opencv/modules/ocl/perf/perf_haar.cpp
Roman Donchenko bbc35d609d Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts:
	cmake/OpenCVDetectPython.cmake
	cmake/OpenCVModule.cmake
	modules/core/src/gpumat.cpp
	modules/cudaimgproc/test/test_hough.cpp
	modules/gpu/CMakeLists.txt
	modules/gpu/src/cuda/generalized_hough.cu
	modules/gpu/src/generalized_hough.cpp
	modules/python/CMakeLists.txt
2014-01-27 15:28:14 +04:00

154 lines
5.7 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Fangfang Bai, fangfang@multicorewareinc.com
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#include "opencv2/objdetect/objdetect_c.h"
using namespace perf;
///////////// Haar ////////////////////////
PERF_TEST(HaarFixture, Haar)
{
vector<Rect> faces;
Mat img = imread(getDataPath("gpu/haarcascade/basketball1.png"), IMREAD_GRAYSCALE);
ASSERT_TRUE(!img.empty()) << "can't open basketball1.png";
declare.in(img);
if (RUN_PLAIN_IMPL)
{
CascadeClassifier faceCascade;
ASSERT_TRUE(faceCascade.load(getDataPath("gpu/haarcascade/haarcascade_frontalface_alt.xml")))
<< "can't load haarcascade_frontalface_alt.xml";
TEST_CYCLE() faceCascade.detectMultiScale(img, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
SANITY_CHECK(faces, 4 + 1e-4);
}
else if (RUN_OCL_IMPL)
{
ocl::OclCascadeClassifier faceCascade;
ocl::oclMat oclImg(img);
ASSERT_TRUE(faceCascade.load(getDataPath("gpu/haarcascade/haarcascade_frontalface_alt.xml")))
<< "can't load haarcascade_frontalface_alt.xml";
OCL_TEST_CYCLE() faceCascade.detectMultiScale(oclImg, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
SANITY_CHECK(faces, 4 + 1e-4);
}
else
OCL_PERF_ELSE
}
using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
typedef std::tr1::tuple<std::string, std::string, int> OCL_Cascade_Image_MinSize_t;
typedef perf::TestBaseWithParam<OCL_Cascade_Image_MinSize_t> OCL_Cascade_Image_MinSize;
PERF_TEST_P( OCL_Cascade_Image_MinSize, CascadeClassifier,
testing::Combine(
testing::Values( string("cv/cascadeandhog/cascades/haarcascade_frontalface_alt.xml") ),
testing::Values( string("cv/shared/lena.png"),
string("cv/cascadeandhog/images/bttf301.png")/*,
string("cv/cascadeandhog/images/class57.png")*/ ),
testing::Values(30, 64, 90) ) )
{
const string cascasePath = get<0>(GetParam());
const string imagePath = get<1>(GetParam());
const int min_size = get<2>(GetParam());
Size minSize(min_size, min_size);
vector<Rect> faces;
Mat img = imread(getDataPath(imagePath), IMREAD_GRAYSCALE);
ASSERT_TRUE(!img.empty()) << "Can't load source image: " << getDataPath(imagePath);
equalizeHist(img, img);
declare.in(img);
if (RUN_PLAIN_IMPL)
{
CascadeClassifier cc;
ASSERT_TRUE(cc.load(getDataPath(cascasePath))) << "Can't load cascade file: " << getDataPath(cascasePath);
while (next())
{
faces.clear();
startTimer();
cc.detectMultiScale(img, faces, 1.1, 3, 0, minSize);
stopTimer();
}
}
else if (RUN_OCL_IMPL)
{
ocl::oclMat uimg(img);
ocl::OclCascadeClassifier cc;
ASSERT_TRUE(cc.load(getDataPath(cascasePath))) << "Can't load cascade file: " << getDataPath(cascasePath);
while (next())
{
faces.clear();
ocl::finish();
startTimer();
cc.detectMultiScale(uimg, faces, 1.1, 3, 0, minSize);
stopTimer();
}
}
else
OCL_PERF_ELSE
//sort(faces.begin(), faces.end(), comparators::RectLess());
SANITY_CHECK_NOTHING();//(faces, min_size/5);
// using SANITY_CHECK_NOTHING() since OCL and PLAIN version may find different faces number
}