mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 18:09:11 +08:00
878af7ada8
3rdparty: update OpenEXR 2.3.0 (#14725) * openexr 2.2.1 * openexr 2.3.0 * openexr: build fixes * openexr: build dwa tables on-demand
1017 lines
22 KiB
C++
1017 lines
22 KiB
C++
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#ifndef INCLUDED_IMATHBOXALGO_H
|
|
#define INCLUDED_IMATHBOXALGO_H
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
//
|
|
// This file contains algorithms applied to or in conjunction
|
|
// with bounding boxes (Imath::Box). These algorithms require
|
|
// more headers to compile. The assumption made is that these
|
|
// functions are called much less often than the basic box
|
|
// functions or these functions require more support classes.
|
|
//
|
|
// Contains:
|
|
//
|
|
// T clip<T>(const T& in, const Box<T>& box)
|
|
//
|
|
// Vec3<T> closestPointOnBox(const Vec3<T>&, const Box<Vec3<T>>& )
|
|
//
|
|
// Vec3<T> closestPointInBox(const Vec3<T>&, const Box<Vec3<T>>& )
|
|
//
|
|
// Box< Vec3<S> > transform(const Box<Vec3<S>>&, const Matrix44<T>&)
|
|
// Box< Vec3<S> > affineTransform(const Box<Vec3<S>>&, const Matrix44<T>&)
|
|
//
|
|
// void transform(const Box<Vec3<S>>&, const Matrix44<T>&, Box<V3ec3<S>>&)
|
|
// void affineTransform(const Box<Vec3<S>>&,
|
|
// const Matrix44<T>&,
|
|
// Box<V3ec3<S>>&)
|
|
//
|
|
// bool findEntryAndExitPoints(const Line<T> &line,
|
|
// const Box< Vec3<T> > &box,
|
|
// Vec3<T> &enterPoint,
|
|
// Vec3<T> &exitPoint)
|
|
//
|
|
// bool intersects(const Box<Vec3<T>> &box,
|
|
// const Line3<T> &ray,
|
|
// Vec3<T> intersectionPoint)
|
|
//
|
|
// bool intersects(const Box<Vec3<T>> &box, const Line3<T> &ray)
|
|
//
|
|
//---------------------------------------------------------------------------
|
|
|
|
#include "ImathBox.h"
|
|
#include "ImathMatrix.h"
|
|
#include "ImathLineAlgo.h"
|
|
#include "ImathPlane.h"
|
|
#include "ImathNamespace.h"
|
|
|
|
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
|
|
|
|
|
|
template <class T>
|
|
inline T
|
|
clip (const T &p, const Box<T> &box)
|
|
{
|
|
//
|
|
// Clip the coordinates of a point, p, against a box.
|
|
// The result, q, is the closest point to p that is inside the box.
|
|
//
|
|
|
|
T q;
|
|
|
|
for (int i = 0; i < int (box.min.dimensions()); i++)
|
|
{
|
|
if (p[i] < box.min[i])
|
|
q[i] = box.min[i];
|
|
else if (p[i] > box.max[i])
|
|
q[i] = box.max[i];
|
|
else
|
|
q[i] = p[i];
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
inline T
|
|
closestPointInBox (const T &p, const Box<T> &box)
|
|
{
|
|
return clip (p, box);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Vec3<T>
|
|
closestPointOnBox (const Vec3<T> &p, const Box< Vec3<T> > &box)
|
|
{
|
|
//
|
|
// Find the point, q, on the surface of
|
|
// the box, that is closest to point p.
|
|
//
|
|
// If the box is empty, return p.
