opencv/modules/calib3d/src/modelest.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

503 lines
15 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "_modelest.h"
#include <algorithm>
#include <iterator>
#include <limits>
CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions)
{
modelPoints = _modelPoints;
modelSize = _modelSize;
maxBasicSolutions = _maxBasicSolutions;
checkPartialSubsets = true;
rng = cvRNG(-1);
}
CvModelEstimator2::~CvModelEstimator2()
{
}
void CvModelEstimator2::setSeed( int64 seed )
{
rng = cvRNG(seed);
}
int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2,
const CvMat* model, CvMat* _err,
CvMat* _mask, double threshold )
{
int i, count = _err->rows*_err->cols, goodCount = 0;
const float* err = _err->data.fl;
uchar* mask = _mask->data.ptr;
computeReprojError( m1, m2, model, _err );
threshold *= threshold;
for( i = 0; i < count; i++ )
goodCount += mask[i] = err[i] <= threshold;
return goodCount;
}
CV_IMPL int
cvRANSACUpdateNumIters( double p, double ep,
int model_points, int max_iters )
{
if( model_points <= 0 )
CV_Error( CV_StsOutOfRange, "the number of model points should be positive" );
p = MAX(p, 0.);
p = MIN(p, 1.);
ep = MAX(ep, 0.);
ep = MIN(ep, 1.);
// avoid inf's & nan's
double num = MAX(1. - p, DBL_MIN);
double denom = 1. - pow(1. - ep,model_points);
if( denom < DBL_MIN )
return 0;
num = log(num);
denom = log(denom);
return denom >= 0 || -num >= max_iters*(-denom) ?
max_iters : cvRound(num/denom);
}
bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model,
CvMat* mask0, double reprojThreshold,
double confidence, int maxIters )
{
bool result = false;
cv::Ptr<CvMat> mask = cvCloneMat(mask0);
cv::Ptr<CvMat> models, err, tmask;
cv::Ptr<CvMat> ms1, ms2;
int iter, niters = maxIters;
int count = m1->rows*m1->cols, maxGoodCount = 0;
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );
if( count < modelPoints )
return false;
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );
err = cvCreateMat( 1, count, CV_32FC1 );
tmask = cvCreateMat( 1, count, CV_8UC1 );
if( count > modelPoints )
{
ms1 = cvCreateMat( 1, modelPoints, m1->type );
ms2 = cvCreateMat( 1, modelPoints, m2->type );
}
else
{
niters = 1;
ms1 = cvCloneMat(m1);
ms2 = cvCloneMat(m2);
}
for( iter = 0; iter < niters; iter++ )
{
int i, goodCount, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, 300 );
if( !found )
{
if( iter == 0 )
return false;
break;
}
// Here we check for model specific geometrical
// constraints that allow to avoid "runKernel"
// and not checking for inliers if not fulfilled.
//
// The usefullness of this constraint for homographies is explained in the paper:
//
// "Speeding-up homography estimation in mobile devices"
// Journal of Real-Time Image Processing. 2013. DOI: 10.1007/s11554-012-0314-1
// Pablo Márquez-Neila, Javier López-Alberca, José M. Buenaposada, Luis Baumela
if ( !isMinimalSetConsistent( ms1, ms2 ) )
continue;
}
nmodels = runKernel( ms1, ms2, models );
if( nmodels <= 0 )
continue;
for( i = 0; i < nmodels; i++ )
{
CvMat model_i;
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );
goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold );
if( goodCount > MAX(maxGoodCount, modelPoints-1) )
{
std::swap(tmask, mask);
cvCopy( &model_i, model );
maxGoodCount = goodCount;
niters = cvRANSACUpdateNumIters( confidence,
(double)(count - goodCount)/count, modelPoints, niters );
}
}
}
if( maxGoodCount > 0 )
{
if( mask != mask0 )
cvCopy( mask, mask0 );
result = true;
}
return result;
}
static CV_IMPLEMENT_QSORT( icvSortDistances, int, CV_LT )
bool CvModelEstimator2::runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model,
CvMat* mask, double confidence, int maxIters )
{
const double outlierRatio = 0.45;
bool result = false;
cv::Ptr<CvMat> models;
cv::Ptr<CvMat> ms1, ms2;
cv::Ptr<CvMat> err;
int iter, niters = maxIters;
int count = m1->rows*m1->cols;
double minMedian = DBL_MAX, sigma;
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );
if( count < modelPoints )
return false;
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );
err = cvCreateMat( 1, count, CV_32FC1 );
if( count > modelPoints )
{
ms1 = cvCreateMat( 1, modelPoints, m1->type );
ms2 = cvCreateMat( 1, modelPoints, m2->type );
}
else
{
niters = 1;
ms1 = cvCloneMat(m1);
ms2 = cvCloneMat(m2);
}
niters = cvRound(log(1-confidence)/log(1-pow(1-outlierRatio,(double)modelPoints)));
niters = MIN( MAX(niters, 3), maxIters );
for( iter = 0; iter < niters; iter++ )
{
int i, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, 300 );
if( !found )
{
if( iter == 0 )
return false;
break;
}
}
nmodels = runKernel( ms1, ms2, models );
if( nmodels <= 0 )
continue;
for( i = 0; i < nmodels; i++ )
{
CvMat model_i;
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );
computeReprojError( m1, m2, &model_i, err );
icvSortDistances( err->data.i, count, 0 );
double median = count % 2 != 0 ?
