mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
4a297a2443
- removed tr1 usage (dropped in C++17) - moved includes of vector/map/iostream/limits into ts.hpp - require opencv_test + anonymous namespace (added compile check) - fixed norm() usage (must be from cvtest::norm for checks) and other conflict functions - added missing license headers
225 lines
7.0 KiB
C++
225 lines
7.0 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test {
|
|
|
|
CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
|
|
{
|
|
validationFN = "avalidation.xml";
|
|
}
|
|
|
|
int CV_AMLTest::run_test_case( int testCaseIdx )
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
int code = cvtest::TS::OK;
|
|
code = prepare_test_case( testCaseIdx );
|
|
|
|
if (code == cvtest::TS::OK)
|
|
{
|
|
//#define GET_STAT
|
|
#ifdef GET_STAT
|
|
const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr;
|
|
printf("%s, %s ", name, data_name);
|
|
const int icount = 100;
|
|
float res[icount];
|
|
for (int k = 0; k < icount; k++)
|
|
{
|
|
#endif
|
|
data->shuffleTrainTest();
|
|
code = train( testCaseIdx );
|
|
#ifdef GET_STAT
|
|
float case_result = get_error();
|
|
|
|
res[k] = case_result;
|
|
}
|
|
float mean = 0, sigma = 0;
|
|
for (int k = 0; k < icount; k++)
|
|
{
|
|
mean += res[k];
|
|
}
|
|
mean = mean /icount;
|
|
for (int k = 0; k < icount; k++)
|
|
{
|
|
sigma += (res[k] - mean)*(res[k] - mean);
|
|
}
|
|
sigma = sqrt(sigma/icount);
|
|
printf("%f, %f\n", mean, sigma);
|
|
#endif
|
|
}
|
|
return code;
|
|
}
|
|
|
|
int CV_AMLTest::validate_test_results( int testCaseIdx )
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
int iters;
|
|
float mean, sigma;
|
|
// read validation params
|
|
FileNode resultNode =
|
|
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"];
|
|
resultNode["iter_count"] >> iters;
|
|
if ( iters > 0)
|
|
{
|
|
resultNode["mean"] >> mean;
|
|
resultNode["sigma"] >> sigma;
|
|
model->save(format("/Users/vp/tmp/dtree/testcase_%02d.cur.yml", testCaseIdx));
|
|
float curErr = get_test_error( testCaseIdx );
|
|
const int coeff = 4;
|
|
ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f\n",
|
|
testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma );
|
|
if ( abs( curErr - mean) > coeff*sigma )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff );
|
|
return cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
else
|
|
ts->printf( cvtest::TS::LOG, ".\n" );
|
|
|
|
}
|
|
else
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "validation info is not suitable" );
|
|
return cvtest::TS::FAIL_INVALID_TEST_DATA;
|
|
}
|
|
return cvtest::TS::OK;
|
|
}
|
|
|
|
namespace {
|
|
|
|
TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); }
|
|
TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); }
|
|
TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); }
|
|
TEST(DISABLED_ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); }
|
|
|
|
TEST(ML_NBAYES, regression_5911)
|
|
{
|
|
int N=12;
|
|
Ptr<ml::NormalBayesClassifier> nb = cv::ml::NormalBayesClassifier::create();
|
|
|
|
// data:
|
|
Mat_<float> X(N,4);
|
|
X << 1,2,3,4, 1,2,3,4, 1,2,3,4, 1,2,3,4,
|
|
5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5,
|
|
4,3,2,1, 4,3,2,1, 4,3,2,1, 4,3,2,1;
|
|
|
|
// labels:
|
|
Mat_<int> Y(N,1);
|
|
Y << 0,0,0,0, 1,1,1,1, 2,2,2,2;
|
|
nb->train(X, ml::ROW_SAMPLE, Y);
|
|
|
|
// single prediction:
|
|
Mat R1,P1;
|
|
for (int i=0; i<N; i++)
|
|
{
|
|
Mat r,p;
|
|
nb->predictProb(X.row(i), r, p);
|
|
R1.push_back(r);
|
|
P1.push_back(p);
|
|
}
|
|
|
|
// bulk prediction (continuous memory):
|
|
Mat R2,P2;
|
|
nb->predictProb(X, R2, P2);
|
|
|
|
EXPECT_EQ(sum(R1 == R2)[0], 255 * R2.total());
|
|
EXPECT_EQ(sum(P1 == P2)[0], 255 * P2.total());
|
|
|
|
// bulk prediction, with non-continuous memory storage
|
|
Mat R3_(N, 1+1, CV_32S),
|
|
P3_(N, 3+1, CV_32F);
|
|
nb->predictProb(X, R3_.col(0), P3_.colRange(0,3));
|
|
Mat R3 = R3_.col(0).clone(),
|
|
P3 = P3_.colRange(0,3).clone();
|
|
|
|
EXPECT_EQ(sum(R1 == R3)[0], 255 * R3.total());
|
|
EXPECT_EQ(sum(P1 == P3)[0], 255 * P3.total());
|
|
}
|
|
|
|
TEST(ML_RTrees, getVotes)
|
|
{
|
|
int n = 12;
|
|
int count, i;
|
|
int label_size = 3;
|
|
int predicted_class = 0;
|
|
int max_votes = -1;
|
|
int val;
|
|
// RTrees for classification
|
|
Ptr<ml::RTrees> rt = cv::ml::RTrees::create();
|
|
|
|
//data
|
|
Mat data(n, 4, CV_32F);
|
|
randu(data, 0, 10);
|
|
|
|
//labels
|
|
Mat labels = (Mat_<int>(n,1) << 0,0,0,0, 1,1,1,1, 2,2,2,2);
|
|
|
|
rt->train(data, ml::ROW_SAMPLE, labels);
|
|
|
|
//run function
|
|
Mat test(1, 4, CV_32F);
|
|
Mat result;
|
|
randu(test, 0, 10);
|
|
rt->getVotes(test, result, 0);
|
|
|
|
//count vote amount and find highest vote
|
|
count = 0;
|
|
const int* result_row = result.ptr<int>(1);
|
|
for( i = 0; i < label_size; i++ )
|
|
{
|
|
val = result_row[i];
|
|
//predicted_class = max_votes < val? i;
|
|
if( max_votes < val )
|
|
{
|
|
max_votes = val;
|
|
predicted_class = i;
|
|
}
|
|
count += val;
|
|
}
|
|
|
|
EXPECT_EQ(count, (int)rt->getRoots().size());
|
|
EXPECT_EQ(result.at<float>(0, predicted_class), rt->predict(test));
|
|
}
|
|
|
|
}} // namespace
|
|
/* End of file. */
|