|
|
//
|
|
|
|
if (box.isEmpty())
|
|
return p;
|
|
|
|
Vec3<T> q = closestPointInBox (p, box);
|
|
|
|
if (q == p)
|
|
{
|
|
Vec3<T> d1 = p - box.min;
|
|
Vec3<T> d2 = box.max - p;
|
|
|
|
Vec3<T> d ((d1.x < d2.x)? d1.x: d2.x,
|
|
(d1.y < d2.y)? d1.y: d2.y,
|
|
(d1.z < d2.z)? d1.z: d2.z);
|
|
|
|
if (d.x < d.y && d.x < d.z)
|
|
{
|
|
q.x = (d1.x < d2.x)? box.min.x: box.max.x;
|
|
}
|
|
else if (d.y < d.z)
|
|
{
|
|
q.y = (d1.y < d2.y)? box.min.y: box.max.y;
|
|
}
|
|
else
|
|
{
|
|
q.z = (d1.z < d2.z)? box.min.z: box.max.z;
|
|
}
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
|
|
template <class S, class T>
|
|
Box< Vec3<S> >
|
|
transform (const Box< Vec3<S> > &box, const Matrix44<T> &m)
|
|
{
|
|
//
|
|
// Transform a 3D box by a matrix, and compute a new box that
|
|
// tightly encloses the transformed box.
|
|
//
|
|
// If m is an affine transform, then we use James Arvo's fast
|
|
// method as described in "Graphics Gems", Academic Press, 1990,
|
|
// pp. 548-550.
|
|
//
|
|
|
|
//
|
|
// A transformed empty box is still empty, and a transformed infinite box
|
|
// is still infinite
|
|
//
|
|
|
|
if (box.isEmpty() || box.isInfinite())
|
|
return box;
|
|
|
|
//
|
|
// If the last column of m is (0 0 0 1) then m is an affine
|
|
// transform, and we use the fast Graphics Gems trick.
|
|
//
|
|
|
|
if (m[0][3] == 0 && m[1][3] == 0 && m[2][3] == 0 && m[3][3] == 1)
|
|
{
|
|
Box< Vec3<S> > newBox;
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
newBox.min[i] = newBox.max[i] = (S) m[3][i];
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
S a, b;
|
|
|
|
a = (S) m[j][i] * box.min[j];
|
|
b = (S) m[j][i] * box.max[j];
|
|
|
|
if (a < b)
|
|
{
|
|
newBox.min[i] += a;
|
|
newBox.max[i] += b;
|
|
}
|
|
else
|
|
{
|
|
newBox.min[i] += b;
|
|
newBox.max[i] += a;
|
|
}
|
|
}
|
|
}
|
|
|
|
return newBox;
|
|
}
|
|
|
|
//
|
|
// M is a projection matrix. Do things the naive way:
|
|
// Transform the eight corners of the box, and find an
|
|
// axis-parallel box that encloses the transformed corners.
|
|
//
|
|
|
|
Vec3<S> points[8];
|
|
|
|
points[0][0] = points[1][0] = points[2][0] = points[3][0] = box.min[0];
|
|
points[4][0] = points[5][0] = points[6][0] = points[7][0] = box.max[0];
|
|
|
|
points[0][1] = points[1][1] = points[4][1] = points[5][1] = box.min[1];
|
|
points[2][1] = points[3][1] = points[6][1] = points[7][1] = box.max[1];
|
|
|
|
points[0][2] = points[2][2] = points[4][2] = points[6][2] = box.min[2];
|
|
points[1][2] = points[3][2] = points[5][2] = points[7][2] = box.max[2];
|
|
|
|
Box< Vec3<S> > newBox;
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
newBox.extendBy (points[i] * m);
|
|
|
|
return newBox;
|
|
}
|
|
|
|
template <class S, class T>
|
|
void
|
|
transform (const Box< Vec3<S> > &box,
|
|
const Matrix44<T> &m,
|
|
Box< Vec3<S> > &result)
|
|
{
|
|
//
|
|
// Transform a 3D box by a matrix, and compute a new box that
|
|
// tightly encloses the transformed box.
|
|
//
|
|
// If m is an affine transform, then we use James Arvo's fast
|
|
// method as described in "Graphics Gems", Academic Press, 1990,
|
|
// pp. 548-550.
