mirror of
https://github.com/opencv/opencv.git
synced 2025-01-24 03:03:12 +08:00
320 lines
11 KiB
C++
320 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/video/tracking_c.h"
|
|
|
|
|
|
/////////////////////////// Meanshift & CAMShift ///////////////////////////
|
|
|
|
CV_IMPL int
|
|
cvMeanShift( const void* imgProb, CvRect windowIn,
|
|
CvTermCriteria criteria, CvConnectedComp* comp )
|
|
{
|
|
cv::Mat img = cv::cvarrToMat(imgProb);
|
|
cv::Rect window = windowIn;
|
|
int iters = cv::meanShift(img, window, criteria);
|
|
|
|
if( comp )
|
|
{
|
|
comp->rect = cvRect(window);
|
|
comp->area = cvRound(cv::sum(img(window))[0]);
|
|
}
|
|
|
|
return iters;
|
|
}
|
|
|
|
|
|
CV_IMPL int
|
|
cvCamShift( const void* imgProb, CvRect windowIn,
|
|
CvTermCriteria criteria,
|
|
CvConnectedComp* comp,
|
|
CvBox2D* box )
|
|
{
|
|
cv::Mat img = cv::cvarrToMat(imgProb);
|
|
cv::Rect window = windowIn;
|
|
cv::RotatedRect rr = cv::CamShift(img, window, criteria);
|
|
|
|
if( comp )
|
|
{
|
|
comp->rect = cvRect(window);
|
|
cv::Rect roi = rr.boundingRect() & cv::Rect(0, 0, img.cols, img.rows);
|
|
comp->area = cvRound(cv::sum(img(roi))[0]);
|
|
}
|
|
|
|
if( box )
|
|
*box = cvBox2D(rr);
|
|
|
|
return rr.size.width*rr.size.height > 0.f ? 1 : -1;
|
|
}
|
|
|
|
///////////////////////////////// Kalman ///////////////////////////////
|
|
|
|
CV_IMPL CvKalman*
|
|
cvCreateKalman( int DP, int MP, int CP )
|
|
{
|
|
CvKalman *kalman = 0;
|
|
|
|
if( DP <= 0 || MP <= 0 )
|
|
CV_Error( CV_StsOutOfRange,
|
|
"state and measurement vectors must have positive number of dimensions" );
|
|
|
|
if( CP < 0 )
|
|
CP = DP;
|
|
|
|
/* allocating memory for the structure */
|
|
kalman = (CvKalman *)cvAlloc( sizeof( CvKalman ));
|
|
memset( kalman, 0, sizeof(*kalman));
|
|
|
|
kalman->DP = DP;
|
|
kalman->MP = MP;
|
|
kalman->CP = CP;
|
|
|
|
kalman->state_pre = cvCreateMat( DP, 1, CV_32FC1 );
|
|
cvZero( kalman->state_pre );
|
|
|
|
kalman->state_post = cvCreateMat( DP, 1, CV_32FC1 );
|
|
cvZero( kalman->state_post );
|
|
|
|
kalman->transition_matrix = cvCreateMat( DP, DP, CV_32FC1 );
|
|
cvSetIdentity( kalman->transition_matrix );
|
|
|
|
kalman->process_noise_cov = cvCreateMat( DP, DP, CV_32FC1 );
|
|
cvSetIdentity( kalman->process_noise_cov );
|
|
|
|
kalman->measurement_matrix = cvCreateMat( MP, DP, CV_32FC1 );
|
|
cvZero( kalman->measurement_matrix );
|
|
|
|
kalman->measurement_noise_cov = cvCreateMat( MP, MP, CV_32FC1 );
|
|
cvSetIdentity( kalman->measurement_noise_cov );
|
|
|
|
kalman->error_cov_pre = cvCreateMat( DP, DP, CV_32FC1 );
|
|
|
|
kalman->error_cov_post = cvCreateMat( DP, DP, CV_32FC1 );
|
|
cvZero( kalman->error_cov_post );
|
|
|
|
kalman->gain = cvCreateMat( DP, MP, CV_32FC1 );
|
|
|
|
if( CP > 0 )
|
|
{
|
|
kalman->control_matrix = cvCreateMat( DP, CP, CV_32FC1 );
|
|
cvZero( kalman->control_matrix );
|
|
}
|
|
|
|
kalman->temp1 = cvCreateMat( DP, DP, CV_32FC1 );
|
|
kalman->temp2 = cvCreateMat( MP, DP, CV_32FC1 );
