clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_COMPILE_WORK_GROUP_SIZE, sizeof(wsz[0])*3, wsz, &retsz);
CV_OCL_CHECK_RESULT(status, "clGetKernelWorkGroupInfo(CL_KERNEL_COMPILE_WORK_GROUP_SIZE)");
return status == CL_SUCCESS;
}
size_t Kernel::localMemSize() const
{
if(!p || !p->handle)
return 0;
size_t retsz = 0;
cl_ulong val = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
cl_int status = clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_LOCAL_MEM_SIZE, sizeof(val), &val, &retsz);
CV_OCL_CHECK_RESULT(status, "clGetKernelWorkGroupInfo(CL_KERNEL_LOCAL_MEM_SIZE)");
return status == CL_SUCCESS ? (size_t)val : 0;
}
///////////////////////////////////////// ProgramSource ///////////////////////////////////////////////
struct ProgramSource::Impl
{
IMPLEMENT_REFCOUNTABLE();
enum KIND {
PROGRAM_SOURCE_CODE = 0,
PROGRAM_BINARIES,
PROGRAM_SPIR,
PROGRAM_SPIRV
} kind_;
Impl(const String& src)
{
init(PROGRAM_SOURCE_CODE, cv::String(), cv::String());
initFromSource(src, cv::String());
}
Impl(const String& module, const String& name, const String& codeStr, const String& codeHash)
{
init(PROGRAM_SOURCE_CODE, module, name);
initFromSource(codeStr, codeHash);
}
/// reset fields
void init(enum KIND kind, const String& module, const String& name)
{
refcount = 1;
kind_ = kind;
module_ = module;
name_ = name;
sourceAddr_ = NULL;
sourceSize_ = 0;
isHashUpdated = false;
}
void initFromSource(const String& codeStr, const String& codeHash)
{
codeStr_ = codeStr;
sourceHash_ = codeHash;
if (sourceHash_.empty())
{
updateHash();
}
else
{
isHashUpdated = true;
}
}
void updateHash(const char* hashStr = NULL)
{
if (hashStr)
{
sourceHash_ = cv::String(hashStr);
isHashUpdated = true;
return;
}
uint64 hash = 0;
switch (kind_)
{
case PROGRAM_SOURCE_CODE:
if (sourceAddr_)
{
CV_Assert(codeStr_.empty());
hash = crc64(sourceAddr_, sourceSize_); // static storage
}
else
{
CV_Assert(!codeStr_.empty());
hash = crc64((uchar*)codeStr_.c_str(), codeStr_.size());
}
break;
case PROGRAM_BINARIES:
case PROGRAM_SPIR:
case PROGRAM_SPIRV:
hash = crc64(sourceAddr_, sourceSize_);
break;
default:
CV_Error(Error::StsInternal, "Internal error");
}
sourceHash_ = cv::format("%08jx", (uintmax_t)hash);
isHashUpdated = true;
}
Impl(enum KIND kind,
const String& module, const String& name,
const unsigned char* binary, const size_t size,
const cv::String& buildOptions = cv::String())
{
init(kind, module, name);
sourceAddr_ = binary;
sourceSize_ = size;
buildOptions_ = buildOptions;
}
static ProgramSource fromSourceWithStaticLifetime(const String& module, const String& name,
const char* sourceCodeStaticStr, const char* hashStaticStr,
const cv::String& buildOptions)
{
ProgramSource result;
result.p = new Impl(PROGRAM_SOURCE_CODE, module, name,
(const unsigned char*)sourceCodeStaticStr, strlen(sourceCodeStaticStr), buildOptions);
result.p->updateHash(hashStaticStr);
return result;
}
static ProgramSource fromBinary(const String& module, const String& name,
const unsigned char* binary, const size_t size,
const cv::String& buildOptions)
{
ProgramSource result;
result.p = new Impl(PROGRAM_BINARIES, module, name, binary, size, buildOptions);
return result;
}
static ProgramSource fromSPIR(const String& module, const String& name,
const unsigned char* binary, const size_t size,
const cv::String& buildOptions)
{
ProgramSource result;
result.p = new Impl(PROGRAM_SPIR, module, name, binary, size, buildOptions);
return result;
}
String module_;
String name_;
// TODO std::vector<ProgramSource> includes_;
String codeStr_; // PROGRAM_SOURCE_CODE only
const unsigned char* sourceAddr_;
size_t sourceSize_;
cv::String buildOptions_;
String sourceHash_;
bool isHashUpdated;
friend struct Program::Impl;
friend struct internal::ProgramEntry;
friend struct Context::Impl;
};
ProgramSource::ProgramSource()
{
p = 0;
}
ProgramSource::ProgramSource(const String& module, const String& name, const String& codeStr, const String& codeHash)
{
p = new Impl(module, name, codeStr, codeHash);
}
ProgramSource::ProgramSource(const char* prog)
{
p = new Impl(prog);
}
ProgramSource::ProgramSource(const String& prog)
{
p = new Impl(prog);
}
ProgramSource::~ProgramSource()
{
if(p)
p->release();
}
ProgramSource::ProgramSource(const ProgramSource& prog)
{
p = prog.p;
if(p)
p->addref();
}
ProgramSource& ProgramSource::operator = (const ProgramSource& prog)
{
Impl* newp = (Impl*)prog.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
const String& ProgramSource::source() const
{
CV_Assert(p);
CV_Assert(p->kind_ == Impl::PROGRAM_SOURCE_CODE);
CV_Assert(p->sourceAddr_ == NULL); // method returns reference - can't construct temporary object
return p->codeStr_;
}
ProgramSource::hash_t ProgramSource::hash() const
{
CV_Error(Error::StsNotImplemented, "Removed method: ProgramSource::hash()");
}
ProgramSource ProgramSource::fromBinary(const String& module, const String& name,
const unsigned char* binary, const size_t size,
const cv::String& buildOptions)
{
CV_Assert(binary);
CV_Assert(size > 0);
return Impl::fromBinary(module, name, binary, size, buildOptions);
}
ProgramSource ProgramSource::fromSPIR(const String& module, const String& name,
const unsigned char* binary, const size_t size,
const cv::String& buildOptions)
{
CV_Assert(binary);
CV_Assert(size > 0);
return Impl::fromBinary(module, name, binary, size, buildOptions);
}
internal::ProgramEntry::operator ProgramSource&() const
{
if (this->pProgramSource == NULL)
{
cv::AutoLock lock(cv::getInitializationMutex());
if (this->pProgramSource == NULL)
{
ProgramSource ps = ProgramSource::Impl::fromSourceWithStaticLifetime(this->module, this->name, this->programCode, this->programHash, cv::String());
ProgramSource* ptr = new ProgramSource(ps);
const_cast<ProgramEntry*>(this)->pProgramSource = ptr;
}
}
return *this->pProgramSource;
}
/////////////////////////////////////////// Program /////////////////////////////////////////////
static
cv::String joinBuildOptions(const cv::String& a, const cv::String& b)
{
if (b.empty())
return a;
if (a.empty())
return b;
if (b[0] == ' ')
return a + b;
return a + (cv::String(" ") + b);
}
struct Program::Impl
{
IMPLEMENT_REFCOUNTABLE();
Impl(const ProgramSource& src,
const String& _buildflags, String& errmsg) :
refcount(1),
handle(NULL),
buildflags(_buildflags)
{
const ProgramSource::Impl* src_ = src.getImpl();
CV_Assert(src_);
sourceModule_ = src_->module_;
sourceName_ = src_->name_;
const Context ctx = Context::getDefault();
Device device = ctx.device(0);
if (ctx.ptr() == NULL || device.ptr() == NULL)
return;
buildflags = joinBuildOptions(buildflags, src_->buildOptions_);
if (src.getImpl()->kind_ == ProgramSource::Impl::PROGRAM_SOURCE_CODE)
{
if (device.isAMD())
buildflags = joinBuildOptions(buildflags, " -D AMD_DEVICE");
else if (device.isIntel())
buildflags = joinBuildOptions(buildflags, " -D INTEL_DEVICE");
const String param_buildExtraOptions = getBuildExtraOptions();
if (!param_buildExtraOptions.empty())
buildflags = joinBuildOptions(buildflags, param_buildExtraOptions);
}
compile(ctx, src_, errmsg);
}
bool compile(const Context& ctx, const ProgramSource::Impl* src_, String& errmsg)
{
CV_Assert(ctx.getImpl());
CV_Assert(src_);
// We don't cache OpenCL binaries
if (src_->kind_ == ProgramSource::Impl::PROGRAM_BINARIES)
{
CV_LOG_VERBOSE(NULL, 0, "Load program binary... " << src_->module_.c_str() << "/" << src_->name_.c_str());
bool isLoaded = createFromBinary(ctx, src_->sourceAddr_, src_->sourceSize_, errmsg);
return isLoaded;
}
return compileWithCache(ctx, src_, errmsg);
}
bool compileWithCache(const Context& ctx, const ProgramSource::Impl* src_, String& errmsg)
{
CV_Assert(ctx.getImpl());
CV_Assert(src_);
CV_Assert(src_->kind_ != ProgramSource::Impl::PROGRAM_BINARIES);
#if OPENCV_HAVE_FILESYSTEM_SUPPORT
OpenCLBinaryCacheConfigurator& config = OpenCLBinaryCacheConfigurator::getSingletonInstance();
const std::string base_dir = config.prepareCacheDirectoryForContext(
ctx.getImpl()->getPrefixString(),
ctx.getImpl()->getPrefixBase()
);
const String& hash_str = src_->sourceHash_;
cv::String fname;
if (!base_dir.empty() && !src_->module_.empty() && !src_->name_.empty())
{
CV_Assert(!hash_str.empty());
fname = src_->module_ + "--" + src_->name_ + "_" + hash_str + ".bin";
fname = utils::fs::join(base_dir, fname);
}
const cv::Ptr<utils::fs::FileLock> fileLock = config.cache_lock_; // can be empty
if (!fname.empty() && CV_OPENCL_CACHE_ENABLE)
{
try
{
std::vector<char> binaryBuf;
bool res = false;
{
cv::utils::optional_shared_lock_guard<cv::utils::fs::FileLock> lock_fs(fileLock.get());
BinaryProgramFile file(fname, hash_str.c_str());
res = file.read(buildflags, binaryBuf);
}
if (res)
{
CV_Assert(!binaryBuf.empty());
CV_LOG_VERBOSE(NULL, 0, "Load program binary from cache: " << src_->module_.c_str() << "/" << src_->name_.c_str());
bool isLoaded = createFromBinary(ctx, binaryBuf, errmsg);
if (isLoaded)
return true;
}
}
catch (const cv::Exception& e)
{
CV_UNUSED(e);
CV_LOG_VERBOSE(NULL, 0, "Can't load OpenCL binary: " + fname << std::endl << e.what());
}
catch (...)
{
CV_LOG_VERBOSE(NULL, 0, "Can't load OpenCL binary: " + fname);
}
}
#endif // OPENCV_HAVE_FILESYSTEM_SUPPORT
CV_Assert(handle == NULL);
if (src_->kind_ == ProgramSource::Impl::PROGRAM_SOURCE_CODE)
{
if (!buildFromSources(ctx, src_, errmsg))
{
return false;
}
}
else if (src_->kind_ == ProgramSource::Impl::PROGRAM_SPIR)
{
buildflags = joinBuildOptions(buildflags, " -x spir");
if ((cv::String(" ") + buildflags).find(" -spir-std=") == cv::String::npos)
{
buildflags = joinBuildOptions(buildflags, " -spir-std=1.2");
}
CV_LOG_VERBOSE(NULL, 0, "Load program SPIR binary... " << src_->module_.c_str() << "/" << src_->name_.c_str());
bool isLoaded = createFromBinary(ctx, src_->sourceAddr_, src_->sourceSize_, errmsg);
if (!isLoaded)
return false;
}
else if (src_->kind_ == ProgramSource::Impl::PROGRAM_SPIRV)
{
CV_Error(Error::StsNotImplemented, "OpenCL: SPIR-V is not supported");
}
else
{
CV_Error(Error::StsInternal, "Internal error");
}
CV_Assert(handle != NULL);
#if OPENCV_HAVE_FILESYSTEM_SUPPORT
if (!fname.empty() && CV_OPENCL_CACHE_WRITE)
{
try
{
std::vector<char> binaryBuf;
getProgramBinary(binaryBuf);
{
cv::utils::optional_lock_guard<cv::utils::fs::FileLock> lock_fs(fileLock.get());
BinaryProgramFile file(fname, hash_str.c_str());
file.write(buildflags, binaryBuf);
}
}
catch (const cv::Exception& e)
{
CV_LOG_WARNING(NULL, "Can't save OpenCL binary into cache: " + fname << std::endl << e.what());
}
catch (...)