|
|
//
|
|
|
|
//
|
|
// A transformed empty box is still empty, and a transformed infinite
|
|
// box is still infinite
|
|
//
|
|
|
|
if (box.isEmpty() || box.isInfinite())
|
|
{
|
|
return;
|
|
}
|
|
|
|
//
|
|
// If the last column of m is (0 0 0 1) then m is an affine
|
|
// transform, and we use the fast Graphics Gems trick.
|
|
//
|
|
|
|
if (m[0][3] == 0 && m[1][3] == 0 && m[2][3] == 0 && m[3][3] == 1)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
result.min[i] = result.max[i] = (S) m[3][i];
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
S a, b;
|
|
|
|
a = (S) m[j][i] * box.min[j];
|
|
b = (S) m[j][i] * box.max[j];
|
|
|
|
if (a < b)
|
|
{
|
|
result.min[i] += a;
|
|
result.max[i] += b;
|
|
}
|
|
else
|
|
{
|
|
result.min[i] += b;
|
|
result.max[i] += a;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
//
|
|
// M is a projection matrix. Do things the naive way:
|
|
// Transform the eight corners of the box, and find an
|
|
// axis-parallel box that encloses the transformed corners.
|
|
//
|
|
|
|
Vec3<S> points[8];
|
|
|
|
points[0][0] = points[1][0] = points[2][0] = points[3][0] = box.min[0];
|
|
points[4][0] = points[5][0] = points[6][0] = points[7][0] = box.max[0];
|
|
|
|
points[0][1] = points[1][1] = points[4][1] = points[5][1] = box.min[1];
|
|
points[2][1] = points[3][1] = points[6][1] = points[7][1] = box.max[1];
|
|
|
|
points[0][2] = points[2][2] = points[4][2] = points[6][2] = box.min[2];
|
|
points[1][2] = points[3][2] = points[5][2] = points[7][2] = box.max[2];
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
result.extendBy (points[i] * m);
|
|
}
|
|
|
|
|
|
template <class S, class T>
|
|
Box< Vec3<S> >
|
|
affineTransform (const Box< Vec3<S> > &box, const Matrix44<T> &m)
|
|
{
|
|
//
|
|
// Transform a 3D box by a matrix whose rightmost column
|
|
// is (0 0 0 1), and compute a new box that tightly encloses
|
|
// the transformed box.
|
|
//
|
|
// As in the transform() function, above, we use James Arvo's
|
|
// fast method.
|
|
//
|
|
|
|
if (box.isEmpty() || box.isInfinite())
|
|
{
|
|
//
|
|
// A transformed empty or infinite box is still empty or infinite
|
|
//
|
|
|
|
return box;
|
|
}
|
|
|
|
Box< Vec3<S> > newBox;
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
newBox.min[i] = newBox.max[i] = (S) m[3][i];
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
S a, b;
|
|
|
|
a = (S) m[j][i] * box.min[j];
|
|
b = (S) m[j][i] * box.max[j];
|
|
|
|
if (a < b)
|
|
{
|
|
newBox.min[i] += a;
|
|
newBox.max[i] += b;
|
|
}
|
|
else
|
|
{
|
|
newBox.min[i] += b;
|
|
newBox.max[i] += a;
|
|
}
|
|
}
|
|
}
|
|
|
|
return newBox;
|
|
}
|
|
|
|
template <class S, class T>
|
|
void
|
|
affineTransform (const Box< Vec3<S> > &box,
|
|
const Matrix44<T> &m,
|
|
Box<Vec3<S> > &result)
|
|
{
|
|
//
|
|
// Transform a 3D box by a matrix whose rightmost column
|
|
// is (0 0 0 1), and compute a new box that tightly encloses
|
|
// the transformed box.
|
|
//
|
|
// As in the transform() function, above, we use James Arvo's
|
|
// fast method.