|
|
kalman->temp3 = cvCreateMat( MP, MP, CV_32FC1 );
|
|
kalman->temp4 = cvCreateMat( MP, DP, CV_32FC1 );
|
|
kalman->temp5 = cvCreateMat( MP, 1, CV_32FC1 );
|
|
|
|
#if 1
|
|
kalman->PosterState = kalman->state_pre->data.fl;
|
|
kalman->PriorState = kalman->state_post->data.fl;
|
|
kalman->DynamMatr = kalman->transition_matrix->data.fl;
|
|
kalman->MeasurementMatr = kalman->measurement_matrix->data.fl;
|
|
kalman->MNCovariance = kalman->measurement_noise_cov->data.fl;
|
|
kalman->PNCovariance = kalman->process_noise_cov->data.fl;
|
|
kalman->KalmGainMatr = kalman->gain->data.fl;
|
|
kalman->PriorErrorCovariance = kalman->error_cov_pre->data.fl;
|
|
kalman->PosterErrorCovariance = kalman->error_cov_post->data.fl;
|
|
#endif
|
|
|
|
return kalman;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvReleaseKalman( CvKalman** _kalman )
|
|
{
|
|
CvKalman *kalman;
|
|
|
|
if( !_kalman )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
kalman = *_kalman;
|
|
if( !kalman )
|
|
return;
|
|
|
|
/* freeing the memory */
|
|
cvReleaseMat( &kalman->state_pre );
|
|
cvReleaseMat( &kalman->state_post );
|
|
cvReleaseMat( &kalman->transition_matrix );
|
|
cvReleaseMat( &kalman->control_matrix );
|
|
cvReleaseMat( &kalman->measurement_matrix );
|
|
cvReleaseMat( &kalman->process_noise_cov );
|
|
cvReleaseMat( &kalman->measurement_noise_cov );
|
|
cvReleaseMat( &kalman->error_cov_pre );
|
|
cvReleaseMat( &kalman->gain );
|
|
cvReleaseMat( &kalman->error_cov_post );
|
|
cvReleaseMat( &kalman->temp1 );
|
|
cvReleaseMat( &kalman->temp2 );
|
|
cvReleaseMat( &kalman->temp3 );
|
|
cvReleaseMat( &kalman->temp4 );
|
|
cvReleaseMat( &kalman->temp5 );
|
|
|
|
memset( kalman, 0, sizeof(*kalman));
|
|
|
|
/* deallocating the structure */
|
|
cvFree( _kalman );
|
|
}
|
|
|
|
|
|
CV_IMPL const CvMat*
|
|
cvKalmanPredict( CvKalman* kalman, const CvMat* control )
|
|
{
|
|
if( !kalman )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
/* update the state */
|
|
/* x'(k) = A*x(k) */
|
|
cvMatMulAdd( kalman->transition_matrix, kalman->state_post, 0, kalman->state_pre );
|
|
|
|
if( control && kalman->CP > 0 )
|
|
/* x'(k) = x'(k) + B*u(k) */
|
|
cvMatMulAdd( kalman->control_matrix, control, kalman->state_pre, kalman->state_pre );
|
|
|
|
/* update error covariance matrices */
|
|
/* temp1 = A*P(k) */
|
|
cvMatMulAdd( kalman->transition_matrix, kalman->error_cov_post, 0, kalman->temp1 );
|
|
|
|
/* P'(k) = temp1*At + Q */
|
|
cvGEMM( kalman->temp1, kalman->transition_matrix, 1, kalman->process_noise_cov, 1,
|
|
kalman->error_cov_pre, CV_GEMM_B_T );
|
|
|
|
/* handle the case when there will be measurement before the next predict */
|
|
cvCopy(kalman->state_pre, kalman->state_post);
|
|
|
|
return kalman->state_pre;
|
|
}
|
|
|
|
|
|
CV_IMPL const CvMat*
|
|
cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement )
|
|
{
|
|
if( !kalman || !measurement )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