{
CV_LOG_WARNING(NULL, "Can't save OpenCL binary into cache: " + fname);
}
}
#endif // OPENCV_HAVE_FILESYSTEM_SUPPORT
#if CV_OPENCL_VALIDATE_BINARY_PROGRAMS
if (CV_OPENCL_VALIDATE_BINARY_PROGRAMS_VALUE)
{
std::vector<char> binaryBuf;
getProgramBinary(binaryBuf);
if (!binaryBuf.empty())
{
CV_OCL_DBG_CHECK(clReleaseProgram(handle));
handle = NULL;
createFromBinary(ctx, binaryBuf, errmsg);
}
}
#endif
return handle != NULL;
}
void dumpBuildLog_(cl_int result, const cl_device_id* deviceList, String& errmsg)
{
AutoBuffer<char, 4096> buffer; buffer[0] = 0;
size_t retsz = 0;
cl_int log_retval = clGetProgramBuildInfo(handle, deviceList[0],
CL_PROGRAM_BUILD_LOG, 0, 0, &retsz);
if (log_retval == CL_SUCCESS && retsz > 1)
{
buffer.resize(retsz + 16);
log_retval = clGetProgramBuildInfo(handle, deviceList[0],
CL_PROGRAM_BUILD_LOG, retsz+1, buffer.data(), &retsz);
if (log_retval == CL_SUCCESS)
{
if (retsz < buffer.size())
buffer[retsz] = 0;
else
buffer[buffer.size() - 1] = 0;
}
else
{
buffer[0] = 0;
}
}
errmsg = String(buffer.data());
printf("OpenCL program build log: %s/%s\nStatus %d: %s\n%s\n%s\n",
sourceModule_.c_str(), sourceName_.c_str(),
result, getOpenCLErrorString(result),
buildflags.c_str(), errmsg.c_str());
fflush(stdout);
}
bool buildFromSources(const Context& ctx, const ProgramSource::Impl* src_, String& errmsg)
{
CV_Assert(src_);
CV_Assert(src_->kind_ == ProgramSource::Impl::PROGRAM_SOURCE_CODE);
CV_Assert(handle == NULL);
CV_INSTRUMENT_REGION_OPENCL_COMPILE(cv::format("Build OpenCL program: %s/%s %s options: %s",
sourceModule_.c_str(), sourceName_.c_str(),
src_->sourceHash_.c_str(), buildflags.c_str()).c_str());
CV_LOG_VERBOSE(NULL, 0, "Compile... " << sourceModule_.c_str() << "/" << sourceName_.c_str());
const char* srcptr = src_->sourceAddr_ ? ((const char*)src_->sourceAddr_) : src_->codeStr_.c_str();
size_t srclen = src_->sourceAddr_ ? src_->sourceSize_ : src_->codeStr_.size();
CV_Assert(srcptr != NULL);
CV_Assert(srclen > 0);
cl_int retval = 0;
handle = clCreateProgramWithSource((cl_context)ctx.ptr(), 1, &srcptr, &srclen, &retval);
CV_OCL_DBG_CHECK_RESULT(retval, "clCreateProgramWithSource");
CV_Assert(handle || retval != CL_SUCCESS);
if (handle && retval == CL_SUCCESS)
{
size_t n = ctx.ndevices();
AutoBuffer<cl_device_id, 4> deviceListBuf(n + 1);
cl_device_id* deviceList = deviceListBuf.data();
for (size_t i = 0; i < n; i++)
{
deviceList[i] = (cl_device_id)(ctx.device(i).ptr());
}
retval = clBuildProgram(handle, (cl_uint)n, deviceList, buildflags.c_str(), 0, 0);
CV_OCL_TRACE_CHECK_RESULT(/*don't throw: retval*/CL_SUCCESS, cv::format("clBuildProgram(source: %s)", buildflags.c_str()).c_str());
#if !CV_OPENCL_ALWAYS_SHOW_BUILD_LOG
if (retval != CL_SUCCESS)
#endif
{
dumpBuildLog_(retval, deviceList, errmsg);
// don't remove "retval != CL_SUCCESS" condition here:
// it would break CV_OPENCL_ALWAYS_SHOW_BUILD_LOG mode
if (retval != CL_SUCCESS && handle)
{
CV_OCL_DBG_CHECK(clReleaseProgram(handle));
handle = NULL;
}
}
#if CV_OPENCL_VALIDATE_BINARY_PROGRAMS
if (handle && CV_OPENCL_VALIDATE_BINARY_PROGRAMS_VALUE)
{
CV_LOG_INFO(NULL, "OpenCL: query kernel names (build from sources)...");
size_t retsz = 0;
char kernels_buffer[4096] = {0};
cl_int result = clGetProgramInfo(handle, CL_PROGRAM_KERNEL_NAMES, sizeof(kernels_buffer), &kernels_buffer[0], &retsz);
if (retsz < sizeof(kernels_buffer))
kernels_buffer[retsz] = 0;
else
kernels_buffer[0] = 0;
CV_LOG_INFO(NULL, result << ": Kernels='" << kernels_buffer << "'");
}
#endif
}
return handle != NULL;
}
void getProgramBinary(std::vector<char>& buf)
{
CV_Assert(handle);
size_t sz = 0;
CV_OCL_CHECK(clGetProgramInfo(handle, CL_PROGRAM_BINARY_SIZES, sizeof(sz), &sz, NULL));
buf.resize(sz);
uchar* ptr = (uchar*)&buf[0];
CV_OCL_CHECK(clGetProgramInfo(handle, CL_PROGRAM_BINARIES, sizeof(ptr), &ptr, NULL));
}
bool createFromBinary(const Context& ctx, const std::vector<char>& buf, String& errmsg)
{
return createFromBinary(ctx, (const unsigned char*)&buf[0], buf.size(), errmsg);
}
bool createFromBinary(const Context& ctx, const unsigned char* binaryAddr, const size_t binarySize, String& errmsg)
{
CV_Assert(handle == NULL);
CV_INSTRUMENT_REGION_OPENCL_COMPILE("Load OpenCL program");
CV_LOG_VERBOSE(NULL, 0, "Load from binary... (" << binarySize << " bytes)");
CV_Assert(binarySize > 0);
size_t ndevices = (int)ctx.ndevices();
AutoBuffer<cl_device_id> devices_(ndevices);
AutoBuffer<const uchar*> binaryPtrs_(ndevices);
AutoBuffer<size_t> binarySizes_(ndevices);
cl_device_id* devices = devices_.data();
const uchar** binaryPtrs = binaryPtrs_.data();
size_t* binarySizes = binarySizes_.data();
for (size_t i = 0; i < ndevices; i++)
{
devices[i] = (cl_device_id)ctx.device(i).ptr();
binaryPtrs[i] = binaryAddr;
binarySizes[i] = binarySize;
}
cl_int result = 0;
handle = clCreateProgramWithBinary((cl_context)ctx.ptr(), (cl_uint)ndevices, devices_.data(),
binarySizes, binaryPtrs, NULL, &result);
if (result != CL_SUCCESS)
{
CV_LOG_ERROR(NULL, CV_OCL_API_ERROR_MSG(result, "clCreateProgramWithBinary"));
if (handle)
{
CV_OCL_DBG_CHECK(clReleaseProgram(handle));
handle = NULL;
}
}
if (!handle)
{
return false;
}
// call clBuildProgram()
{
result = clBuildProgram(handle, (cl_uint)ndevices, devices_.data(), buildflags.c_str(), 0, 0);
CV_OCL_DBG_CHECK_RESULT(result, cv::format("clBuildProgram(binary: %s/%s)", sourceModule_.c_str(), sourceName_.c_str()).c_str());
if (result != CL_SUCCESS)
{
dumpBuildLog_(result, devices, errmsg);
if (handle)
{
CV_OCL_DBG_CHECK(clReleaseProgram(handle));
handle = NULL;
}
return false;
}
}
// check build status
{
cl_build_status build_status = CL_BUILD_NONE;
size_t retsz = 0;
CV_OCL_DBG_CHECK(result = clGetProgramBuildInfo(handle, devices[0], CL_PROGRAM_BUILD_STATUS,
sizeof(build_status), &build_status, &retsz));
if (result == CL_SUCCESS)
{
if (build_status == CL_BUILD_SUCCESS)
{
return true;
}
else
{
CV_LOG_WARNING(NULL, "clGetProgramBuildInfo() returns " << build_status);
return false;
}
}
else
{
CV_LOG_ERROR(NULL, CV_OCL_API_ERROR_MSG(result, "clGetProgramBuildInfo()"));
if (handle)
{
CV_OCL_DBG_CHECK(clReleaseProgram(handle));
handle = NULL;
}
}
}
#if CV_OPENCL_VALIDATE_BINARY_PROGRAMS
if (handle && CV_OPENCL_VALIDATE_BINARY_PROGRAMS_VALUE)
{
CV_LOG_INFO(NULL, "OpenCL: query kernel names (binary)...");
size_t retsz = 0;
char kernels_buffer[4096] = {0};
result = clGetProgramInfo(handle, CL_PROGRAM_KERNEL_NAMES, sizeof(kernels_buffer), &kernels_buffer[0], &retsz);
if (retsz < sizeof(kernels_buffer))
kernels_buffer[retsz] = 0;
else
kernels_buffer[0] = 0;
CV_LOG_INFO(NULL, result << ": Kernels='" << kernels_buffer << "'");
}
#endif
return handle != NULL;
}
~Impl()
{
if( handle )
{
#ifdef _WIN32
if (!cv::__termination)
#endif
{
clReleaseProgram(handle);
}
handle = NULL;
}
}
cl_program handle;
String buildflags;
String sourceModule_;
String sourceName_;
};
Program::Program() { p = 0; }
Program::Program(const ProgramSource& src,
const String& buildflags, String& errmsg)
{
p = 0;
create(src, buildflags, errmsg);
}
Program::Program(const Program& prog)
{
p = prog.p;
if(p)
p->addref();
}
Program& Program::operator = (const Program& prog)
{
Impl* newp = (Impl*)prog.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Program::~Program()
{
if(p)
p->release();
}
bool Program::create(const ProgramSource& src,
const String& buildflags, String& errmsg)
{
if(p)
{
p->release();
p = NULL;
}
p = new Impl(src, buildflags, errmsg);
if(!p->handle)
{
p->release();
p = 0;
}
return p != 0;
}
void* Program::ptr() const
{
return p ? p->handle : 0;
}
#ifndef OPENCV_REMOVE_DEPRECATED_API
const ProgramSource& Program::source() const
{
CV_Error(Error::StsNotImplemented, "Removed API");
}
bool Program::read(const String& bin, const String& buildflags)
{
CV_UNUSED(bin); CV_UNUSED(buildflags);
CV_Error(Error::StsNotImplemented, "Removed API");
}
bool Program::write(String& bin) const
{
CV_UNUSED(bin);
CV_Error(Error::StsNotImplemented, "Removed API");
}
String Program::getPrefix() const
{
if(!p)
return String();
Context::Impl* ctx_ = Context::getDefault().getImpl();
CV_Assert(ctx_);
return cv::format("opencl=%s\nbuildflags=%s", ctx_->getPrefixString().c_str(), p->buildflags.c_str());
}
String Program::getPrefix(const String& buildflags)
{
Context::Impl* ctx_ = Context::getDefault().getImpl();
CV_Assert(ctx_);
return cv::format("opencl=%s\nbuildflags=%s", ctx_->getPrefixString().c_str(), buildflags.c_str());
}
#endif // OPENCV_REMOVE_DEPRECATED_API
void Program::getBinary(std::vector<char>& binary) const
{
CV_Assert(p && "Empty program");
p->getProgramBinary(binary);
}
Program Context::Impl::getProg(const ProgramSource& src,
const String& buildflags, String& errmsg)
{
size_t limit = getProgramCountLimit();
const ProgramSource::Impl* src_ = src.getImpl();
CV_Assert(src_);
String key = cv::format("module=%s name=%s codehash=%s\nopencl=%s\nbuildflags=%s",
src_->module_.c_str(), src_->name_.c_str(), src_->sourceHash_.c_str(),
getPrefixString().c_str(),
buildflags.c_str());
{
cv::AutoLock lock(program_cache_mutex);
phash_t::iterator it = phash.find(key);
if (it != phash.end())
{
// TODO LRU cache
CacheList::iterator i = std::find(cacheList.begin(), cacheList.end(), key);
if (i != cacheList.end() && i != cacheList.begin())
{
cacheList.erase(i);
cacheList.push_front(key);
}
return it->second;
}
{ // cleanup program cache
size_t sz = phash.size();
if (limit > 0 && sz >= limit)
{
static bool warningFlag = false;
if (!warningFlag)
{
printf("\nWARNING: OpenCV-OpenCL:\n"
" In-memory cache for OpenCL programs is full, older programs will be unloaded.\n"
" You can change cache size via OPENCV_OPENCL_PROGRAM_CACHE environment variable\n\n");
warningFlag = true;
}
while (!cacheList.empty())
{
size_t c = phash.erase(cacheList.back());
cacheList.pop_back();
if (c != 0)
break;
}
}
}
}
Program prog(src, buildflags, errmsg);
// Cache result of build failures too (to prevent unnecessary compiler invocations)
{
cv::AutoLock lock(program_cache_mutex);
phash.insert(std::pair<std::string, Program>(key, prog));
cacheList.push_front(key);
}
return prog;
}
//////////////////////////////////////////// OpenCLAllocator //////////////////////////////////////////////////
template<typename T>
class OpenCLBufferPool
{
protected:
~OpenCLBufferPool() { }
public:
virtual T allocate(size_t size) = 0;
virtual void release(T buffer) = 0;
};
template <typename Derived, typename BufferEntry, typename T>
class OpenCLBufferPoolBaseImpl : public BufferPoolController, public OpenCLBufferPool<T>
{
private:
inline Derived& derived() { return *static_cast<Derived*>(this); }
protected:
Mutex mutex_;
size_t currentReservedSize;
size_t maxReservedSize;
std::list<BufferEntry> allocatedEntries_; // Allocated and used entries
std::list<BufferEntry> reservedEntries_; // LRU order. Allocated, but not used entries
// synchronized
bool _findAndRemoveEntryFromAllocatedList(CV_OUT BufferEntry& entry, T buffer)
{
typename std::list<BufferEntry>::iterator i = allocatedEntries_.begin();
for (; i != allocatedEntries_.end(); ++i)
{
BufferEntry& e = *i;
if (e.clBuffer_ == buffer)
{
entry = e;
allocatedEntries_.erase(i);
return true;
}
}
return false;
}
// synchronized
bool _findAndRemoveEntryFromReservedList(CV_OUT BufferEntry& entry, const size_t size)
{
if (reservedEntries_.empty())
return false;
typename std::list<BufferEntry>::iterator i = reservedEntries_.begin();
typename std::list<BufferEntry>::iterator result_pos = reservedEntries_.end();
BufferEntry result;
size_t minDiff = (size_t)(-1);
for (; i != reservedEntries_.end(); ++i)
{
BufferEntry& e = *i;
if (e.capacity_ >= size)
{
size_t diff = e.capacity_ - size;
if (diff < std::max((size_t)4096, size / 8) && (result_pos == reservedEntries_.end() || diff < minDiff))