|
|
//
|
|
|
|
if (box.isEmpty())
|
|
{
|
|
//
|
|
// A transformed empty box is still empty
|
|
//
|
|
result.makeEmpty();
|
|
return;
|
|
}
|
|
|
|
if (box.isInfinite())
|
|
{
|
|
//
|
|
// A transformed infinite box is still infinite
|
|
//
|
|
result.makeInfinite();
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
result.min[i] = result.max[i] = (S) m[3][i];
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
S a, b;
|
|
|
|
a = (S) m[j][i] * box.min[j];
|
|
b = (S) m[j][i] * box.max[j];
|
|
|
|
if (a < b)
|
|
{
|
|
result.min[i] += a;
|
|
result.max[i] += b;
|
|
}
|
|
else
|
|
{
|
|
result.min[i] += b;
|
|
result.max[i] += a;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
findEntryAndExitPoints (const Line3<T> &r,
|
|
const Box<Vec3<T> > &b,
|
|
Vec3<T> &entry,
|
|
Vec3<T> &exit)
|
|
{
|
|
//
|
|
// Compute the points where a ray, r, enters and exits a box, b:
|
|
//
|
|
// findEntryAndExitPoints() returns
|
|
//
|
|
// - true if the ray starts inside the box or if the
|
|
// ray starts outside and intersects the box
|
|
//
|
|
// - false otherwise (that is, if the ray does not
|
|
// intersect the box)
|
|
//
|
|
// The entry and exit points are
|
|
//
|
|
// - points on two of the faces of the box when
|
|
// findEntryAndExitPoints() returns true
|
|
// (The entry end exit points may be on either
|
|
// side of the ray's origin)
|
|
//
|
|
// - undefined when findEntryAndExitPoints()
|
|
// returns false
|
|
//
|
|
|
|
if (b.isEmpty())
|
|
{
|
|
//
|
|
// No ray intersects an empty box
|
|
//
|
|
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// The following description assumes that the ray's origin is outside
|
|
// the box, but the code below works even if the origin is inside the
|
|
// box:
|
|
//
|
|
// Between one and three "frontfacing" sides of the box are oriented
|
|
// towards the ray's origin, and between one and three "backfacing"
|
|
// sides are oriented away from the ray's origin.
|
|
// We intersect the ray with the planes that contain the sides of the
|
|
// box, and compare the distances between the ray's origin and the
|
|
// ray-plane intersections. The ray intersects the box if the most
|
|
// distant frontfacing intersection is nearer than the nearest
|
|
// backfacing intersection. If the ray does intersect the box, then
|
|
// the most distant frontfacing ray-plane intersection is the entry
|
|
// point and the nearest backfacing ray-plane intersection is the
|
|
// exit point.
|
|
//
|
|
|
|
const T TMAX = limits<T>::max();
|
|
|
|
T tFrontMax = -TMAX;
|
|
T tBackMin = TMAX;
|
|
|
|
//
|
|
// Minimum and maximum X sides.
|
|
//
|
|
|
|
if (r.dir.x >= 0)
|
|
{
|
|
T d1 = b.max.x - r.pos.x;
|
|
T d2 = b.min.x - r.pos.x;
|
|
|
|
if (r.dir.x > 1 ||
|
|
(abs (d1) < TMAX * r.dir.x &&
|
|
abs (d2) < TMAX * r.dir.x))
|
|
{
|
|
T t1 = d1 / r.dir.x;
|
|
T t2 = d2 / r.dir.x;
|
|
|
|
if (tBackMin > t1)
|
|
{
|
|
tBackMin = t1;
|
|
|
|
exit.x = b.max.x;
|
|
exit.y = clamp (r.pos.y + t1 * r.dir.y, b.min.y, b.max.y);
|
|
exit.z = clamp (r.pos.z + t1 * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
|
|
if (tFrontMax < t2)
|
|
{
|
|
tFrontMax = t2;
|
|
|
|
entry.x = b.min.x;
|
|
entry.y = clamp (r.pos.y + t2 * r.dir.y, b.min.y, b.max.y);
|
|
entry.z = clamp (r.pos.z + t2 * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
}
|
|
else if (r.pos.x < b.min.x || r.pos.x > b.max.x)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else // r.dir.x < 0
|
|
{
|
|
T d1 = b.min.x - r.pos.x;
|
|
T d2 = b.max.x - r.pos.x;
|
|
|
|
if (r.dir.x < -1 ||
|
|
(abs (d1) < -TMAX * r.dir.x &&
|
|
abs (d2) < -TMAX * r.dir.x))
|
|
{
|
|
T t1 = d1 / r.dir.x;
|
|
T t2 = d2 / r.dir.x;
|
|
|
|
if (tBackMin > t1)
|
|
{
|
|
tBackMin = t1;
|
|
|
|
exit.x = b.min.x;
|
|
exit.y = clamp (r.pos.y + t1 * r.dir.y, b.min.y, b.max.y);
|
|
exit.z = clamp (r.pos.z + t1 * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
|
|
if (tFrontMax < t2)
|
|
{
|
|
tFrontMax = t2;
|
|
|
|
entry.x = b.max.x;
|
|
entry.y = clamp (r.pos.y + t2 * r.dir.y, b.min.y, b.max.y);
|
|
entry.z = clamp (r.pos.z + t2 * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
}
|
|
else if (r.pos.x < b.min.x || r.pos.x > b.max.x)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Minimum and maximum Y sides.