err->data.fl[count/2] : (err->data.fl[count/2-1] + err->data.fl[count/2])*0.5;
if( median < minMedian )
{
minMedian = median;
cvCopy( &model_i, model );
}
}
}
if( minMedian < DBL_MAX )
{
sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian);
sigma = MAX( sigma, 0.001 );
count = findInliers( m1, m2, model, err, mask, sigma );
result = count >= modelPoints;
}
return result;
}
bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2,
CvMat* ms1, CvMat* ms2, int maxAttempts )
{
cv::AutoBuffer<int> _idx(modelPoints);
int* idx = _idx;
int i = 0, j, k, idx_i, iters = 0;
int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type);
const int *m1ptr = m1->data.i, *m2ptr = m2->data.i;
int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i;
int count = m1->cols*m1->rows;
assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) );
elemSize /= sizeof(int);
for(; iters < maxAttempts; iters++)
{
for( i = 0; i < modelPoints && iters < maxAttempts; )
{
idx[i] = idx_i = cvRandInt(&rng) % count;
for( j = 0; j < i; j++ )
if( idx_i == idx[j] )
break;
if( j < i )
continue;
for( k = 0; k < elemSize; k++ )
{
ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k];
ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k];
}
if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 )))
{
iters++;
continue;
}
i++;
}
if( !checkPartialSubsets && i == modelPoints &&
(!checkSubset( ms1, i ) || !checkSubset( ms2, i )))
continue;
break;
}
return i == modelPoints && iters < maxAttempts;
}
bool CvModelEstimator2::checkSubset( const CvMat* m, int count )
{
if( count <= 2 )
return true;
int j, k, i, i0, i1;
CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr;
assert( CV_MAT_TYPE(m->type) == CV_64FC2 );
if( checkPartialSubsets )
i0 = i1 = count - 1;
else
i0 = 0, i1 = count - 1;
for( i = i0; i <= i1; i++ )
{
// check that the i-th selected point does not belong
// to a line connecting some previously selected points
for( j = 0; j < i; j++ )
{
double dx1 = ptr[j].x - ptr[i].x;
double dy1 = ptr[j].y - ptr[i].y;
for( k = 0; k < j; k++ )
{
double dx2 = ptr[k].x - ptr[i].x;
double dy2 = ptr[k].y - ptr[i].y;
if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2)))
break;
}
if( k < j )
break;
}
if( j < i )
break;
}
return i > i1;
}
namespace cv
{
class Affine3DEstimator : public CvModelEstimator2
{
public:
Affine3DEstimator() : CvModelEstimator2(4, cvSize(4, 3), 1) {}
virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model );
protected:
virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error );
virtual bool checkSubset( const CvMat* ms1, int count );
};
}
int cv::Affine3DEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model )
{
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr);
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr);
Mat A(12, 12, CV_64F);
Mat B(12, 1, CV_64F);
A = Scalar(0.0);
for(int i = 0; i < modelPoints; ++i)
{
*B.ptr<Point3d>(3*i) = to[i];
double *aptr = A.ptr<double>(3*i);
for(int k = 0; k < 3; ++k)
{
aptr[3] = 1.0;
*reinterpret_cast<Point3d*>(aptr) = from[i];
aptr += 16;
}
}
CvMat cvA = A;
CvMat cvB = B;
CvMat cvX;
cvReshape(model, &cvX, 1, 12);
cvSolve(&cvA, &cvB, &cvX, CV_SVD );
return 1;
}
void cv::Affine3DEstimator::computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error )
{
int count = m1->rows * m1->cols;
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr);
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr);
const double* F = model->data.db;
float* err = error->data.fl;
for(int i = 0; i < count; i++ )
{
const Point3d& f = from[i];
const Point3d& t = to[i];
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x;
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y;
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z;
err[i] = (float)std::sqrt(a*a + b*b + c*c);
}
}
bool cv::Affine3DEstimator::checkSubset( const CvMat* ms1, int count )
{
CV_Assert( CV_MAT_TYPE(ms1->type) == CV_64FC3 );
int j, k, i = count - 1;
const Point3d* ptr = reinterpret_cast<const Point3d*>(ms1->data.ptr);
// check that the i-th selected point does not belong
// to a line connecting some previously selected points
for(j = 0; j < i; ++j)
{
Point3d d1 = ptr[j] - ptr[i];
double n1 = norm(d1);
for(k = 0; k < j; ++k)
{
Point3d d2 = ptr[k] - ptr[i];
double n = norm(d2) * n1;
if (fabs(d1.dot(d2) / n) > 0.996)
break;
}
if( k < j )
break;
}
return j == i;
}
int cv::estimateAffine3D(InputArray _from, InputArray _to,
OutputArray _out, OutputArray _inliers,
double param1, double param2)
{
Mat from = _from.getMat(), to = _to.getMat();
int count = from.checkVector(3);
CV_Assert( count >= 0 && to.checkVector(3) == count );
_out.create(3, 4, CV_64F);
Mat out = _out.getMat();
Mat inliers(1, count, CV_8U);
inliers = Scalar::all(1);
Mat dFrom, dTo;
from.convertTo(dFrom, CV_64F);
to.convertTo(dTo, CV_64F);
dFrom = dFrom.reshape(3, 1);
dTo = dTo.reshape(3, 1);
CvMat F3x4 = out;
CvMat mask = inliers;
CvMat m1 = dFrom;
CvMat m2 = dTo;
const double epsilon = std::numeric_limits<double>::epsilon();
param1 = param1 <= 0 ? 3 : param1;
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
int ok = Affine3DEstimator().runRANSAC(&m1, &m2, &F3x4, &mask, param1, param2 );
if( _inliers.needed() )
transpose(inliers, _inliers);
return ok;
}