{
minDiff = diff;
result_pos = i;
result = e;
if (diff == 0)
break;
}
}
}
if (result_pos != reservedEntries_.end())
{
//CV_DbgAssert(result == *result_pos);
reservedEntries_.erase(result_pos);
entry = result;
currentReservedSize -= entry.capacity_;
allocatedEntries_.push_back(entry);
return true;
}
return false;
}
// synchronized
void _checkSizeOfReservedEntries()
{
while (currentReservedSize > maxReservedSize)
{
CV_DbgAssert(!reservedEntries_.empty());
const BufferEntry& entry = reservedEntries_.back();
CV_DbgAssert(currentReservedSize >= entry.capacity_);
currentReservedSize -= entry.capacity_;
derived()._releaseBufferEntry(entry);
reservedEntries_.pop_back();
}
}
inline size_t _allocationGranularity(size_t size)
{
// heuristic values
if (size < 1024*1024)
return 4096; // don't work with buffers smaller than 4Kb (hidden allocation overhead issue)
else if (size < 16*1024*1024)
return 64*1024;
else
return 1024*1024;
}
public:
OpenCLBufferPoolBaseImpl()
: currentReservedSize(0),
maxReservedSize(0)
{
// nothing
}
virtual ~OpenCLBufferPoolBaseImpl()
{
freeAllReservedBuffers();
CV_Assert(reservedEntries_.empty());
}
public:
virtual T allocate(size_t size) CV_OVERRIDE
{
AutoLock locker(mutex_);
BufferEntry entry;
if (maxReservedSize > 0 && _findAndRemoveEntryFromReservedList(entry, size))
{
CV_DbgAssert(size <= entry.capacity_);
LOG_BUFFER_POOL("Reuse reserved buffer: %p\n", entry.clBuffer_);
}
else
{
derived()._allocateBufferEntry(entry, size);
}
return entry.clBuffer_;
}
virtual void release(T buffer) CV_OVERRIDE
{
AutoLock locker(mutex_);
BufferEntry entry;
CV_Assert(_findAndRemoveEntryFromAllocatedList(entry, buffer));
if (maxReservedSize == 0 || entry.capacity_ > maxReservedSize / 8)
{
derived()._releaseBufferEntry(entry);
}
else
{
reservedEntries_.push_front(entry);
currentReservedSize += entry.capacity_;
_checkSizeOfReservedEntries();
}
}
virtual size_t getReservedSize() const CV_OVERRIDE { return currentReservedSize; }
virtual size_t getMaxReservedSize() const CV_OVERRIDE { return maxReservedSize; }
virtual void setMaxReservedSize(size_t size) CV_OVERRIDE
{
AutoLock locker(mutex_);
size_t oldMaxReservedSize = maxReservedSize;
maxReservedSize = size;
if (maxReservedSize < oldMaxReservedSize)
{
typename std::list<BufferEntry>::iterator i = reservedEntries_.begin();
for (; i != reservedEntries_.end();)
{
const BufferEntry& entry = *i;
if (entry.capacity_ > maxReservedSize / 8)
{
CV_DbgAssert(currentReservedSize >= entry.capacity_);
currentReservedSize -= entry.capacity_;
derived()._releaseBufferEntry(entry);
i = reservedEntries_.erase(i);
continue;
}
++i;
}
_checkSizeOfReservedEntries();
}
}
virtual void freeAllReservedBuffers() CV_OVERRIDE
{
AutoLock locker(mutex_);
typename std::list<BufferEntry>::const_iterator i = reservedEntries_.begin();
for (; i != reservedEntries_.end(); ++i)
{
const BufferEntry& entry = *i;
derived()._releaseBufferEntry(entry);
}
reservedEntries_.clear();
currentReservedSize = 0;
}
};
struct CLBufferEntry
{
cl_mem clBuffer_;
size_t capacity_;
CLBufferEntry() : clBuffer_((cl_mem)NULL), capacity_(0) { }
};
class OpenCLBufferPoolImpl CV_FINAL : public OpenCLBufferPoolBaseImpl<OpenCLBufferPoolImpl, CLBufferEntry, cl_mem>
{
public:
typedef struct CLBufferEntry BufferEntry;
protected:
int createFlags_;
public:
OpenCLBufferPoolImpl(int createFlags = 0)
: createFlags_(createFlags)
{
}
void _allocateBufferEntry(BufferEntry& entry, size_t size)
{
CV_DbgAssert(entry.clBuffer_ == NULL);
entry.capacity_ = alignSize(size, (int)_allocationGranularity(size));
Context& ctx = Context::getDefault();
cl_int retval = CL_SUCCESS;
entry.clBuffer_ = clCreateBuffer((cl_context)ctx.ptr(), CL_MEM_READ_WRITE|createFlags_, entry.capacity_, 0, &retval);
CV_OCL_CHECK_RESULT(retval, cv::format("clCreateBuffer(capacity=%lld) => %p", (long long int)entry.capacity_, (void*)entry.clBuffer_).c_str());
CV_Assert(entry.clBuffer_ != NULL);
if(retval == CL_SUCCESS)
{
CV_IMPL_ADD(CV_IMPL_OCL);
}
LOG_BUFFER_POOL("OpenCL allocate %lld (0x%llx) bytes: %p\n",
(long long)entry.capacity_, (long long)entry.capacity_, entry.clBuffer_);
allocatedEntries_.push_back(entry);
}
void _releaseBufferEntry(const BufferEntry& entry)
{
CV_Assert(entry.capacity_ != 0);
CV_Assert(entry.clBuffer_ != NULL);
LOG_BUFFER_POOL("OpenCL release buffer: %p, %lld (0x%llx) bytes\n",
entry.clBuffer_, (long long)entry.capacity_, (long long)entry.capacity_);
CV_OCL_DBG_CHECK(clReleaseMemObject(entry.clBuffer_));
}
};
#ifdef HAVE_OPENCL_SVM
struct CLSVMBufferEntry
{
void* clBuffer_;
size_t capacity_;
CLSVMBufferEntry() : clBuffer_(NULL), capacity_(0) { }
};
class OpenCLSVMBufferPoolImpl CV_FINAL : public OpenCLBufferPoolBaseImpl<OpenCLSVMBufferPoolImpl, CLSVMBufferEntry, void*>
{
public:
typedef struct CLSVMBufferEntry BufferEntry;
public:
OpenCLSVMBufferPoolImpl()
{
}
void _allocateBufferEntry(BufferEntry& entry, size_t size)
{
CV_DbgAssert(entry.clBuffer_ == NULL);
entry.capacity_ = alignSize(size, (int)_allocationGranularity(size));
Context& ctx = Context::getDefault();
const svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
cl_svm_mem_flags memFlags = CL_MEM_READ_WRITE |
(isFineGrainBuffer ? CL_MEM_SVM_FINE_GRAIN_BUFFER : 0);
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_OPENCL_SVM_TRACE_P("clSVMAlloc: %d\n", (int)entry.capacity_);
void *buf = svmFns->fn_clSVMAlloc((cl_context)ctx.ptr(), memFlags, entry.capacity_, 0);
CV_Assert(buf);
entry.clBuffer_ = buf;
{
CV_IMPL_ADD(CV_IMPL_OCL);
}
LOG_BUFFER_POOL("OpenCL SVM allocate %lld (0x%llx) bytes: %p\n",
(long long)entry.capacity_, (long long)entry.capacity_, entry.clBuffer_);
allocatedEntries_.push_back(entry);
}
void _releaseBufferEntry(const BufferEntry& entry)
{
CV_Assert(entry.capacity_ != 0);
CV_Assert(entry.clBuffer_ != NULL);
LOG_BUFFER_POOL("OpenCL release SVM buffer: %p, %lld (0x%llx) bytes\n",
entry.clBuffer_, (long long)entry.capacity_, (long long)entry.capacity_);
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_OPENCL_SVM_TRACE_P("clSVMFree: %p\n", entry.clBuffer_);
svmFns->fn_clSVMFree((cl_context)ctx.ptr(), entry.clBuffer_);
}
};
#endif
template <bool readAccess, bool writeAccess>
class AlignedDataPtr
{
protected:
const size_t size_;
uchar* const originPtr_;
const size_t alignment_;
uchar* ptr_;
uchar* allocatedPtr_;
public:
AlignedDataPtr(uchar* ptr, size_t size, size_t alignment)
: size_(size), originPtr_(ptr), alignment_(alignment), ptr_(ptr), allocatedPtr_(NULL)
{
CV_DbgAssert((alignment & (alignment - 1)) == 0); // check for 2^n
CV_DbgAssert(!readAccess || ptr);
if (((size_t)ptr_ & (alignment - 1)) != 0)
{
allocatedPtr_ = new uchar[size_ + alignment - 1];
ptr_ = (uchar*)(((uintptr_t)allocatedPtr_ + (alignment - 1)) & ~(alignment - 1));
if (readAccess)
{
memcpy(ptr_, originPtr_, size_);
}
}
}
uchar* getAlignedPtr() const
{
CV_DbgAssert(((size_t)ptr_ & (alignment_ - 1)) == 0);
return ptr_;
}
~AlignedDataPtr()
{
if (allocatedPtr_)
{
if (writeAccess)
{
memcpy(originPtr_, ptr_, size_);
}
delete[] allocatedPtr_;
allocatedPtr_ = NULL;
}
ptr_ = NULL;
}
private:
AlignedDataPtr(const AlignedDataPtr&); // disabled
AlignedDataPtr& operator=(const AlignedDataPtr&); // disabled
};
template <bool readAccess, bool writeAccess>
class AlignedDataPtr2D
{
protected:
const size_t size_;
uchar* const originPtr_;
const size_t alignment_;
uchar* ptr_;
uchar* allocatedPtr_;
size_t rows_;
size_t cols_;
size_t step_;
public:
AlignedDataPtr2D(uchar* ptr, size_t rows, size_t cols, size_t step, size_t alignment, size_t extrabytes=0)
: size_(rows*step), originPtr_(ptr), alignment_(alignment), ptr_(ptr), allocatedPtr_(NULL), rows_(rows), cols_(cols), step_(step)
{
CV_DbgAssert((alignment & (alignment - 1)) == 0); // check for 2^n
CV_DbgAssert(!readAccess || ptr != NULL);
if (ptr == 0 || ((size_t)ptr_ & (alignment - 1)) != 0)
{
allocatedPtr_ = new uchar[size_ + extrabytes + alignment - 1];
ptr_ = (uchar*)(((uintptr_t)allocatedPtr_ + (alignment - 1)) & ~(alignment - 1));
if (readAccess)
{
for (size_t i = 0; i < rows_; i++)
memcpy(ptr_ + i*step_, originPtr_ + i*step_, cols_);
}
}
}
uchar* getAlignedPtr() const
{
CV_DbgAssert(((size_t)ptr_ & (alignment_ - 1)) == 0);
return ptr_;
}
~AlignedDataPtr2D()
{
if (allocatedPtr_)
{
if (writeAccess)
{
for (size_t i = 0; i < rows_; i++)
memcpy(originPtr_ + i*step_, ptr_ + i*step_, cols_);
}
delete[] allocatedPtr_;
allocatedPtr_ = NULL;
}
ptr_ = NULL;
}
private:
AlignedDataPtr2D(const AlignedDataPtr2D&); // disabled
AlignedDataPtr2D& operator=(const AlignedDataPtr2D&); // disabled
};
#ifndef CV_OPENCL_DATA_PTR_ALIGNMENT
#define CV_OPENCL_DATA_PTR_ALIGNMENT 16
#endif
void Context::Impl::__init_buffer_pools()
{
bufferPool_ = std::make_shared<OpenCLBufferPoolImpl>(0);
OpenCLBufferPoolImpl& bufferPool = *bufferPool_.get();
bufferPoolHostPtr_ = std::make_shared<OpenCLBufferPoolImpl>(CL_MEM_ALLOC_HOST_PTR);
OpenCLBufferPoolImpl& bufferPoolHostPtr = *bufferPoolHostPtr_.get();
size_t defaultPoolSize = ocl::Device::getDefault().isIntel() ? 1 << 27 : 0;
size_t poolSize = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_BUFFERPOOL_LIMIT", defaultPoolSize);
bufferPool.setMaxReservedSize(poolSize);
size_t poolSizeHostPtr = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_HOST_PTR_BUFFERPOOL_LIMIT", defaultPoolSize);
bufferPoolHostPtr.setMaxReservedSize(poolSizeHostPtr);
#ifdef HAVE_OPENCL_SVM
bufferPoolSVM_ = std::make_shared<OpenCLSVMBufferPoolImpl>();
OpenCLSVMBufferPoolImpl& bufferPoolSVM = *bufferPoolSVM_.get();
size_t poolSizeSVM = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_SVM_BUFFERPOOL_LIMIT", defaultPoolSize);
bufferPoolSVM.setMaxReservedSize(poolSizeSVM);
#endif
CV_LOG_INFO(NULL, "OpenCL: Initializing buffer pool for context@" << contextId << " with max capacity: poolSize=" << poolSize << " poolSizeHostPtr=" << poolSizeHostPtr);
}
class OpenCLAllocator CV_FINAL : public MatAllocator
{
public:
enum AllocatorFlags
{
ALLOCATOR_FLAGS_BUFFER_POOL_USED = 1 << 0,
ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED = 1 << 1,
#ifdef HAVE_OPENCL_SVM
ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED = 1 << 2,
#endif
ALLOCATOR_FLAGS_EXTERNAL_BUFFER = 1 << 3 // convertFromBuffer()
};
OpenCLAllocator()
{
matStdAllocator = Mat::getDefaultAllocator();
}
~OpenCLAllocator()
{
flushCleanupQueue();
}
UMatData* defaultAllocate(int dims, const int* sizes, int type, void* data, size_t* step,
AccessFlag flags, UMatUsageFlags usageFlags) const
{
UMatData* u = matStdAllocator->allocate(dims, sizes, type, data, step, flags, usageFlags);
return u;
}
static bool isOpenCLMapForced() // force clEnqueueMapBuffer / clEnqueueUnmapMemObject OpenCL API
{
static bool value = cv::utils::getConfigurationParameterBool("OPENCV_OPENCL_BUFFER_FORCE_MAPPING", false);
return value;
}
static bool isOpenCLCopyingForced() // force clEnqueueReadBuffer[Rect] / clEnqueueWriteBuffer[Rect] OpenCL API
{
static bool value = cv::utils::getConfigurationParameterBool("OPENCV_OPENCL_BUFFER_FORCE_COPYING", false);
return value;
}
void getBestFlags(const Context& ctx, AccessFlag /*flags*/, UMatUsageFlags usageFlags, int& createFlags, UMatData::MemoryFlag& flags0) const
{
const Device& dev = ctx.device(0);
createFlags = 0;
if ((usageFlags & USAGE_ALLOCATE_HOST_MEMORY) != 0)
createFlags |= CL_MEM_ALLOC_HOST_PTR;
if (!isOpenCLCopyingForced() &&
(isOpenCLMapForced() ||
(dev.hostUnifiedMemory()
#ifndef __APPLE__
|| dev.isIntel()
#endif
)
)
)
flags0 = static_cast<UMatData::MemoryFlag>(0);
else
flags0 = UMatData::COPY_ON_MAP;
}
UMatData* allocate(int dims, const int* sizes, int type,
void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const CV_OVERRIDE
{
if(!useOpenCL())
return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);
flushCleanupQueue();