|
|
//
|
|
|
|
if (r.dir.y >= 0)
|
|
{
|
|
T d1 = b.max.y - r.pos.y;
|
|
T d2 = b.min.y - r.pos.y;
|
|
|
|
if (r.dir.y > 1 ||
|
|
(abs (d1) < TMAX * r.dir.y &&
|
|
abs (d2) < TMAX * r.dir.y))
|
|
{
|
|
T t1 = d1 / r.dir.y;
|
|
T t2 = d2 / r.dir.y;
|
|
|
|
if (tBackMin > t1)
|
|
{
|
|
tBackMin = t1;
|
|
|
|
exit.x = clamp (r.pos.x + t1 * r.dir.x, b.min.x, b.max.x);
|
|
exit.y = b.max.y;
|
|
exit.z = clamp (r.pos.z + t1 * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
|
|
if (tFrontMax < t2)
|
|
{
|
|
tFrontMax = t2;
|
|
|
|
entry.x = clamp (r.pos.x + t2 * r.dir.x, b.min.x, b.max.x);
|
|
entry.y = b.min.y;
|
|
entry.z = clamp (r.pos.z + t2 * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
}
|
|
else if (r.pos.y < b.min.y || r.pos.y > b.max.y)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else // r.dir.y < 0
|
|
{
|
|
T d1 = b.min.y - r.pos.y;
|
|
T d2 = b.max.y - r.pos.y;
|
|
|
|
if (r.dir.y < -1 ||
|
|
(abs (d1) < -TMAX * r.dir.y &&
|
|
abs (d2) < -TMAX * r.dir.y))
|
|
{
|
|
T t1 = d1 / r.dir.y;
|
|
T t2 = d2 / r.dir.y;
|
|
|
|
if (tBackMin > t1)
|
|
{
|
|
tBackMin = t1;
|
|
|
|
exit.x = clamp (r.pos.x + t1 * r.dir.x, b.min.x, b.max.x);
|
|
exit.y = b.min.y;
|
|
exit.z = clamp (r.pos.z + t1 * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
|
|
if (tFrontMax < t2)
|
|
{
|
|
tFrontMax = t2;
|
|
|
|
entry.x = clamp (r.pos.x + t2 * r.dir.x, b.min.x, b.max.x);
|
|
entry.y = b.max.y;
|
|
entry.z = clamp (r.pos.z + t2 * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
}
|
|
else if (r.pos.y < b.min.y || r.pos.y > b.max.y)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Minimum and maximum Z sides.
