opencv/modules/dnn/src/int8layers/pooling_layer.cpp
2021-08-19 09:56:47 +05:30

596 lines
25 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <float.h>
#include <algorithm>
#include <numeric>
using std::max;
using std::min;
namespace cv
{
namespace dnn
{
class PoolingLayerInt8Impl CV_FINAL : public PoolingLayerInt8
{
public:
PoolingLayerInt8Impl(const LayerParams& params)
{
computeMaxIdx = false;
globalPooling = false;
isGlobalPooling = std::vector<bool>(3, false);
output_zp = params.get<int>("zeropoints");
input_zp = params.get<int>("input_zeropoint", 0);
multiplier = params.get<float>("multiplier", 1.f);
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
shapesInitialized = !hasDynamicShapes;
if (params.has("pool") || params.has("kernel_size") ||
params.has("kernel_w") || params.has("kernel_h"))
{
String pool = toLowerCase(params.get<String>("pool", "max"));
if (pool == "max")
type = MAX;
else if (pool == "ave")
type = AVE;
else if (pool == "sum")
type = SUM;
else
CV_Error(Error::StsBadArg, "Unknown pooling type \"" + pool + "\"");
getPoolingKernelParams(params, kernel_size, isGlobalPooling, pads_begin, pads_end, strides, padMode);
globalPooling = isGlobalPooling[0] || isGlobalPooling[1] || isGlobalPooling[2];
}
else
CV_Error(Error::StsBadArg, "Cannot determine pooling type");
setParamsFrom(params);
ceilMode = params.get<bool>("ceil_mode", true);
spatialScale = params.get<float>("spatial_scale", 1);
avePoolPaddedArea = params.get<bool>("ave_pool_padded_area", true);
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(!inputs.empty());
CV_Assert(outputs.size() == 1);
std::vector<int> inp;
std::vector<int> out;
for (int i = 2; i < inputs[0].dims; i++) {
inp.push_back(inputs[0].size[i]);
out.push_back(outputs[0].size[i]);
}
if (globalPooling) {
std::vector<size_t> finalKernel;
for (int i = 0; i < inp.size(); i++) {
int idx = isGlobalPooling.size() - inp.size() + i;
finalKernel.push_back(isGlobalPooling[idx] ? inp[i] : kernel_size[idx]);
}
kernel_size = finalKernel;
}
getConvPoolPaddings(inp, kernel_size, strides, padMode, pads_begin, pads_end);
if (inputs[0].dims == 3)
{
// Pool1D
kernel_size.assign(1, kernel_size[0]);
strides.assign(1, strides[0]);
pads_begin.assign(1, pads_begin[0]);
pads_end.assign(1, pads_end[0]);
}
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
if (backendId == DNN_BACKEND_OPENCV)
{
if (kernel_size.size() == 3)
return preferableTarget == DNN_TARGET_CPU;
if (kernel_size.size() <= 2)
return true;
else
return false;
}
return false;
}
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
{
Ptr<ActivationLayerInt8> activ_int8 = layer.dynamicCast<ActivationLayerInt8>();
if (!activ_int8.empty())
{
return activ_int8->blobs.empty();
}
return false;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
switch (type)
{
case MAX:
{
CV_Assert_N(inputs.size() == 1, outputs.size() == 1);
maxPooling(inputs[0], outputs[0]);
break;
}
case AVE: case SUM:
CV_Assert_N(inputs.size() == 1, outputs.size() == 1);
avePooling(inputs[0], outputs[0]);
break;
default:
CV_Error(Error::StsNotImplemented, "Not implemented");
break;
}
}
class PoolingInvoker : public ParallelLoopBody
{
public:
const Mat* src, *rois;
Mat *dst;
int pad_l, pad_t, pad_r, pad_b;
bool avePoolPaddedArea;
int nstripes, inpZp, outZp;
std::vector<int> ofsbuf;
int poolingType;
float multiplier;
float spatialScale;
std::vector<size_t> pads_begin, pads_end;
std::vector<size_t> kernel_size;
std::vector<size_t> strides;
PoolingInvoker() : src(0), rois(0), dst(0), pad_l(0), pad_t(0), pad_r(0), pad_b(0),
avePoolPaddedArea(false), nstripes(0), inpZp(0), outZp(0),
poolingType(MAX), multiplier(1), spatialScale(0){}
static void run(const Mat& src, const Mat& rois, Mat& dst,
std::vector<size_t> kernel_size, std::vector<size_t> strides,
std::vector<size_t> pads_begin, std::vector<size_t> pads_end,