CV_Assert(data == 0);
size_t total = CV_ELEM_SIZE(type);
for( int i = dims-1; i >= 0; i-- )
{
if( step )
step[i] = total;
total *= sizes[i];
}
Context& ctx = Context::getDefault();
if (!ctx.getImpl())
return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);
Context::Impl& ctxImpl = *ctx.getImpl();
int createFlags = 0;
UMatData::MemoryFlag flags0 = static_cast<UMatData::MemoryFlag>(0);
getBestFlags(ctx, flags, usageFlags, createFlags, flags0);
void* handle = NULL;
int allocatorFlags = 0;
#ifdef HAVE_OPENCL_SVM
const svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
if (ctx.useSVM() && svm::useSVM(usageFlags) && !svmCaps.isNoSVMSupport())
{
allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED;
handle = ctxImpl.getBufferPoolSVM().allocate(total);
// this property is constant, so single buffer pool can be used here
bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
allocatorFlags |= isFineGrainBuffer ? svm::OPENCL_SVM_FINE_GRAIN_BUFFER : svm::OPENCL_SVM_COARSE_GRAIN_BUFFER;
}
else
#endif
if (createFlags == 0)
{
allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_USED;
handle = ctxImpl.getBufferPool().allocate(total);
}
else if (createFlags == CL_MEM_ALLOC_HOST_PTR)
{
allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED;
handle = ctxImpl.getBufferPoolHostPtr().allocate(total);
}
else
{
CV_Assert(handle != NULL); // Unsupported, throw
}
if (!handle)
return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);
UMatData* u = new UMatData(this);
u->data = 0;
u->size = total;
u->handle = handle;
u->flags = flags0;
u->allocatorFlags_ = allocatorFlags;
u->allocatorContext = std::static_pointer_cast<void>(std::make_shared<ocl::Context>(ctx));
CV_DbgAssert(!u->tempUMat()); // for bufferPool.release() consistency in deallocate()
u->markHostCopyObsolete(true);
opencl_allocator_stats.onAllocate(u->size);
return u;
}
bool allocate(UMatData* u, AccessFlag accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE
{
if(!u)
return false;
flushCleanupQueue();
UMatDataAutoLock lock(u);
if(u->handle == 0)
{
CV_Assert(u->origdata != 0);
Context& ctx = Context::getDefault();
int createFlags = 0;
UMatData::MemoryFlag flags0 = static_cast<UMatData::MemoryFlag>(0);
getBestFlags(ctx, accessFlags, usageFlags, createFlags, flags0);
bool copyOnMap = (flags0 & UMatData::COPY_ON_MAP) != 0;
cl_context ctx_handle = (cl_context)ctx.ptr();
int allocatorFlags = 0;
UMatData::MemoryFlag tempUMatFlags = static_cast<UMatData::MemoryFlag>(0);
void* handle = NULL;
cl_int retval = CL_SUCCESS;
#ifdef HAVE_OPENCL_SVM
svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
bool useSVM = ctx.useSVM() && svm::useSVM(usageFlags);
if (useSVM && svmCaps.isSupportFineGrainSystem())
{
allocatorFlags = svm::OPENCL_SVM_FINE_GRAIN_SYSTEM;
tempUMatFlags = UMatData::TEMP_UMAT;
handle = u->origdata;
CV_OPENCL_SVM_TRACE_P("Use fine grain system: %d (%p)\n", (int)u->size, handle);
}
else if (useSVM && (svmCaps.isSupportFineGrainBuffer() || svmCaps.isSupportCoarseGrainBuffer()))
{
if (!(accessFlags & ACCESS_FAST)) // memcpy used
{
bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
cl_svm_mem_flags memFlags = createFlags |
(isFineGrainBuffer ? CL_MEM_SVM_FINE_GRAIN_BUFFER : 0);
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_OPENCL_SVM_TRACE_P("clSVMAlloc + copy: %d\n", (int)u->size);
handle = svmFns->fn_clSVMAlloc((cl_context)ctx.ptr(), memFlags, u->size, 0);
CV_Assert(handle);
cl_command_queue q = NULL;
if (!isFineGrainBuffer)
{
q = (cl_command_queue)Queue::getDefault().ptr();
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_TRUE, CL_MAP_WRITE,
handle, u->size,
0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMMap()");
}
memcpy(handle, u->origdata, u->size);
if (!isFineGrainBuffer)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, handle, 0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMUnmap()");
}
tempUMatFlags = UMatData::TEMP_UMAT | UMatData::TEMP_COPIED_UMAT;
allocatorFlags |= isFineGrainBuffer ? svm::OPENCL_SVM_FINE_GRAIN_BUFFER
: svm::OPENCL_SVM_COARSE_GRAIN_BUFFER;
}
}
else
#endif
{
if( copyOnMap )
accessFlags &= ~ACCESS_FAST;
tempUMatFlags = UMatData::TEMP_UMAT;
if (
#ifdef __APPLE__
!copyOnMap &&
#endif
CV_OPENCL_ENABLE_MEM_USE_HOST_PTR
// There are OpenCL runtime issues for less aligned data
&& (CV_OPENCL_ALIGNMENT_MEM_USE_HOST_PTR != 0
&& u->origdata == cv::alignPtr(u->origdata, (int)CV_OPENCL_ALIGNMENT_MEM_USE_HOST_PTR))
// Avoid sharing of host memory between OpenCL buffers
&& !(u->originalUMatData && u->originalUMatData->handle)
)
{
handle = clCreateBuffer(ctx_handle, CL_MEM_USE_HOST_PTR|createFlags,
u->size, u->origdata, &retval);
CV_OCL_DBG_CHECK_RESULT(retval, cv::format("clCreateBuffer(CL_MEM_USE_HOST_PTR|createFlags, sz=%lld, origdata=%p) => %p",
(long long int)u->size, u->origdata, (void*)handle).c_str());
}
if((!handle || retval < 0) && !(accessFlags & ACCESS_FAST))
{
handle = clCreateBuffer(ctx_handle, CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE|createFlags,
u->size, u->origdata, &retval);
CV_OCL_DBG_CHECK_RESULT(retval, cv::format("clCreateBuffer(CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE|createFlags, sz=%lld, origdata=%p) => %p",
(long long int)u->size, u->origdata, (void*)handle).c_str());
tempUMatFlags |= UMatData::TEMP_COPIED_UMAT;
}
}
CV_OCL_DBG_CHECK_RESULT(retval, cv::format("clCreateBuffer() => %p", (void*)handle).c_str());
if(!handle || retval != CL_SUCCESS)
return false;
u->handle = handle;
u->prevAllocator = u->currAllocator;
u->currAllocator = this;
u->flags |= tempUMatFlags | flags0;
u->allocatorFlags_ = allocatorFlags;
}
if (!!(accessFlags & ACCESS_WRITE))
u->markHostCopyObsolete(true);
opencl_allocator_stats.onAllocate(u->size);
return true;
}
/*void sync(UMatData* u) const
{
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
UMatDataAutoLock lock(u);
if( u->hostCopyObsolete() && u->handle && u->refcount > 0 && u->origdata)
{
if( u->tempCopiedUMat() )
{
clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->origdata, 0, 0, 0);
}
else
{
cl_int retval = 0;
void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
clFinish(q);
}
u->markHostCopyObsolete(false);
}
else if( u->copyOnMap() && u->deviceCopyObsolete() && u->data )
{
clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->data, 0, 0, 0);
}
}*/
void deallocate(UMatData* u) const CV_OVERRIDE
{
if(!u)
return;
CV_Assert(u->urefcount == 0);
CV_Assert(u->refcount == 0 && "UMat deallocation error: some derived Mat is still alive");
CV_Assert(u->handle != 0);
CV_Assert(u->mapcount == 0);
if (!!(u->flags & UMatData::ASYNC_CLEANUP))
addToCleanupQueue(u);
else
deallocate_(u);
}
void deallocate_(UMatData* u) const
{
CV_Assert(u);
CV_Assert(u->handle);
if ((u->allocatorFlags_ & ALLOCATOR_FLAGS_EXTERNAL_BUFFER) == 0)
{
opencl_allocator_stats.onFree(u->size);
}
#ifdef _WIN32
if (cv::__termination) // process is not in consistent state (after ExitProcess call) and terminating
return; // avoid any OpenCL calls
#endif
if(u->tempUMat())
{
CV_Assert(u->origdata);
// UMatDataAutoLock lock(u);
if (u->hostCopyObsolete())
{
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
if( u->tempCopiedUMat() )
{
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER);
bool isFineGrainBuffer = (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER;
cl_command_queue q = NULL;
if (!isFineGrainBuffer)
{
CV_DbgAssert(((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0));
q = (cl_command_queue)Queue::getDefault().ptr();
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ,
u->handle, u->size,
0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMMap()");
}
clFinish(q);
memcpy(u->origdata, u->handle, u->size);
if (!isFineGrainBuffer)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle, 0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMUnmap()");
}
}
else
{
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM);
// nothing
}
}
else
#endif
{
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if( u->tempCopiedUMat() )
{
AlignedDataPtr<false, true> alignedPtr(u->origdata, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
CV_OCL_CHECK(clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, alignedPtr.getAlignedPtr(), 0, 0, 0));
}
else
{
cl_int retval = 0;
if (u->tempUMat())
{
CV_Assert(u->mapcount == 0);
flushCleanupQueue(); // workaround for CL_OUT_OF_RESOURCES problem (#9960)
void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
CV_OCL_CHECK_RESULT(retval, cv::format("clEnqueueMapBuffer(handle=%p, sz=%lld) => %p", (void*)u->handle, (long long int)u->size, data).c_str());
CV_Assert(u->origdata == data && "Details: https://github.com/opencv/opencv/issues/6293");
if (u->originalUMatData)
{
CV_Assert(u->originalUMatData->data == data);
}
retval = clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
CV_OCL_CHECK_RESULT(retval, cv::format("clEnqueueUnmapMemObject(handle=%p, data=%p, [sz=%lld])", (void*)u->handle, data, (long long int)u->size).c_str());
CV_OCL_DBG_CHECK(clFinish(q));
}
}
}
u->markHostCopyObsolete(false);
}
else
{
// nothing
}
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
if( u->tempCopiedUMat() )
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_OPENCL_SVM_TRACE_P("clSVMFree: %p\n", u->handle);
svmFns->fn_clSVMFree((cl_context)ctx.ptr(), u->handle);
}
}
else
#endif
{
cl_int retval = clReleaseMemObject((cl_mem)u->handle);
CV_OCL_DBG_CHECK_RESULT(retval, cv::format("clReleaseMemObject(ptr=%p)", (void*)u->handle).c_str());
}
u->handle = 0;
u->markDeviceCopyObsolete(true);
u->currAllocator = u->prevAllocator;
u->prevAllocator = NULL;
if(u->data && u->copyOnMap() && u->data != u->origdata)
fastFree(u->data);
u->data = u->origdata;
u->currAllocator->deallocate(u);
u = NULL;
}
else
{
CV_Assert(u->origdata == NULL);
if(u->data && u->copyOnMap() && u->data != u->origdata)
{
fastFree(u->data);
u->data = 0;
u->markHostCopyObsolete(true);
}
if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_USED)
{
std::shared_ptr<ocl::Context> pCtx = std::static_pointer_cast<ocl::Context>(u->allocatorContext);
CV_Assert(pCtx);
ocl::Context& ctx = *pCtx.get();
CV_Assert(ctx.getImpl());
ctx.getImpl()->getBufferPool().release((cl_mem)u->handle);
}
else if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED)
{
std::shared_ptr<ocl::Context> pCtx = std::static_pointer_cast<ocl::Context>(u->allocatorContext);
CV_Assert(pCtx);
ocl::Context& ctx = *pCtx.get();
CV_Assert(ctx.getImpl());
ctx.getImpl()->getBufferPoolHostPtr().release((cl_mem)u->handle);
}
#ifdef HAVE_OPENCL_SVM
else if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED)
{
std::shared_ptr<ocl::Context> pCtx = std::static_pointer_cast<ocl::Context>(u->allocatorContext);
CV_Assert(pCtx);
ocl::Context& ctx = *pCtx.get();
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
{
//nothing
}
else if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) != 0)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle, 0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMUnmap()");
}
}
CV_Assert(ctx.getImpl());
ctx.getImpl()->getBufferPoolSVM().release((void*)u->handle);
}
#endif
else
{
CV_OCL_DBG_CHECK(clReleaseMemObject((cl_mem)u->handle));
}
u->handle = 0;
u->markDeviceCopyObsolete(true);
delete u;
u = NULL;
}
CV_Assert(u == NULL);
}
// synchronized call (external UMatDataAutoLock, see UMat::getMat)
void map(UMatData* u, AccessFlag accessFlags) const CV_OVERRIDE
{
CV_Assert(u && u->handle);
if (!!(accessFlags & ACCESS_WRITE))
u->markDeviceCopyObsolete(true);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
{
if( !u->copyOnMap() )
{
// TODO
// because there can be other map requests for the same UMat with different access flags,
// we use the universal (read-write) access mode.