|
|
//
|
|
|
|
if (r.dir.z >= 0)
|
|
{
|
|
T d1 = b.max.z - r.pos.z;
|
|
T d2 = b.min.z - r.pos.z;
|
|
|
|
if (r.dir.z > 1 ||
|
|
(abs (d1) < TMAX * r.dir.z &&
|
|
abs (d2) < TMAX * r.dir.z))
|
|
{
|
|
T t1 = d1 / r.dir.z;
|
|
T t2 = d2 / r.dir.z;
|
|
|
|
if (tBackMin > t1)
|
|
{
|
|
tBackMin = t1;
|
|
|
|
exit.x = clamp (r.pos.x + t1 * r.dir.x, b.min.x, b.max.x);
|
|
exit.y = clamp (r.pos.y + t1 * r.dir.y, b.min.y, b.max.y);
|
|
exit.z = b.max.z;
|
|
}
|
|
|
|
if (tFrontMax < t2)
|
|
{
|
|
tFrontMax = t2;
|
|
|
|
entry.x = clamp (r.pos.x + t2 * r.dir.x, b.min.x, b.max.x);
|
|
entry.y = clamp (r.pos.y + t2 * r.dir.y, b.min.y, b.max.y);
|
|
entry.z = b.min.z;
|
|
}
|
|
}
|
|
else if (r.pos.z < b.min.z || r.pos.z > b.max.z)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else // r.dir.z < 0
|
|
{
|
|
T d1 = b.min.z - r.pos.z;
|
|
T d2 = b.max.z - r.pos.z;
|
|
|
|
if (r.dir.z < -1 ||
|
|
(abs (d1) < -TMAX * r.dir.z &&
|
|
abs (d2) < -TMAX * r.dir.z))
|
|
{
|
|
T t1 = d1 / r.dir.z;
|
|
T t2 = d2 / r.dir.z;
|
|
|
|
if (tBackMin > t1)
|
|
{
|
|
tBackMin = t1;
|
|
|
|
exit.x = clamp (r.pos.x + t1 * r.dir.x, b.min.x, b.max.x);
|
|
exit.y = clamp (r.pos.y + t1 * r.dir.y, b.min.y, b.max.y);
|
|
exit.z = b.min.z;
|
|
}
|
|
|
|
if (tFrontMax < t2)
|
|
{
|
|
tFrontMax = t2;
|
|
|
|
entry.x = clamp (r.pos.x + t2 * r.dir.x, b.min.x, b.max.x);
|
|
entry.y = clamp (r.pos.y + t2 * r.dir.y, b.min.y, b.max.y);
|
|
entry.z = b.max.z;
|
|
}
|
|
}
|
|
else if (r.pos.z < b.min.z || r.pos.z > b.max.z)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return tFrontMax <= tBackMin;
|
|
}
|
|
|
|
|
|
template<class T>
|
|
bool
|
|
intersects (const Box< Vec3<T> > &b, const Line3<T> &r, Vec3<T> &ip)
|
|
{
|
|
//
|
|
// Intersect a ray, r, with a box, b, and compute the intersection
|
|
// point, ip:
|
|
//
|
|
// intersect() returns
|
|
//
|
|
// - true if the ray starts inside the box or if the
|
|
// ray starts outside and intersects the box
|
|
//
|
|
// - false if the ray starts outside the box and intersects it,
|
|
// but the intersection is behind the ray's origin.
|
|
//
|
|
// - false if the ray starts outside and does not intersect it
|
|
//
|
|
// The intersection point is
|
|
//
|
|
// - the ray's origin if the ray starts inside the box
|
|
//
|
|
// - a point on one of the faces of the box if the ray
|
|
// starts outside the box
|
|
//
|
|
// - undefined when intersect() returns false
|
|
//
|
|
|
|
if (b.isEmpty())
|
|
{
|
|
//
|
|
// No ray intersects an empty box
|
|
//
|
|
|
|
return false;
|
|
}
|
|
|
|
if (b.intersects (r.pos))
|
|
{
|
|
//
|
|
// The ray starts inside the box
|
|
//
|
|
|
|
ip = r.pos;
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// The ray starts outside the box. Between one and three "frontfacing"
|
|
// sides of the box are oriented towards the ray, and between one and
|
|
// three "backfacing" sides are oriented away from the ray.
|
|
// We intersect the ray with the planes that contain the sides of the
|
|
// box, and compare the distances between ray's origin and the ray-plane
|
|
// intersections.