bool avePoolPaddedArea, int poolingType, float spatialScale,
float multiplier, int inpZp, int outZp, int nstripes)
{
CV_Assert_N(
src.isContinuous(), dst.isContinuous(),
src.type() == CV_8S, src.type() == dst.type(),
src.dims == 3 || src.dims == 4 || src.dims == 5, dst.dims == 3 || dst.dims == 4 || dst.dims == 5,
src.size[0] == dst.size[0], src.size[1] == dst.size[1], rois.empty());
PoolingInvoker p;
bool isPool1D = src.dims == 3;
bool isPool3D = src.dims == 5;
p.src = &src;
p.rois = &rois;
p.dst = &dst;
p.kernel_size = kernel_size;
p.strides = strides;
p.pads_begin = pads_begin;
p.pads_end = pads_end;
p.pad_l = pads_begin.back();
p.pad_t = isPool1D ? 0 : pads_begin[pads_begin.size() - 2];
p.pad_r = pads_end.back();
p.pad_b = isPool1D ? 0 : pads_end[pads_end.size() - 2];
p.avePoolPaddedArea = avePoolPaddedArea;
p.nstripes = nstripes;
p.inpZp = inpZp;
p.outZp = outZp;
p.poolingType = poolingType;
p.spatialScale = spatialScale;
p.multiplier = multiplier;
int height = isPool1D ? 1 : src.size[src.dims - 2];
int width = src.size[src.dims - 1];
int kernel_d = isPool3D ? kernel_size[0] : 1;
int kernel_h = isPool1D ? 1 : kernel_size[kernel_size.size() - 2];
int kernel_w = kernel_size.back();
p.ofsbuf.resize(kernel_d * kernel_h * kernel_w);
for (int i = 0; i < kernel_d; ++i) {
for (int j = 0; j < kernel_h; ++j) {
for (int k = 0; k < kernel_w; ++k) {
p.ofsbuf[i * kernel_h * kernel_w + j * kernel_w + k] = width * height * i + width * j + k;
}
}
}
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
int channels = dst->size[1];
bool isPool3D = src->dims == 5;
bool isPool2D = src->dims == 4;
bool isPool1D = src->dims == 3;
int depth = isPool3D? dst->size[2] : 1;
int height = isPool1D? 1 : dst->size[dst->dims - 2];
int width = dst->size[dst->dims - 1];
int inp_depth = isPool3D? src->size[2] : 1;
int inp_height = isPool1D? 1 : src->size[src->dims - 2];
int inp_width = src->size[src->dims - 1];
size_t total = dst->total();
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, total);
int kernel_d = isPool3D? kernel_size[0] : 1;
int kernel_h = isPool1D? 1 : kernel_size[kernel_size.size() - 2];
int kernel_w = kernel_size.back();
int stride_d = isPool3D? strides[0] : 0;
int stride_h = isPool1D? 1 :strides[strides.size() - 2];
int stride_w = strides.back();
#if CV_SIMD128
const int* ofsptr = (const int*)&ofsbuf[0];
if (poolingType == MAX && !ofsptr)
CV_Error(Error::StsBadArg, "ofsbuf should be initialized in this mode");
#endif
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; )
{
size_t ofs = ofs0;
int x0 = (int)(ofs % width);
ofs /= width;
int y0 = (int)(ofs % height);
ofs /= height;
int d0 = (int)(ofs % depth);
ofs /= depth;
int c = (int)(ofs % channels);
int n = (int)(ofs / channels);
int ystart, yend;
int dstart = 0, dend = 1;
const int8_t *srcData = 0;
int pad_d_begin = (pads_begin.size() == 3) ? pads_begin[0] : 0;
dstart = d0 * stride_d - pad_d_begin;
dend = min(dstart + kernel_d, (int)(inp_depth + pads_end[0]));
ystart = y0 * stride_h - pad_t;
yend = min(ystart + kernel_h, inp_height + pad_b);
srcData = src->ptr<int8_t>(n, c);
int ddelta = dend - dstart;
dstart = max(dstart, 0);
dend = min(dend, inp_depth);
int ydelta = yend - ystart;
ystart = max(ystart, 0);
yend = min(yend, inp_height);
int8_t *dstData = &dst->ptr<int8_t>(n, c, d0)[y0 * width];
int delta = std::min((int)(stripeEnd - ofs0), width - x0);
ofs0 += delta;
int x1 = x0 + delta;
if( poolingType == MAX )
for( ; x0 < x1; x0++ )
{
int xstart = x0 * stride_w - pad_l;
int xend = min(xstart + kernel_w, inp_width);
xstart = max(xstart, 0);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = (int8_t)outZp;
continue;
}
#if CV_SIMD128
if( isPool2D && xstart > 0 && x0 + 15 < x1 && (x0 + 15) * stride_w - pad_l + kernel_w < inp_width )
{
v_int8x16 max_val0 = v_setall_s8(-128);
if( yend - ystart == kernel_h )
{
const int8_t* srcData1 = srcData + ystart*inp_width + xstart;