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ | CL_MAP_WRITE,
u->handle, u->size,
0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMMap()");
u->allocatorFlags_ |= svm::OPENCL_SVM_BUFFER_MAP;
}
}
clFinish(q);
u->data = (uchar*)u->handle;
u->markHostCopyObsolete(false);
u->markDeviceMemMapped(true);
return;
}
#endif
cl_int retval = CL_SUCCESS;
if (!u->deviceMemMapped())
{
CV_Assert(u->refcount == 1);
CV_Assert(u->mapcount++ == 0);
u->data = (uchar*)clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
CV_OCL_DBG_CHECK_RESULT(retval, cv::format("clEnqueueMapBuffer(handle=%p, sz=%lld) => %p", (void*)u->handle, (long long int)u->size, u->data).c_str());
}
if (u->data && retval == CL_SUCCESS)
{
u->markHostCopyObsolete(false);
u->markDeviceMemMapped(true);
return;
}
// TODO Is it really a good idea and was it tested well?
// if map failed, switch to copy-on-map mode for the particular buffer
u->flags |= UMatData::COPY_ON_MAP;
}
if(!u->data)
{
u->data = (uchar*)fastMalloc(u->size);
u->markHostCopyObsolete(true);
}
}
if (!!(accessFlags & ACCESS_READ) && u->hostCopyObsolete())
{
AlignedDataPtr<false, true> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
#ifdef HAVE_OPENCL_SVM
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == 0);
#endif
cl_int retval = clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
0, u->size, alignedPtr.getAlignedPtr(), 0, 0, 0);
CV_OCL_CHECK_RESULT(retval, cv::format("clEnqueueReadBuffer(q, handle=%p, CL_TRUE, 0, sz=%lld, data=%p, 0, 0, 0)",
(void*)u->handle, (long long int)u->size, alignedPtr.getAlignedPtr()).c_str());
u->markHostCopyObsolete(false);
}
}
void unmap(UMatData* u) const CV_OVERRIDE
{
if(!u)
return;
CV_Assert(u->handle != 0);
UMatDataAutoLock autolock(u);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
cl_int retval = 0;
if( !u->copyOnMap() && u->deviceMemMapped() )
{
CV_Assert(u->data != NULL);
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) != 0);
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMUnmap()");
clFinish(q);
u->allocatorFlags_ &= ~svm::OPENCL_SVM_BUFFER_MAP;
}
}
if (u->refcount == 0)
u->data = 0;
u->markDeviceCopyObsolete(false);
u->markHostCopyObsolete(true);
return;
}
#endif
if (u->refcount == 0)
{
CV_Assert(u->mapcount-- == 1);
retval = clEnqueueUnmapMemObject(q, (cl_mem)u->handle, u->data, 0, 0, 0);
CV_OCL_CHECK_RESULT(retval, cv::format("clEnqueueUnmapMemObject(handle=%p, data=%p, [sz=%lld])", (void*)u->handle, u->data, (long long int)u->size).c_str());
if (Device::getDefault().isAMD())
{
// required for multithreaded applications (see stitching test)
CV_OCL_DBG_CHECK(clFinish(q));
}
u->markDeviceMemMapped(false);
u->data = 0;
u->markDeviceCopyObsolete(false);
u->markHostCopyObsolete(true);
}
}
else if( u->copyOnMap() && u->deviceCopyObsolete() )
{
AlignedDataPtr<true, false> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
#ifdef HAVE_OPENCL_SVM
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == 0);
#endif
retval = clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE,
0, u->size, alignedPtr.getAlignedPtr(), 0, 0, 0);
CV_OCL_CHECK_RESULT(retval, cv::format("clEnqueueWriteBuffer(q, handle=%p, CL_TRUE, 0, sz=%lld, data=%p, 0, 0, 0)",
(void*)u->handle, (long long int)u->size, alignedPtr.getAlignedPtr()).c_str());
u->markDeviceCopyObsolete(false);
u->markHostCopyObsolete(true);
}
}
bool checkContinuous(int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dstofs[], const size_t dststep[],
size_t& total, size_t new_sz[],
size_t& srcrawofs, size_t new_srcofs[], size_t new_srcstep[],
size_t& dstrawofs, size_t new_dstofs[], size_t new_dststep[]) const
{
bool iscontinuous = true;
srcrawofs = srcofs ? srcofs[dims-1] : 0;
dstrawofs = dstofs ? dstofs[dims-1] : 0;
total = sz[dims-1];
for( int i = dims-2; i >= 0; i-- )
{
if( i >= 0 && (total != srcstep[i] || total != dststep[i]) )
iscontinuous = false;
total *= sz[i];
if( srcofs )
srcrawofs += srcofs[i]*srcstep[i];
if( dstofs )
dstrawofs += dstofs[i]*dststep[i];
}
if( !iscontinuous )
{
// OpenCL uses {x, y, z} order while OpenCV uses {z, y, x} order.
if( dims == 2 )
{
new_sz[0] = sz[1]; new_sz[1] = sz[0]; new_sz[2] = 1;
// we assume that new_... arrays are initialized by caller
// with 0's, so there is no else branch
if( srcofs )
{
new_srcofs[0] = srcofs[1];
new_srcofs[1] = srcofs[0];
new_srcofs[2] = 0;
}
if( dstofs )
{
new_dstofs[0] = dstofs[1];
new_dstofs[1] = dstofs[0];
new_dstofs[2] = 0;
}
new_srcstep[0] = srcstep[0]; new_srcstep[1] = 0;
new_dststep[0] = dststep[0]; new_dststep[1] = 0;
}
else
{
// we could check for dims == 3 here,
// but from user perspective this one is more informative
CV_Assert(dims <= 3);
new_sz[0] = sz[2]; new_sz[1] = sz[1]; new_sz[2] = sz[0];
if( srcofs )
{
new_srcofs[0] = srcofs[2];
new_srcofs[1] = srcofs[1];
new_srcofs[2] = srcofs[0];
}
if( dstofs )
{
new_dstofs[0] = dstofs[2];
new_dstofs[1] = dstofs[1];
new_dstofs[2] = dstofs[0];
}
new_srcstep[0] = srcstep[1]; new_srcstep[1] = srcstep[0];
new_dststep[0] = dststep[1]; new_dststep[1] = dststep[0];
}
}
return iscontinuous;
}
void download(UMatData* u, void* dstptr, int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dststep[]) const CV_OVERRIDE
{
if(!u)
return;
UMatDataAutoLock autolock(u);
if( u->data && !u->hostCopyObsolete() )
{
Mat::getDefaultAllocator()->download(u, dstptr, dims, sz, srcofs, srcstep, dststep);
return;
}
CV_Assert( u->handle != 0 );
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, 0, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
CV_DbgAssert(u->data == NULL || u->data == u->handle);
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0);
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ,
u->handle, u->size,
0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMMap()");
}
clFinish(q);
if( iscontinuous )
{
memcpy(dstptr, (uchar*)u->handle + srcrawofs, total);
}
else
{
// This code is from MatAllocator::download()
int isz[CV_MAX_DIM];
uchar* srcptr = (uchar*)u->handle;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( srcofs )
srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
isz[i] = (int)sz[i];
}
Mat src(dims, isz, CV_8U, srcptr, srcstep);
Mat dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &src, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t j, planesz = it.size;
for( j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMUnmap()");
clFinish(q);
}
}
else
#endif
{
if( iscontinuous )
{
AlignedDataPtr<false, true> alignedPtr((uchar*)dstptr, total, CV_OPENCL_DATA_PTR_ALIGNMENT);
CV_OCL_CHECK(clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
srcrawofs, total, alignedPtr.getAlignedPtr(), 0, 0, 0));
}
else if (CV_OPENCL_DISABLE_BUFFER_RECT_OPERATIONS)
{
const size_t padding = CV_OPENCL_DATA_PTR_ALIGNMENT;
size_t new_srcrawofs = srcrawofs & ~(padding-1);
size_t membuf_ofs = srcrawofs - new_srcrawofs;
AlignedDataPtr2D<false, false> alignedPtr(0, new_sz[1], new_srcstep[0], new_srcstep[0],
CV_OPENCL_DATA_PTR_ALIGNMENT, padding*2);
uchar* ptr = alignedPtr.getAlignedPtr();
CV_Assert(new_srcstep[0] >= new_sz[0]);
total = alignSize(new_srcstep[0]*new_sz[1] + membuf_ofs, padding);
total = std::min(total, u->size - new_srcrawofs);
CV_OCL_CHECK(clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
new_srcrawofs, total, ptr, 0, 0, 0));
for( size_t i = 0; i < new_sz[1]; i++ )
memcpy( (uchar*)dstptr + i*new_dststep[0], ptr + i*new_srcstep[0] + membuf_ofs, new_sz[0]);
}
else
{
AlignedDataPtr2D<false, true> alignedPtr((uchar*)dstptr, new_sz[1], new_sz[0], new_dststep[0], CV_OPENCL_DATA_PTR_ALIGNMENT);
uchar* ptr = alignedPtr.getAlignedPtr();
CV_OCL_CHECK(clEnqueueReadBufferRect(q, (cl_mem)u->handle, CL_TRUE,
new_srcofs, new_dstofs, new_sz,
new_srcstep[0], 0,
new_dststep[0], 0,
ptr, 0, 0, 0));
}
}
}
void upload(UMatData* u, const void* srcptr, int dims, const size_t sz[],
const size_t dstofs[], const size_t dststep[],
const size_t srcstep[]) const CV_OVERRIDE
{
if(!u)
return;
// there should be no user-visible CPU copies of the UMat which we are going to copy to
CV_Assert(u->refcount == 0 || u->tempUMat());
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, 0, srcstep, dstofs, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
UMatDataAutoLock autolock(u);
// if there is cached CPU copy of the GPU matrix,
// we could use it as a destination.