/* temp2 = H*P'(k) */
|
|
cvMatMulAdd( kalman->measurement_matrix, kalman->error_cov_pre, 0, kalman->temp2 );
|
|
/* temp3 = temp2*Ht + R */
|
|
cvGEMM( kalman->temp2, kalman->measurement_matrix, 1,
|
|
kalman->measurement_noise_cov, 1, kalman->temp3, CV_GEMM_B_T );
|
|
|
|
/* temp4 = inv(temp3)*temp2 = Kt(k) */
|
|
cvSolve( kalman->temp3, kalman->temp2, kalman->temp4, CV_SVD );
|
|
|
|
/* K(k) */
|
|
cvTranspose( kalman->temp4, kalman->gain );
|
|
|
|
/* temp5 = z(k) - H*x'(k) */
|
|
cvGEMM( kalman->measurement_matrix, kalman->state_pre, -1, measurement, 1, kalman->temp5 );
|
|
|
|
/* x(k) = x'(k) + K(k)*temp5 */
|
|
cvMatMulAdd( kalman->gain, kalman->temp5, kalman->state_pre, kalman->state_post );
|
|
|
|
/* P(k) = P'(k) - K(k)*temp2 */
|
|
cvGEMM( kalman->gain, kalman->temp2, -1, kalman->error_cov_pre, 1,
|
|
kalman->error_cov_post, 0 );
|
|
|
|
return kalman->state_post;
|
|
}
|
|
|
|
///////////////////////////////////// Optical Flow ////////////////////////////////
|
|
|
|
CV_IMPL void
|
|
cvCalcOpticalFlowPyrLK( const void* arrA, const void* arrB,
|
|
void* /*pyrarrA*/, void* /*pyrarrB*/,
|
|
const CvPoint2D32f * featuresA,
|
|
CvPoint2D32f * featuresB,
|
|
int count, CvSize winSize, int level,
|
|
char *status, float *error,
|
|
CvTermCriteria criteria, int flags )
|
|
{
|
|
if( count <= 0 )
|
|
return;
|
|
CV_Assert( featuresA && featuresB );
|
|
cv::Mat A = cv::cvarrToMat(arrA), B = cv::cvarrToMat(arrB);
|
|
cv::Mat ptA(count, 1, CV_32FC2, (void*)featuresA);
|
|
cv::Mat ptB(count, 1, CV_32FC2, (void*)featuresB);
|
|
cv::Mat st, err;
|
|
|
|
if( status )
|
|
st = cv::Mat(count, 1, CV_8U, (void*)status);
|
|
if( error )
|
|
err = cv::Mat(count, 1, CV_32F, (void*)error);
|
|
cv::calcOpticalFlowPyrLK( A, B, ptA, ptB, st,
|
|
error ? cv::_OutputArray(err) : (cv::_OutputArray)cv::noArray(),
|
|
winSize, level, criteria, flags);
|
|
}
|
|
|
|
|
|
CV_IMPL void cvCalcOpticalFlowFarneback(
|
|
const CvArr* _prev, const CvArr* _next,
|
|
CvArr* _flow, double pyr_scale, int levels,
|
|
int winsize, int iterations, int poly_n,
|
|
double poly_sigma, int flags )
|
|
{
|
|
cv::Mat prev = cv::cvarrToMat(_prev), next = cv::cvarrToMat(_next);
|
|
cv::Mat flow = cv::cvarrToMat(_flow);
|
|
CV_Assert( flow.size() == prev.size() && flow.type() == CV_32FC2 );
|
|
cv::calcOpticalFlowFarneback( prev, next, flow, pyr_scale, levels,
|
|
winsize, iterations, poly_n, poly_sigma, flags );
|
|
}
|
|
|
|
|
|
CV_IMPL int
|
|
cvEstimateRigidTransform( const CvArr* arrA, const CvArr* arrB, CvMat* arrM, int full_affine )
|
|
{
|
|
cv::Mat matA = cv::cvarrToMat(arrA), matB = cv::cvarrToMat(arrB);
|
|
const cv::Mat matM0 = cv::cvarrToMat(arrM);
|
|
|
|
cv::Mat matM = cv::estimateRigidTransform(matA, matB, full_affine != 0);
|
|
if( matM.empty() )
|
|
{
|
|
matM = cv::cvarrToMat(arrM);
|
|
matM.setTo(cv::Scalar::all(0));
|
|
return 0;
|
|
}
|
|
matM.convertTo(matM0, matM0.type());
|
|
return 1;
|
|
}
|