if( stride_w == 1 )
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_int8x16 v0 = v_load(srcData1 + index);
max_val0 = v_max(max_val0, v0);
}
else if( stride_w == 2 )
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_int8x16 v0, dummy;
v_load_deinterleave(srcData1 + index, v0, dummy);
max_val0 = v_max(max_val0, v0);
}
else
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_int8x16 v0(srcData1[index], srcData1[index + stride_w],
srcData1[index + stride_w*2], srcData1[index + stride_w*3],
srcData1[index + stride_w*4], srcData1[index + stride_w*5],
srcData1[index + stride_w*6], srcData1[index + stride_w*7],
srcData1[index + stride_w*8], srcData1[index + stride_w*9],
srcData1[index + stride_w*10], srcData1[index + stride_w*11],
srcData1[index + stride_w*12], srcData1[index + stride_w*13],
srcData1[index + stride_w*14], srcData1[index + stride_w*15]);
max_val0 = v_max(max_val0, v0);
}
}
else
{
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
v_int8x16 v0(srcData[index], srcData[index + stride_w],
srcData[index + stride_w*2], srcData[index + stride_w*3],
srcData[index + stride_w*4], srcData[index + stride_w*5],
srcData[index + stride_w*6], srcData[index + stride_w*7],
srcData[index + stride_w*8], srcData[index + stride_w*9],
srcData[index + stride_w*10], srcData[index + stride_w*11],
srcData[index + stride_w*12], srcData[index + stride_w*13],
srcData[index + stride_w*14], srcData[index + stride_w*15]);
max_val0 = v_max(max_val0, v0);
}
}
}
v_store(dstData + x0, max_val0);
x0 += 15;
}
else
#else
CV_UNUSED(isPool2D);
#endif
if( isPool1D )
{
const int8_t* first = srcData + xstart;
const int8_t* last = srcData + xend;
const int8_t* max_elem = std::max_element(first, last);
if (max_elem != last)
dstData[x0] = *max_elem;
}
else
{
int8_t max_val = -128;
for (int d = dstart; d < dend; ++d) {
for (int y = ystart; y < yend; ++y) {
for (int x = xstart; x < xend; ++x) {
const int index = d * inp_width * inp_height + y * inp_width + x;
int8_t val = srcData[index];
max_val = std::max(max_val, val);
}
}
}
dstData[x0] = max_val;
}
}
else if (poolingType == AVE || poolingType == SUM)
{
for( ; x0 < x1; ++x0)
{
int xstart = x0 * stride_w - pad_l;
int xend = min(xstart + kernel_w, inp_width + pad_r);
int xdelta = xend - xstart;
xstart = max(xstart, 0);
xend = min(xend, inp_width);
int real_kernel_area = (dend - dstart) * (yend - ystart) * (xend - xstart);
int padded_kernel_area = xdelta * ydelta * ddelta;
int kernel_area = avePoolPaddedArea ? padded_kernel_area : real_kernel_area;
int bias = (avePoolPaddedArea ? (padded_kernel_area - real_kernel_area) * inpZp : 0)
- (inpZp * kernel_area);
float inv_kernel_area = poolingType == AVE ? multiplier / kernel_area : multiplier;
#if CV_SIMD128
if( isPool2D && xstart > 0 && x0 + 15 < x1 && (x0 + 15) * stride_w - pad_l + kernel_w < inp_width )
{
v_int32x4 sum_val0 = v_setall_s32(bias), sum_val1 = v_setall_s32(bias),
sum_val2 = v_setall_s32(bias), sum_val3 = v_setall_s32(bias),
voutzp = v_setall_s32(outZp);
v_float32x4 ikarea = v_setall_f32(inv_kernel_area);
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
v_int32x4 v0((int)srcData[index], (int)srcData[index + stride_w],
(int)srcData[index + stride_w*2], (int)srcData[index + stride_w*3]);
v_int32x4 v1((int)srcData[index + stride_w*4], (int)srcData[index + stride_w*5],
(int)srcData[index + stride_w*6], (int)srcData[index + stride_w*7]);
v_int32x4 v2((int)srcData[index + stride_w*8], (int)srcData[index + stride_w*9],
(int)srcData[index + stride_w*10], (int)srcData[index + stride_w*11]);
v_int32x4 v3((int)srcData[index + stride_w*12], (int)srcData[index + stride_w*13],
(int)srcData[index + stride_w*14], (int)srcData[index + stride_w*15]);
sum_val0 += v0;
sum_val1 += v1;
sum_val2 += v2;
sum_val3 += v3;
}
}
sum_val0 = v_round(v_cvt_f32(sum_val0)*ikarea) + voutzp;
sum_val1 = v_round(v_cvt_f32(sum_val1)*ikarea) + voutzp;