// we can do it in 2 cases:
// 1. we overwrite the whole content
// 2. we overwrite part of the matrix, but the GPU copy is out-of-date
if( u->data && (u->hostCopyObsolete() < u->deviceCopyObsolete() || total == u->size))
{
Mat::getDefaultAllocator()->upload(u, srcptr, dims, sz, dstofs, dststep, srcstep);
u->markHostCopyObsolete(false);
u->markDeviceCopyObsolete(true);
return;
}
CV_Assert( u->handle != 0 );
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
CV_DbgAssert(u->data == NULL || u->data == u->handle);
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0);
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_WRITE,
u->handle, u->size,
0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMMap()");
}
clFinish(q);
if( iscontinuous )
{
memcpy((uchar*)u->handle + dstrawofs, srcptr, total);
}
else
{
// This code is from MatAllocator::upload()
int isz[CV_MAX_DIM];
uchar* dstptr = (uchar*)u->handle;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( dstofs )
dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
isz[i] = (int)sz[i];
}
Mat src(dims, isz, CV_8U, (void*)srcptr, srcstep);
Mat dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &src, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t j, planesz = it.size;
for( j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMUnmap()");
clFinish(q);
}
}
else
#endif
{
if( iscontinuous )
{
AlignedDataPtr<true, false> alignedPtr((uchar*)srcptr, total, CV_OPENCL_DATA_PTR_ALIGNMENT);
cl_int retval = clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE,
dstrawofs, total, alignedPtr.getAlignedPtr(), 0, 0, 0);
CV_OCL_CHECK_RESULT(retval, cv::format("clEnqueueWriteBuffer(q, handle=%p, CL_TRUE, offset=%lld, sz=%lld, data=%p, 0, 0, 0)",
(void*)u->handle, (long long int)dstrawofs, (long long int)u->size, alignedPtr.getAlignedPtr()).c_str());
}
else if (CV_OPENCL_DISABLE_BUFFER_RECT_OPERATIONS)
{
const size_t padding = CV_OPENCL_DATA_PTR_ALIGNMENT;
size_t new_dstrawofs = dstrawofs & ~(padding-1);
size_t membuf_ofs = dstrawofs - new_dstrawofs;
AlignedDataPtr2D<false, false> alignedPtr(0, new_sz[1], new_dststep[0], new_dststep[0],
CV_OPENCL_DATA_PTR_ALIGNMENT, padding*2);
uchar* ptr = alignedPtr.getAlignedPtr();
CV_Assert(new_dststep[0] >= new_sz[0] && new_srcstep[0] >= new_sz[0]);
total = alignSize(new_dststep[0]*new_sz[1] + membuf_ofs, padding);
total = std::min(total, u->size - new_dstrawofs);
/*printf("new_sz0=%d, new_sz1=%d, membuf_ofs=%d, total=%d (%08x), new_dstrawofs=%d (%08x)\n",
(int)new_sz[0], (int)new_sz[1], (int)membuf_ofs,
(int)total, (int)total, (int)new_dstrawofs, (int)new_dstrawofs);*/
CV_OCL_CHECK(clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
new_dstrawofs, total, ptr, 0, 0, 0));
for( size_t i = 0; i < new_sz[1]; i++ )
memcpy( ptr + i*new_dststep[0] + membuf_ofs, (uchar*)srcptr + i*new_srcstep[0], new_sz[0]);
CV_OCL_CHECK(clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE,
new_dstrawofs, total, ptr, 0, 0, 0));
}
else
{
AlignedDataPtr2D<true, false> alignedPtr((uchar*)srcptr, new_sz[1], new_sz[0], new_srcstep[0], CV_OPENCL_DATA_PTR_ALIGNMENT);
uchar* ptr = alignedPtr.getAlignedPtr();
CV_OCL_CHECK(clEnqueueWriteBufferRect(q, (cl_mem)u->handle, CL_TRUE,
new_dstofs, new_srcofs, new_sz,
new_dststep[0], 0,
new_srcstep[0], 0,
ptr, 0, 0, 0));
}
}
u->markHostCopyObsolete(true);
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
{
// nothing
}
else
#endif
{
u->markHostCopyObsolete(true);
}
u->markDeviceCopyObsolete(false);
}
void copy(UMatData* src, UMatData* dst, int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dstofs[], const size_t dststep[], bool _sync) const CV_OVERRIDE
{
if(!src || !dst)
return;
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, dstofs, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
UMatDataAutoLock src_autolock(src, dst);
if( !src->handle || (src->data && src->hostCopyObsolete() < src->deviceCopyObsolete()) )
{
upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
return;
}
if( !dst->handle || (dst->data && dst->hostCopyObsolete() < dst->deviceCopyObsolete()) )
{
download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
dst->markHostCopyObsolete(false);
#ifdef HAVE_OPENCL_SVM
if ((dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
{
// nothing
}
else
#endif
{
dst->markDeviceCopyObsolete(true);
}
return;
}
// there should be no user-visible CPU copies of the UMat which we are going to copy to
CV_Assert(dst->refcount == 0);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
cl_int retval = CL_SUCCESS;
#ifdef HAVE_OPENCL_SVM
if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0 ||
(dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0 &&
(dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
if( iscontinuous )
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMemcpy: %p <-- %p (%d)\n",
(uchar*)dst->handle + dstrawofs, (uchar*)src->handle + srcrawofs, (int)total);
cl_int status = svmFns->fn_clEnqueueSVMMemcpy(q, CL_TRUE,
(uchar*)dst->handle + dstrawofs, (uchar*)src->handle + srcrawofs,
total, 0, NULL, NULL);
CV_OCL_CHECK_RESULT(status, "clEnqueueSVMMemcpy()");
}
else
{
clFinish(q);
// This code is from MatAllocator::download()/upload()
int isz[CV_MAX_DIM];
uchar* srcptr = (uchar*)src->handle;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( srcofs )
srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
isz[i] = (int)sz[i];
}
Mat m_src(dims, isz, CV_8U, srcptr, srcstep);
uchar* dstptr = (uchar*)dst->handle;
for( int i = 0; i < dims; i++ )
{
if( dstofs )
dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
}
Mat m_dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &m_src, &m_dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t j, planesz = it.size;
for( j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
}
else
{
if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
map(src, ACCESS_READ);
upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
unmap(src);
}
else
{
map(dst, ACCESS_WRITE);
download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
unmap(dst);
}
}
}
else
#endif
{
if( iscontinuous )
{
retval = clEnqueueCopyBuffer(q, (cl_mem)src->handle, (cl_mem)dst->handle,
srcrawofs, dstrawofs, total, 0, 0, 0);
CV_OCL_CHECK_RESULT(retval, cv::format("clEnqueueCopyBuffer(q, src=%p, dst=%p, src_offset=%lld, dst_offset=%lld, sz=%lld, 0, 0, 0)",
(void*)src->handle, (void*)dst->handle, (long long int)srcrawofs, (long long int)dstrawofs, (long long int)total).c_str());
}
else if (CV_OPENCL_DISABLE_BUFFER_RECT_OPERATIONS)
{
const size_t padding = CV_OPENCL_DATA_PTR_ALIGNMENT;
size_t new_srcrawofs = srcrawofs & ~(padding-1);
size_t srcmembuf_ofs = srcrawofs - new_srcrawofs;
size_t new_dstrawofs = dstrawofs & ~(padding-1);
size_t dstmembuf_ofs = dstrawofs - new_dstrawofs;
AlignedDataPtr2D<false, false> srcBuf(0, new_sz[1], new_srcstep[0], new_srcstep[0],
CV_OPENCL_DATA_PTR_ALIGNMENT, padding*2);
AlignedDataPtr2D<false, false> dstBuf(0, new_sz[1], new_dststep[0], new_dststep[0],
CV_OPENCL_DATA_PTR_ALIGNMENT, padding*2);
uchar* srcptr = srcBuf.getAlignedPtr();
uchar* dstptr = dstBuf.getAlignedPtr();
CV_Assert(new_dststep[0] >= new_sz[0] && new_srcstep[0] >= new_sz[0]);
size_t src_total = alignSize(new_srcstep[0]*new_sz[1] + srcmembuf_ofs, padding);
src_total = std::min(src_total, src->size - new_srcrawofs);
size_t dst_total = alignSize(new_dststep[0]*new_sz[1] + dstmembuf_ofs, padding);
dst_total = std::min(dst_total, dst->size - new_dstrawofs);
CV_OCL_CHECK(clEnqueueReadBuffer(q, (cl_mem)src->handle, CL_TRUE,
new_srcrawofs, src_total, srcptr, 0, 0, 0));
CV_OCL_CHECK(clEnqueueReadBuffer(q, (cl_mem)dst->handle, CL_TRUE,
new_dstrawofs, dst_total, dstptr, 0, 0, 0));
for( size_t i = 0; i < new_sz[1]; i++ )
memcpy( dstptr + dstmembuf_ofs + i*new_dststep[0],
srcptr + srcmembuf_ofs + i*new_srcstep[0], new_sz[0]);
CV_OCL_CHECK(clEnqueueWriteBuffer(q, (cl_mem)dst->handle, CL_TRUE,
new_dstrawofs, dst_total, dstptr, 0, 0, 0));
}
else
{
CV_OCL_CHECK(retval = clEnqueueCopyBufferRect(q, (cl_mem)src->handle, (cl_mem)dst->handle,
new_srcofs, new_dstofs, new_sz,
new_srcstep[0], 0,
new_dststep[0], 0,
0, 0, 0));
}
}
if (retval == CL_SUCCESS)
{
CV_IMPL_ADD(CV_IMPL_OCL)
}
#ifdef HAVE_OPENCL_SVM
if ((dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
{
// nothing
}
else
#endif
{
dst->markHostCopyObsolete(true);
}
dst->markDeviceCopyObsolete(false);
if( _sync )
{
CV_OCL_DBG_CHECK(clFinish(q));
}
}
BufferPoolController* getBufferPoolController(const char* id) const CV_OVERRIDE
{
ocl::Context ctx = Context::getDefault();
if (ctx.empty())
return NULL;
#ifdef HAVE_OPENCL_SVM
if ((svm::checkForceSVMUmatUsage() && (id == NULL || strcmp(id, "OCL") == 0)) || (id != NULL && strcmp(id, "SVM") == 0))
{
return &ctx.getImpl()->getBufferPoolSVM();
}
#endif
if (id != NULL && strcmp(id, "HOST_ALLOC") == 0)
{
return &ctx.getImpl()->getBufferPoolHostPtr();
}
if (id != NULL && strcmp(id, "OCL") != 0)
{
CV_Error(cv::Error::StsBadArg, "getBufferPoolController(): unknown BufferPool ID\n");
}
return &ctx.getImpl()->getBufferPool();
}
MatAllocator* matStdAllocator;
mutable cv::Mutex cleanupQueueMutex;
mutable std::deque<UMatData*> cleanupQueue;
void flushCleanupQueue() const
{
if (!cleanupQueue.empty())
{
std::deque<UMatData*> q;
{
cv::AutoLock lock(cleanupQueueMutex);
q.swap(cleanupQueue);
}
for (std::deque<UMatData*>::const_iterator i = q.begin(); i != q.end(); ++i)
{
deallocate_(*i);
}
}
}
void addToCleanupQueue(UMatData* u) const
{
//TODO: Validation check: CV_Assert(!u->tempUMat());
{
cv::AutoLock lock(cleanupQueueMutex);
cleanupQueue.push_back(u);
}
}
};
static OpenCLAllocator* getOpenCLAllocator_() // call once guarantee
{
static OpenCLAllocator* g_allocator = new OpenCLAllocator(); // avoid destructor call (using of this object is too wide)
g_isOpenCVActivated = true;
return g_allocator;
}
MatAllocator* getOpenCLAllocator()
{
CV_SINGLETON_LAZY_INIT(MatAllocator, getOpenCLAllocator_())
}
}} // namespace cv::ocl
namespace cv {
// three funcs below are implemented in umatrix.cpp
void setSize( UMat& m, int _dims, const int* _sz, const size_t* _steps,
bool autoSteps = false );
void finalizeHdr(UMat& m);
} // namespace cv
namespace cv { namespace ocl {
/*
// Convert OpenCL buffer memory to UMat
*/
void convertFromBuffer(void* cl_mem_buffer, size_t step, int rows, int cols, int type, UMat& dst)
{
int d = 2;
int sizes[] = { rows, cols };
CV_Assert(0 <= d && d <= CV_MAX_DIM);
dst.release();
dst.flags = (type & Mat::TYPE_MASK) | Mat::MAGIC_VAL;
dst.usageFlags = USAGE_DEFAULT;
setSize(dst, d, sizes, 0, true);
dst.offset = 0;
cl_mem memobj = (cl_mem)cl_mem_buffer;
cl_mem_object_type mem_type = 0;
CV_OCL_CHECK(clGetMemObjectInfo(memobj, CL_MEM_TYPE, sizeof(cl_mem_object_type), &mem_type, 0));
CV_Assert(CL_MEM_OBJECT_BUFFER == mem_type);
size_t total = 0;
CV_OCL_CHECK(clGetMemObjectInfo(memobj, CL_MEM_SIZE, sizeof(size_t), &total, 0));
CV_OCL_CHECK(clRetainMemObject(memobj));
CV_Assert((int)step >= cols * CV_ELEM_SIZE(type));
CV_Assert(total >= rows * step);
// attach clBuffer to UMatData
dst.u = new UMatData(getOpenCLAllocator());
dst.u->data = 0;