|
|
// The ray intersects the box if the most distant frontfacing intersection
|
|
// is nearer than the nearest backfacing intersection. If the ray does
|
|
// intersect the box, then the most distant frontfacing ray-plane
|
|
// intersection is the ray-box intersection.
|
|
//
|
|
|
|
const T TMAX = limits<T>::max();
|
|
|
|
T tFrontMax = -1;
|
|
T tBackMin = TMAX;
|
|
|
|
//
|
|
// Minimum and maximum X sides.
|
|
//
|
|
|
|
if (r.dir.x > 0)
|
|
{
|
|
if (r.pos.x > b.max.x)
|
|
return false;
|
|
|
|
T d = b.max.x - r.pos.x;
|
|
|
|
if (r.dir.x > 1 || d < TMAX * r.dir.x)
|
|
{
|
|
T t = d / r.dir.x;
|
|
|
|
if (tBackMin > t)
|
|
tBackMin = t;
|
|
}
|
|
|
|
if (r.pos.x <= b.min.x)
|
|
{
|
|
T d = b.min.x - r.pos.x;
|
|
T t = (r.dir.x > 1 || d < TMAX * r.dir.x)? d / r.dir.x: TMAX;
|
|
|
|
if (tFrontMax < t)
|
|
{
|
|
tFrontMax = t;
|
|
|
|
ip.x = b.min.x;
|
|
ip.y = clamp (r.pos.y + t * r.dir.y, b.min.y, b.max.y);
|
|
ip.z = clamp (r.pos.z + t * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
}
|
|
}
|
|
else if (r.dir.x < 0)
|
|
{
|
|
if (r.pos.x < b.min.x)
|
|
return false;
|
|
|
|
T d = b.min.x - r.pos.x;
|
|
|
|
if (r.dir.x < -1 || d > TMAX * r.dir.x)
|
|
{
|
|
T t = d / r.dir.x;
|
|
|
|
if (tBackMin > t)
|
|
tBackMin = t;
|
|
}
|
|
|
|
if (r.pos.x >= b.max.x)
|
|
{
|
|
T d = b.max.x - r.pos.x;
|
|
T t = (r.dir.x < -1 || d > TMAX * r.dir.x)? d / r.dir.x: TMAX;
|
|
|
|
if (tFrontMax < t)
|
|
{
|
|
tFrontMax = t;
|
|
|
|
ip.x = b.max.x;
|
|
ip.y = clamp (r.pos.y + t * r.dir.y, b.min.y, b.max.y);
|
|
ip.z = clamp (r.pos.z + t * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
}
|
|
}
|
|
else // r.dir.x == 0
|
|
{
|
|
if (r.pos.x < b.min.x || r.pos.x > b.max.x)
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Minimum and maximum Y sides.
|
|
//
|
|
|
|
if (r.dir.y > 0)
|
|
{
|
|
if (r.pos.y > b.max.y)
|
|
return false;
|
|
|
|
T d = b.max.y - r.pos.y;
|
|
|
|
if (r.dir.y > 1 || d < TMAX * r.dir.y)
|
|
{
|
|
T t = d / r.dir.y;
|
|
|
|
if (tBackMin > t)
|
|
tBackMin = t;
|
|
}
|
|
|
|
if (r.pos.y <= b.min.y)
|
|
{
|
|
T d = b.min.y - r.pos.y;
|
|
T t = (r.dir.y > 1 || d < TMAX * r.dir.y)? d / r.dir.y: TMAX;
|
|
|
|
if (tFrontMax < t)
|
|
{
|
|
tFrontMax = t;
|
|
|
|
ip.x = clamp (r.pos.x + t * r.dir.x, b.min.x, b.max.x);
|
|
ip.y = b.min.y;
|
|
ip.z = clamp (r.pos.z + t * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
}
|
|
}
|
|
else if (r.dir.y < 0)
|
|
{
|
|
if (r.pos.y < b.min.y)
|
|
return false;
|
|
|
|
T d = b.min.y - r.pos.y;
|
|
|
|
if (r.dir.y < -1 || d > TMAX * r.dir.y)
|
|
{
|
|
T t = d / r.dir.y;
|
|
|
|
if (tBackMin > t)
|
|
tBackMin = t;
|
|
}
|
|
|
|
if (r.pos.y >= b.max.y)
|
|
{
|
|
T d = b.max.y - r.pos.y;
|
|
T t = (r.dir.y < -1 || d > TMAX * r.dir.y)? d / r.dir.y: TMAX;
|
|
|
|
if (tFrontMax < t)
|
|
{
|
|
tFrontMax = t;
|
|
|
|
ip.x = clamp (r.pos.x + t * r.dir.x, b.min.x, b.max.x);
|
|
ip.y = b.max.y;
|
|
ip.z = clamp (r.pos.z + t * r.dir.z, b.min.z, b.max.z);
|
|
}
|
|
}
|
|
}
|
|
else // r.dir.y == 0
|
|
{
|
|
if (r.pos.y < b.min.y || r.pos.y > b.max.y)
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Minimum and maximum Z sides.