sum_val2 = v_round(v_cvt_f32(sum_val2)*ikarea) + voutzp;
sum_val3 = v_round(v_cvt_f32(sum_val3)*ikarea) + voutzp;
v_store(dstData + x0, v_pack(v_pack(sum_val0, sum_val1), v_pack(sum_val2, sum_val3)));
x0 += 15;
}
else
#endif
if( isPool1D )
{
const int8_t* first = srcData + xstart;
const int8_t* last = srcData + xend;
int sum_val = bias + std::accumulate(first, last, 0);
dstData[x0] = saturate_cast<int8_t>(outZp + std::round(sum_val*inv_kernel_area));
}
else
{
int sum_val = bias;
for (int d = dstart; d < dend; ++d) {
for (int y = ystart; y < yend; ++y) {
for (int x = xstart; x < xend; ++x) {
const int index = d * inp_width * inp_height + y * inp_width + x;
int8_t val = srcData[index];
sum_val += (int)val;
}
}
}
dstData[x0] = saturate_cast<int8_t>(outZp + std::round(sum_val*inv_kernel_area));
}
}
}
}
}
};
void maxPooling(Mat &src, Mat &dst)
{
const int nstripes = getNumThreads();
Mat rois;
PoolingInvoker::run(src, rois, dst, kernel_size, strides, pads_begin, pads_end, avePoolPaddedArea, type,
spatialScale, multiplier, input_zp, output_zp, nstripes);
}
void avePooling(Mat &src, Mat &dst)
{
const int nstripes = getNumThreads();
Mat rois;
PoolingInvoker::run(src, rois, dst, kernel_size, strides, pads_begin, pads_end, avePoolPaddedArea, type,
spatialScale, multiplier, input_zp, output_zp, nstripes);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() != 0);
bool isPool1D = inputs[0].size() == 3;
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
std::vector<int> outShape(inputs[0].begin(), inputs[0].begin() + 2);
std::vector<size_t> local_kernel;
if (globalPooling) {
for (int i = 0; i < inpShape.size(); i++) {
int idx = isGlobalPooling.size() - inpShape.size() + i;
local_kernel.push_back(isGlobalPooling[idx] ? inpShape[i] : kernel_size[idx]);
}
} else {
local_kernel = kernel_size;
}
if (hasDynamicShapes && !shapesInitialized)
{
//Just copy input shapes for width and height to prevent errors on loading stage
for (int i = 0; i < inpShape.size(); i++)
outShape.push_back(inpShape[i]);
}
else if (padMode.empty())
{
int addedDims = isPool1D? inpShape.size() : local_kernel.size();
for (int i = 0; i < addedDims; i++) {
float dst = (float) (inpShape[i] + pads_begin[i] + pads_end[i] - local_kernel[i]) / strides[i];
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
}
// If we have padding, ensure that the last pooling starts strictly
// inside the image (instead of at the padding); otherwise clip the last.
for (int i = 0; i < addedDims; i++) {
if (pads_end[i] && (outShape[2 + i] - 1) * strides[i] >= inpShape[i] + pads_end[i]) {
--outShape[2 + i];
CV_Assert((outShape[2 + i] - 1) * strides[i] < inpShape[i] + pads_end[i]);
}
}
}
else {
getConvPoolOutParams(inpShape, local_kernel, strides, padMode,
std::vector<size_t>(local_kernel.size(), 1), outShape);
}
outputs.assign(1, outShape);
return false;
}
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
{
int dims = inputs[0].size();
CV_Assert(inputs[0][dims - 1] > 0 && inputs[0][dims - 2] > 0);
shapesInitialized = true;
return true;
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
bool isPool1D = inputs[0].size() == 3;
size_t karea = std::accumulate(kernel_size.begin(), isPool1D? kernel_size.begin() + 1 : kernel_size.end(),
1, std::multiplies<size_t>());
for(int i = 0; i < outputs.size(); i++)
{
if (type == MAX)
{
if (i%2 == 0)
flops += total(outputs[i])*karea;
}
else
{
flops += total(outputs[i])*(karea + 1);
}
}
return flops;
}
private:
enum Type
{
MAX,
AVE,
STOCHASTIC,
SUM,
ROI, // RoI pooling, https://arxiv.org/pdf/1504.08083.pdf
PSROI // Position-sensitive RoI pooling, https://arxiv.org/pdf/1605.06409.pdf
};
bool hasDynamicShapes;
bool shapesInitialized;
float multiplier;
};
Ptr<PoolingLayerInt8> PoolingLayerInt8::create(const LayerParams& params)
{
return Ptr<PoolingLayerInt8>(new PoolingLayerInt8Impl(params));
}
}
}