dst.u->allocatorFlags_ = OpenCLAllocator::ALLOCATOR_FLAGS_EXTERNAL_BUFFER; // not allocated from any OpenCV buffer pool
dst.u->flags = static_cast<UMatData::MemoryFlag>(0);
dst.u->handle = cl_mem_buffer;
dst.u->origdata = 0;
dst.u->prevAllocator = 0;
dst.u->size = total;
finalizeHdr(dst);
dst.addref();
return;
} // convertFromBuffer()
/*
// Convert OpenCL image2d_t memory to UMat
*/
void convertFromImage(void* cl_mem_image, UMat& dst)
{
cl_mem clImage = (cl_mem)cl_mem_image;
cl_mem_object_type mem_type = 0;
CV_OCL_CHECK(clGetMemObjectInfo(clImage, CL_MEM_TYPE, sizeof(cl_mem_object_type), &mem_type, 0));
CV_Assert(CL_MEM_OBJECT_IMAGE2D == mem_type);
cl_image_format fmt = { 0, 0 };
CV_OCL_CHECK(clGetImageInfo(clImage, CL_IMAGE_FORMAT, sizeof(cl_image_format), &fmt, 0));
int depth = CV_8U;
switch (fmt.image_channel_data_type)
{
case CL_UNORM_INT8:
case CL_UNSIGNED_INT8:
depth = CV_8U;
break;
case CL_SNORM_INT8:
case CL_SIGNED_INT8:
depth = CV_8S;
break;
case CL_UNORM_INT16:
case CL_UNSIGNED_INT16:
depth = CV_16U;
break;
case CL_SNORM_INT16:
case CL_SIGNED_INT16:
depth = CV_16S;
break;
case CL_SIGNED_INT32:
depth = CV_32S;
break;
case CL_FLOAT:
depth = CV_32F;
break;
default:
CV_Error(cv::Error::OpenCLApiCallError, "Not supported image_channel_data_type");
}
int type = CV_8UC1;
switch (fmt.image_channel_order)
{
case CL_R:
type = CV_MAKE_TYPE(depth, 1);
break;
case CL_RGBA:
case CL_BGRA:
case CL_ARGB:
type = CV_MAKE_TYPE(depth, 4);
break;
default:
CV_Error(cv::Error::OpenCLApiCallError, "Not supported image_channel_order");
break;
}
size_t step = 0;
CV_OCL_CHECK(clGetImageInfo(clImage, CL_IMAGE_ROW_PITCH, sizeof(size_t), &step, 0));
size_t w = 0;
CV_OCL_CHECK(clGetImageInfo(clImage, CL_IMAGE_WIDTH, sizeof(size_t), &w, 0));
size_t h = 0;
CV_OCL_CHECK(clGetImageInfo(clImage, CL_IMAGE_HEIGHT, sizeof(size_t), &h, 0));
dst.create((int)h, (int)w, type);
cl_mem clBuffer = (cl_mem)dst.handle(ACCESS_READ);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
size_t offset = 0;
size_t src_origin[3] = { 0, 0, 0 };
size_t region[3] = { w, h, 1 };
CV_OCL_CHECK(clEnqueueCopyImageToBuffer(q, clImage, clBuffer, src_origin, region, offset, 0, NULL, NULL));
CV_OCL_CHECK(clFinish(q));
return;
} // convertFromImage()
///////////////////////////////////////////// Utility functions /////////////////////////////////////////////////
static void getDevices(std::vector<cl_device_id>& devices, cl_platform_id platform)
{
cl_uint numDevices = 0;
cl_int status = clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL, 0, NULL, &numDevices);
if (status != CL_DEVICE_NOT_FOUND) // Not an error if platform has no devices
{
CV_OCL_DBG_CHECK_RESULT(status,
cv::format("clGetDeviceIDs(platform, Device::TYPE_ALL, num_entries=0, devices=NULL, numDevices=%p)", &numDevices).c_str());
}
if (numDevices == 0)
{
devices.clear();
return;
}
devices.resize((size_t)numDevices);
CV_OCL_DBG_CHECK(clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL, numDevices, &devices[0], &numDevices));
}
struct PlatformInfo::Impl
{
Impl(void* id)
{
refcount = 1;
handle = *(cl_platform_id*)id;
getDevices(devices, handle);
}
String getStrProp(cl_platform_info prop) const
{
char buf[1024];
size_t sz=0;
return clGetPlatformInfo(handle, prop, sizeof(buf)-16, buf, &sz) == CL_SUCCESS &&
sz < sizeof(buf) ? String(buf) : String();
}
IMPLEMENT_REFCOUNTABLE();
std::vector<cl_device_id> devices;
cl_platform_id handle;
};
PlatformInfo::PlatformInfo()
{
p = 0;
}
PlatformInfo::PlatformInfo(void* platform_id)
{
p = new Impl(platform_id);
}
PlatformInfo::~PlatformInfo()
{
if(p)
p->release();
}
PlatformInfo::PlatformInfo(const PlatformInfo& i)
{
if (i.p)
i.p->addref();
p = i.p;
}
PlatformInfo& PlatformInfo::operator =(const PlatformInfo& i)
{
if (i.p != p)
{
if (i.p)
i.p->addref();
if (p)
p->release();
p = i.p;
}
return *this;
}
int PlatformInfo::deviceNumber() const
{
return p ? (int)p->devices.size() : 0;
}
void PlatformInfo::getDevice(Device& device, int d) const
{
CV_Assert(p && d < (int)p->devices.size() );
if(p)
device.set(p->devices[d]);
}
String PlatformInfo::name() const
{
return p ? p->getStrProp(CL_PLATFORM_NAME) : String();
}
String PlatformInfo::vendor() const
{
return p ? p->getStrProp(CL_PLATFORM_VENDOR) : String();
}
String PlatformInfo::version() const
{
return p ? p->getStrProp(CL_PLATFORM_VERSION) : String();
}
static void getPlatforms(std::vector<cl_platform_id>& platforms)
{
cl_uint numPlatforms = 0;
CV_OCL_DBG_CHECK(clGetPlatformIDs(0, NULL, &numPlatforms));
if (numPlatforms == 0)
{
platforms.clear();
return;
}
platforms.resize((size_t)numPlatforms);
CV_OCL_DBG_CHECK(clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms));
}
void getPlatfomsInfo(std::vector<PlatformInfo>& platformsInfo)
{
std::vector<cl_platform_id> platforms;
getPlatforms(platforms);
for (size_t i = 0; i < platforms.size(); i++)
platformsInfo.push_back( PlatformInfo((void*)&platforms[i]) );
}
const char* typeToStr(int type)
{
static const char* tab[]=
{
"uchar", "uchar2", "uchar3", "uchar4", 0, 0, 0, "uchar8", 0, 0, 0, 0, 0, 0, 0, "uchar16",
"char", "char2", "char3", "char4", 0, 0, 0, "char8", 0, 0, 0, 0, 0, 0, 0, "char16",
"ushort", "ushort2", "ushort3", "ushort4",0, 0, 0, "ushort8", 0, 0, 0, 0, 0, 0, 0, "ushort16",
"short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"float", "float2", "float3", "float4", 0, 0, 0, "float8", 0, 0, 0, 0, 0, 0, 0, "float16",
"double", "double2", "double3", "double4", 0, 0, 0, "double8", 0, 0, 0, 0, 0, 0, 0, "double16",
"half", "half2", "half3", "half4", 0, 0, 0, "half8", 0, 0, 0, 0, 0, 0, 0, "half16",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
const char* result = cn > 16 ? 0 : tab[depth*16 + cn-1];
CV_Assert(result);
return result;
}
const char* memopTypeToStr(int type)
{
static const char* tab[] =
{
"uchar", "uchar2", "uchar3", "uchar4", 0, 0, 0, "uchar8", 0, 0, 0, 0, 0, 0, 0, "uchar16",
"char", "char2", "char3", "char4", 0, 0, 0, "char8", 0, 0, 0, 0, 0, 0, 0, "char16",
"ushort", "ushort2", "ushort3", "ushort4",0, 0, 0, "ushort8", 0, 0, 0, 0, 0, 0, 0, "ushort16",
"short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"ulong", "ulong2", "ulong3", "ulong4", 0, 0, 0, "ulong8", 0, 0, 0, 0, 0, 0, 0, "ulong16",
"short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
const char* result = cn > 16 ? 0 : tab[depth*16 + cn-1];
CV_Assert(result);
return result;
}
const char* vecopTypeToStr(int type)
{
static const char* tab[] =
{
"uchar", "short", "uchar3", "int", 0, 0, 0, "int2", 0, 0, 0, 0, 0, 0, 0, "int4",
"char", "short", "char3", "int", 0, 0, 0, "int2", 0, 0, 0, 0, 0, 0, 0, "int4",
"ushort", "int", "ushort3", "int2",0, 0, 0, "int4", 0, 0, 0, 0, 0, 0, 0, "int8",
"short", "int", "short3", "int2", 0, 0, 0, "int4", 0, 0, 0, 0, 0, 0, 0, "int8",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"ulong", "ulong2", "ulong3", "ulong4", 0, 0, 0, "ulong8", 0, 0, 0, 0, 0, 0, 0, "ulong16",
"short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
const char* result = cn > 16 ? 0 : tab[depth*16 + cn-1];
CV_Assert(result);
return result;
}
const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
{
if( sdepth == ddepth )
return "noconvert";
const char *typestr = typeToStr(CV_MAKETYPE(ddepth, cn));
if( ddepth >= CV_32F ||
(ddepth == CV_32S && sdepth < CV_32S) ||
(ddepth == CV_16S && sdepth <= CV_8S) ||
(ddepth == CV_16U && sdepth == CV_8U))
{
sprintf(buf, "convert_%s", typestr);
}
else if( sdepth >= CV_32F )
sprintf(buf, "convert_%s%s_rte", typestr, (ddepth < CV_32S ? "_sat" : ""));
else
sprintf(buf, "convert_%s_sat", typestr);
return buf;
}
const char* getOpenCLErrorString(int errorCode)
{
#define CV_OCL_CODE(id) case id: return #id
#define CV_OCL_CODE_(id, name) case id: return #name
switch (errorCode)
{
CV_OCL_CODE(CL_SUCCESS);
CV_OCL_CODE(CL_DEVICE_NOT_FOUND);
CV_OCL_CODE(CL_DEVICE_NOT_AVAILABLE);
CV_OCL_CODE(CL_COMPILER_NOT_AVAILABLE);
CV_OCL_CODE(CL_MEM_OBJECT_ALLOCATION_FAILURE);
CV_OCL_CODE(CL_OUT_OF_RESOURCES);
CV_OCL_CODE(CL_OUT_OF_HOST_MEMORY);
CV_OCL_CODE(CL_PROFILING_INFO_NOT_AVAILABLE);
CV_OCL_CODE(CL_MEM_COPY_OVERLAP);
CV_OCL_CODE(CL_IMAGE_FORMAT_MISMATCH);
CV_OCL_CODE(CL_IMAGE_FORMAT_NOT_SUPPORTED);
CV_OCL_CODE(CL_BUILD_PROGRAM_FAILURE);
CV_OCL_CODE(CL_MAP_FAILURE);
CV_OCL_CODE(CL_MISALIGNED_SUB_BUFFER_OFFSET);
CV_OCL_CODE(CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST);
CV_OCL_CODE(CL_COMPILE_PROGRAM_FAILURE);
CV_OCL_CODE(CL_LINKER_NOT_AVAILABLE);
CV_OCL_CODE(CL_LINK_PROGRAM_FAILURE);
CV_OCL_CODE(CL_DEVICE_PARTITION_FAILED);
CV_OCL_CODE(CL_KERNEL_ARG_INFO_NOT_AVAILABLE);
CV_OCL_CODE(CL_INVALID_VALUE);
CV_OCL_CODE(CL_INVALID_DEVICE_TYPE);
CV_OCL_CODE(CL_INVALID_PLATFORM);
CV_OCL_CODE(CL_INVALID_DEVICE);
CV_OCL_CODE(CL_INVALID_CONTEXT);
CV_OCL_CODE(CL_INVALID_QUEUE_PROPERTIES);
CV_OCL_CODE(CL_INVALID_COMMAND_QUEUE);
CV_OCL_CODE(CL_INVALID_HOST_PTR);
CV_OCL_CODE(CL_INVALID_MEM_OBJECT);
CV_OCL_CODE(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR);
CV_OCL_CODE(CL_INVALID_IMAGE_SIZE);
CV_OCL_CODE(CL_INVALID_SAMPLER);
CV_OCL_CODE(CL_INVALID_BINARY);
CV_OCL_CODE(CL_INVALID_BUILD_OPTIONS);
CV_OCL_CODE(CL_INVALID_PROGRAM);
CV_OCL_CODE(CL_INVALID_PROGRAM_EXECUTABLE);
CV_OCL_CODE(CL_INVALID_KERNEL_NAME);
CV_OCL_CODE(CL_INVALID_KERNEL_DEFINITION);
CV_OCL_CODE(CL_INVALID_KERNEL);
CV_OCL_CODE(CL_INVALID_ARG_INDEX);
CV_OCL_CODE(CL_INVALID_ARG_VALUE);
CV_OCL_CODE(CL_INVALID_ARG_SIZE);
CV_OCL_CODE(CL_INVALID_KERNEL_ARGS);
CV_OCL_CODE(CL_INVALID_WORK_DIMENSION);
CV_OCL_CODE(CL_INVALID_WORK_GROUP_SIZE);
CV_OCL_CODE(CL_INVALID_WORK_ITEM_SIZE);
CV_OCL_CODE(CL_INVALID_GLOBAL_OFFSET);
CV_OCL_CODE(CL_INVALID_EVENT_WAIT_LIST);
CV_OCL_CODE(CL_INVALID_EVENT);
CV_OCL_CODE(CL_INVALID_OPERATION);
CV_OCL_CODE(CL_INVALID_GL_OBJECT);
CV_OCL_CODE(CL_INVALID_BUFFER_SIZE);
CV_OCL_CODE(CL_INVALID_MIP_LEVEL);
CV_OCL_CODE(CL_INVALID_GLOBAL_WORK_SIZE);
// OpenCL 1.1
CV_OCL_CODE(CL_INVALID_PROPERTY);
// OpenCL 1.2
CV_OCL_CODE(CL_INVALID_IMAGE_DESCRIPTOR);
CV_OCL_CODE(CL_INVALID_COMPILER_OPTIONS);
CV_OCL_CODE(CL_INVALID_LINKER_OPTIONS);
CV_OCL_CODE(CL_INVALID_DEVICE_PARTITION_COUNT);
// OpenCL 2.0
CV_OCL_CODE_(-69, CL_INVALID_PIPE_SIZE);
CV_OCL_CODE_(-70, CL_INVALID_DEVICE_QUEUE);
// Extensions
CV_OCL_CODE_(-1000, CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR);
CV_OCL_CODE_(-1001, CL_PLATFORM_NOT_FOUND_KHR);
CV_OCL_CODE_(-1002, CL_INVALID_D3D10_DEVICE_KHR);
CV_OCL_CODE_(-1003, CL_INVALID_D3D10_RESOURCE_KHR);
CV_OCL_CODE_(-1004, CL_D3D10_RESOURCE_ALREADY_ACQUIRED_KHR);
CV_OCL_CODE_(-1005, CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR);
default: return "Unknown OpenCL error";
}
#undef CV_OCL_CODE
#undef CV_OCL_CODE_
}
template <typename T>
static std::string kerToStr(const Mat & k)
{
int width = k.cols - 1, depth = k.depth();
const T * const data = k.ptr<T>();
std::ostringstream stream;
stream.precision(10);
if (depth <= CV_8S)
{
for (int i = 0; i < width; ++i)
stream << "DIG(" << (int)data[i] << ")";
stream << "DIG(" << (int)data[width] << ")";
}
else if (depth == CV_32F)
{
stream.setf(std::ios_base::showpoint);
for (int i = 0; i < width; ++i)
stream << "DIG(" << data[i] << "f)";
stream << "DIG(" << data[width] << "f)";
}
else
{
for (int i = 0; i < width; ++i)
stream << "DIG(" << data[i] << ")";