|
|
//
|
|
|
|
if (r.dir.z > 0)
|
|
{
|
|
if (r.pos.z > b.max.z)
|
|
return false;
|
|
|
|
T d = b.max.z - r.pos.z;
|
|
|
|
if (r.dir.z > 1 || d < TMAX * r.dir.z)
|
|
{
|
|
T t = d / r.dir.z;
|
|
|
|
if (tBackMin > t)
|
|
tBackMin = t;
|
|
}
|
|
|
|
if (r.pos.z <= b.min.z)
|
|
{
|
|
T d = b.min.z - r.pos.z;
|
|
T t = (r.dir.z > 1 || d < TMAX * r.dir.z)? d / r.dir.z: TMAX;
|
|
|
|
if (tFrontMax < t)
|
|
{
|
|
tFrontMax = t;
|
|
|
|
ip.x = clamp (r.pos.x + t * r.dir.x, b.min.x, b.max.x);
|
|
ip.y = clamp (r.pos.y + t * r.dir.y, b.min.y, b.max.y);
|
|
ip.z = b.min.z;
|
|
}
|
|
}
|
|
}
|
|
else if (r.dir.z < 0)
|
|
{
|
|
if (r.pos.z < b.min.z)
|
|
return false;
|
|
|
|
T d = b.min.z - r.pos.z;
|
|
|
|
if (r.dir.z < -1 || d > TMAX * r.dir.z)
|
|
{
|
|
T t = d / r.dir.z;
|
|
|
|
if (tBackMin > t)
|
|
tBackMin = t;
|
|
}
|
|
|
|
if (r.pos.z >= b.max.z)
|
|
{
|
|
T d = b.max.z - r.pos.z;
|
|
T t = (r.dir.z < -1 || d > TMAX * r.dir.z)? d / r.dir.z: TMAX;
|
|
|
|
if (tFrontMax < t)
|
|
{
|
|
tFrontMax = t;
|
|
|
|
ip.x = clamp (r.pos.x + t * r.dir.x, b.min.x, b.max.x);
|
|
ip.y = clamp (r.pos.y + t * r.dir.y, b.min.y, b.max.y);
|
|
ip.z = b.max.z;
|
|
}
|
|
}
|
|
}
|
|
else // r.dir.z == 0
|
|
{
|
|
if (r.pos.z < b.min.z || r.pos.z > b.max.z)
|
|
return false;
|
|
}
|
|
|
|
return tFrontMax <= tBackMin;
|
|
}
|
|
|
|
|
|
template<class T>
|
|
bool
|
|
intersects (const Box< Vec3<T> > &box, const Line3<T> &ray)
|
|
{
|
|
Vec3<T> ignored;
|
|
return intersects (box, ray, ignored);
|
|
}
|
|
|
|
|
|
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
|
|
|
|
#endif // INCLUDED_IMATHBOXALGO_H
|