stream << "DIG(" << data[width] << ")";
}
return stream.str();
}
String kernelToStr(InputArray _kernel, int ddepth, const char * name)
{
Mat kernel = _kernel.getMat().reshape(1, 1);
int depth = kernel.depth();
if (ddepth < 0)
ddepth = depth;
if (ddepth != depth)
kernel.convertTo(kernel, ddepth);
typedef std::string (* func_t)(const Mat &);
static const func_t funcs[] = { kerToStr<uchar>, kerToStr<char>, kerToStr<ushort>, kerToStr<short>,
kerToStr<int>, kerToStr<float>, kerToStr<double>, 0 };
const func_t func = funcs[ddepth];
CV_Assert(func != 0);
return cv::format(" -D %s=%s", name ? name : "COEFF", func(kernel).c_str());
}
#define PROCESS_SRC(src) \
do \
{ \
if (!src.empty()) \
{ \
CV_Assert(src.isMat() || src.isUMat()); \
Size csize = src.size(); \
int ctype = src.type(), ccn = CV_MAT_CN(ctype), cdepth = CV_MAT_DEPTH(ctype), \
ckercn = vectorWidths[cdepth], cwidth = ccn * csize.width; \
if (cwidth < ckercn || ckercn <= 0) \
return 1; \
cols.push_back(cwidth); \
if (strat == OCL_VECTOR_OWN && ctype != ref_type) \
return 1; \
offsets.push_back(src.offset()); \
steps.push_back(src.step()); \
dividers.push_back(ckercn * CV_ELEM_SIZE1(ctype)); \
kercns.push_back(ckercn); \
} \
} \
while ((void)0, 0)
int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
InputArray src4, InputArray src5, InputArray src6,
InputArray src7, InputArray src8, InputArray src9,
OclVectorStrategy strat)
{
const ocl::Device & d = ocl::Device::getDefault();
int vectorWidths[] = { d.preferredVectorWidthChar(), d.preferredVectorWidthChar(),
d.preferredVectorWidthShort(), d.preferredVectorWidthShort(),
d.preferredVectorWidthInt(), d.preferredVectorWidthFloat(),
d.preferredVectorWidthDouble(), -1 };
// if the device says don't use vectors
if (vectorWidths[0] == 1)
{
// it's heuristic
vectorWidths[CV_8U] = vectorWidths[CV_8S] = 4;
vectorWidths[CV_16U] = vectorWidths[CV_16S] = 2;
vectorWidths[CV_32S] = vectorWidths[CV_32F] = vectorWidths[CV_64F] = 1;
}
return checkOptimalVectorWidth(vectorWidths, src1, src2, src3, src4, src5, src6, src7, src8, src9, strat);
}
int checkOptimalVectorWidth(const int *vectorWidths,
InputArray src1, InputArray src2, InputArray src3,
InputArray src4, InputArray src5, InputArray src6,
InputArray src7, InputArray src8, InputArray src9,
OclVectorStrategy strat)
{
CV_Assert(vectorWidths);
int ref_type = src1.type();
std::vector<size_t> offsets, steps, cols;
std::vector<int> dividers, kercns;
PROCESS_SRC(src1);
PROCESS_SRC(src2);
PROCESS_SRC(src3);
PROCESS_SRC(src4);
PROCESS_SRC(src5);
PROCESS_SRC(src6);
PROCESS_SRC(src7);
PROCESS_SRC(src8);
PROCESS_SRC(src9);
size_t size = offsets.size();
for (size_t i = 0; i < size; ++i)
while (offsets[i] % dividers[i] != 0 || steps[i] % dividers[i] != 0 || cols[i] % kercns[i] != 0)
dividers[i] >>= 1, kercns[i] >>= 1;
// default strategy
int kercn = *std::min_element(kercns.begin(), kercns.end());
return kercn;
}
int predictOptimalVectorWidthMax(InputArray src1, InputArray src2, InputArray src3,
InputArray src4, InputArray src5, InputArray src6,
InputArray src7, InputArray src8, InputArray src9)
{
return predictOptimalVectorWidth(src1, src2, src3, src4, src5, src6, src7, src8, src9, OCL_VECTOR_MAX);
}
#undef PROCESS_SRC
// TODO Make this as a method of OpenCL "BuildOptions" class
void buildOptionsAddMatrixDescription(String& buildOptions, const String& name, InputArray _m)
{
if (!buildOptions.empty())
buildOptions += " ";
int type = _m.type(), depth = CV_MAT_DEPTH(type);
buildOptions += format(
"-D %s_T=%s -D %s_T1=%s -D %s_CN=%d -D %s_TSIZE=%d -D %s_T1SIZE=%d -D %s_DEPTH=%d",
name.c_str(), ocl::typeToStr(type),
name.c_str(), ocl::typeToStr(CV_MAKE_TYPE(depth, 1)),
name.c_str(), (int)CV_MAT_CN(type),
name.c_str(), (int)CV_ELEM_SIZE(type),
name.c_str(), (int)CV_ELEM_SIZE1(type),
name.c_str(), (int)depth
);
}
struct Image2D::Impl
{
Impl(const UMat &src, bool norm, bool alias)
{
handle = 0;
refcount = 1;
init(src, norm, alias);
}
~Impl()
{
if (handle)
clReleaseMemObject(handle);
}
static cl_image_format getImageFormat(int depth, int cn, bool norm)
{
cl_image_format format;
static const int channelTypes[] = { CL_UNSIGNED_INT8, CL_SIGNED_INT8, CL_UNSIGNED_INT16,
CL_SIGNED_INT16, CL_SIGNED_INT32, CL_FLOAT, -1, -1 };
static const int channelTypesNorm[] = { CL_UNORM_INT8, CL_SNORM_INT8, CL_UNORM_INT16,
CL_SNORM_INT16, -1, -1, -1, -1 };
static const int channelOrders[] = { -1, CL_R, CL_RG, -1, CL_RGBA };
int channelType = norm ? channelTypesNorm[depth] : channelTypes[depth];
int channelOrder = channelOrders[cn];
format.image_channel_data_type = (cl_channel_type)channelType;
format.image_channel_order = (cl_channel_order)channelOrder;
return format;
}
static bool isFormatSupported(cl_image_format format)
{
if (!haveOpenCL())
CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");
cl_context context = (cl_context)Context::getDefault().ptr();
if (!context)
return false;
// Figure out how many formats are supported by this context.
cl_uint numFormats = 0;
cl_int err = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
CL_MEM_OBJECT_IMAGE2D, numFormats,
NULL, &numFormats);
CV_OCL_DBG_CHECK_RESULT(err, "clGetSupportedImageFormats(CL_MEM_OBJECT_IMAGE2D, NULL)");
if (numFormats > 0)
{
AutoBuffer<cl_image_format> formats(numFormats);
err = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
CL_MEM_OBJECT_IMAGE2D, numFormats,
formats.data(), NULL);
CV_OCL_DBG_CHECK_RESULT(err, "clGetSupportedImageFormats(CL_MEM_OBJECT_IMAGE2D, formats)");
for (cl_uint i = 0; i < numFormats; ++i)
{
if (!memcmp(&formats[i], &format, sizeof(format)))
{
return true;
}
}
}
return false;
}
void init(const UMat &src, bool norm, bool alias)
{
if (!haveOpenCL())
CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");
CV_Assert(!src.empty());
CV_Assert(ocl::Device::getDefault().imageSupport());
int err, depth = src.depth(), cn = src.channels();
CV_Assert(cn <= 4);
cl_image_format format = getImageFormat(depth, cn, norm);
if (!isFormatSupported(format))
CV_Error(Error::OpenCLApiCallError, "Image format is not supported");
if (alias && !src.handle(ACCESS_RW))
CV_Error(Error::OpenCLApiCallError, "Incorrect UMat, handle is null");
cl_context context = (cl_context)Context::getDefault().ptr();
cl_command_queue queue = (cl_command_queue)Queue::getDefault().ptr();
#ifdef CL_VERSION_1_2
// this enables backwards portability to
// run on OpenCL 1.1 platform if library binaries are compiled with OpenCL 1.2 support
const Device & d = ocl::Device::getDefault();
int minor = d.deviceVersionMinor(), major = d.deviceVersionMajor();
CV_Assert(!alias || canCreateAlias(src));
if (1 < major || (1 == major && 2 <= minor))
{
cl_image_desc desc;
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
desc.image_width = src.cols;
desc.image_height = src.rows;
desc.image_depth = 0;
desc.image_array_size = 1;
desc.image_row_pitch = alias ? src.step[0] : 0;
desc.image_slice_pitch = 0;
desc.buffer = alias ? (cl_mem)src.handle(ACCESS_RW) : 0;
desc.num_mip_levels = 0;
desc.num_samples = 0;
handle = clCreateImage(context, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
}
else
#endif
{
CV_SUPPRESS_DEPRECATED_START
CV_Assert(!alias); // This is an OpenCL 1.2 extension
handle = clCreateImage2D(context, CL_MEM_READ_WRITE, &format, src.cols, src.rows, 0, NULL, &err);
CV_SUPPRESS_DEPRECATED_END
}
CV_OCL_DBG_CHECK_RESULT(err, "clCreateImage()");
size_t origin[] = { 0, 0, 0 };
size_t region[] = { static_cast<size_t>(src.cols), static_cast<size_t>(src.rows), 1 };
cl_mem devData;
if (!alias && !src.isContinuous())
{
devData = clCreateBuffer(context, CL_MEM_READ_ONLY, src.cols * src.rows * src.elemSize(), NULL, &err);
CV_OCL_CHECK_RESULT(err, cv::format("clCreateBuffer(CL_MEM_READ_ONLY, sz=%lld) => %p",
(long long int)(src.cols * src.rows * src.elemSize()), (void*)devData
).c_str());
const size_t roi[3] = {static_cast<size_t>(src.cols) * src.elemSize(), static_cast<size_t>(src.rows), 1};
CV_OCL_CHECK(clEnqueueCopyBufferRect(queue, (cl_mem)src.handle(ACCESS_READ), devData, origin, origin,
roi, src.step, 0, src.cols * src.elemSize(), 0, 0, NULL, NULL));
CV_OCL_DBG_CHECK(clFlush(queue));
}
else
{
devData = (cl_mem)src.handle(ACCESS_READ);
}
CV_Assert(devData != NULL);
if (!alias)
{
CV_OCL_CHECK(clEnqueueCopyBufferToImage(queue, devData, handle, 0, origin, region, 0, NULL, 0));
if (!src.isContinuous())
{
CV_OCL_DBG_CHECK(clFlush(queue));
CV_OCL_DBG_CHECK(clReleaseMemObject(devData));
}
}
}
IMPLEMENT_REFCOUNTABLE();
cl_mem handle;
};
Image2D::Image2D()
{
p = NULL;
}
Image2D::Image2D(const UMat &src, bool norm, bool alias)
{
p = new Impl(src, norm, alias);
}
bool Image2D::canCreateAlias(const UMat &m)
{
bool ret = false;
const Device & d = ocl::Device::getDefault();
if (d.imageFromBufferSupport() && !m.empty())
{
// This is the required pitch alignment in pixels
uint pitchAlign = d.imagePitchAlignment();
if (pitchAlign && !(m.step % (pitchAlign * m.elemSize())))
{
// We don't currently handle the case where the buffer was created
// with CL_MEM_USE_HOST_PTR
if (!m.u->tempUMat())
{
ret = true;
}
}
}
return ret;
}
bool Image2D::isFormatSupported(int depth, int cn, bool norm)
{
cl_image_format format = Impl::getImageFormat(depth, cn, norm);
return Impl::isFormatSupported(format);
}
Image2D::Image2D(const Image2D & i)
{
p = i.p;
if (p)
p->addref();
}
Image2D & Image2D::operator = (const Image2D & i)
{
if (i.p != p)
{
if (i.p)
i.p->addref();
if (p)
p->release();
p = i.p;
}
return *this;
}
Image2D::~Image2D()
{
if (p)
p->release();
}
void* Image2D::ptr() const
{
return p ? p->handle : 0;
}
bool internal::isOpenCLForced()
{
static bool initialized = false;
static bool value = false;
if (!initialized)
{
value = utils::getConfigurationParameterBool("OPENCV_OPENCL_FORCE", false);
initialized = true;
}
return value;
}
bool internal::isPerformanceCheckBypassed()
{
static bool initialized = false;
static bool value = false;
if (!initialized)
{
value = utils::getConfigurationParameterBool("OPENCV_OPENCL_PERF_CHECK_BYPASS", false);
initialized = true;
}
return value;
}
bool internal::isCLBuffer(UMat& u)
{
void* h = u.handle(ACCESS_RW);
if (!h)
return true;
CV_DbgAssert(u.u->currAllocator == getOpenCLAllocator());
#if 1
if ((u.u->allocatorFlags_ & 0xffff0000) != 0) // OpenCL SVM flags are stored here
return false;
#else
cl_mem_object_type type = 0;
cl_int ret = clGetMemObjectInfo((cl_mem)h, CL_MEM_TYPE, sizeof(type), &type, NULL);
if (ret != CL_SUCCESS || type != CL_MEM_OBJECT_BUFFER)
return false;
#endif
return true;
}
struct Timer::Impl
{
const Queue queue;
Impl(const Queue& q)
: queue(q)
{
}
~Impl(){}
void start()
{
CV_OCL_DBG_CHECK(clFinish((cl_command_queue)queue.ptr()));
timer.start();
}
void stop()
{
CV_OCL_DBG_CHECK(clFinish((cl_command_queue)queue.ptr()));
timer.stop();
}
uint64 durationNS() const
{
return (uint64)(timer.getTimeSec() * 1e9);
}
TickMeter timer;
};
Timer::Timer(const Queue& q) : p(new Impl(q)) { }
Timer::~Timer() { delete p; }
void Timer::start()
{
CV_Assert(p);
p->start();
}
void Timer::stop()
{
CV_Assert(p);
p->stop();
}
uint64 Timer::durationNS() const
{
CV_Assert(p);
return p->durationNS();
}
}} // namespace
#endif // HAVE_OPENCL