mirror of
https://github.com/opencv/opencv.git
synced 2025-01-15 12:13:32 +08:00
144 lines
4.7 KiB
C++
144 lines
4.7 KiB
C++
#include "precomp.hpp"
|
|
#include "_lsvmparser.h"
|
|
#include "_lsvm_matching.h"
|
|
|
|
/*
|
|
// load trained detector from a file
|
|
//
|
|
// API
|
|
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
|
|
// INPUT
|
|
// filename - path to the file containing the parameters of
|
|
// - trained Latent SVM detector
|
|
// OUTPUT
|
|
// trained Latent SVM detector in internal representation
|
|
*/
|
|
CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename)
|
|
{
|
|
CvLatentSvmDetector* detector = 0;
|
|
CvLSVMFilterObject** filters = 0;
|
|
int kFilters = 0;
|
|
int kComponents = 0;
|
|
int* kPartFilters = 0;
|
|
float* b = 0;
|
|
float scoreThreshold = 0.f;
|
|
int err_code = 0;
|
|
|
|
err_code = loadModel(filename, &filters, &kFilters, &kComponents, &kPartFilters, &b, &scoreThreshold);
|
|
if (err_code != LATENT_SVM_OK) return 0;
|
|
|
|
detector = (CvLatentSvmDetector*)malloc(sizeof(CvLatentSvmDetector));
|
|
detector->filters = filters;
|
|
detector->b = b;
|
|
detector->num_components = kComponents;
|
|
detector->num_filters = kFilters;
|
|
detector->num_part_filters = kPartFilters;
|
|
detector->score_threshold = scoreThreshold;
|
|
|
|
return detector;
|
|
}
|
|
|
|
/*
|
|
// release memory allocated for CvLatentSvmDetector structure
|
|
//
|
|
// API
|
|
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
|
|
// INPUT
|
|
// detector - CvLatentSvmDetector structure to be released
|
|
// OUTPUT
|
|
*/
|
|
void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector)
|
|
{
|
|
free((*detector)->b);
|
|
free((*detector)->num_part_filters);
|
|
for (int i = 0; i < (*detector)->num_filters; i++)
|
|
{
|
|
free((*detector)->filters[i]->H);
|
|
free((*detector)->filters[i]);
|
|
}
|
|
free((*detector)->filters);
|
|
free((*detector));
|
|
*detector = 0;
|
|
}
|
|
|
|
/*
|
|
// find rectangular regions in the given image that are likely
|
|
// to contain objects and corresponding confidence levels
|
|
//
|
|
// API
|
|
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
|
|
// CvLatentSvmDetector* detector,
|
|
// CvMemStorage* storage,
|
|
// float overlap_threshold = 0.5f,
|
|
int numThreads = -1);
|
|
// INPUT
|
|
// image - image to detect objects in
|
|
// detector - Latent SVM detector in internal representation
|
|
// storage - memory storage to store the resultant sequence
|
|
// of the object candidate rectangles
|
|
// overlap_threshold - threshold for the non-maximum suppression algorithm [here will be the reference to original paper]
|
|
// OUTPUT
|
|
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
|
|
*/
|
|
CvSeq* cvLatentSvmDetectObjects(IplImage* image,
|
|
CvLatentSvmDetector* detector,
|
|
CvMemStorage* storage,
|
|
float overlap_threshold, int numThreads)
|
|
{
|
|
CvLSVMFeaturePyramid *H = 0;
|
|
CvPoint *points = 0, *oppPoints = 0;
|
|
int kPoints = 0;
|
|
float *score = 0;
|
|
unsigned int maxXBorder = 0, maxYBorder = 0;
|
|
int numBoxesOut = 0;
|
|
CvPoint *pointsOut = 0;
|
|
CvPoint *oppPointsOut = 0;
|
|
float *scoreOut = 0;
|
|
CvSeq* result_seq = 0;
|
|
int error = 0;
|
|
|
|
cvConvertImage(image, image, CV_CVTIMG_SWAP_RB);
|
|
// Getting maximum filter dimensions
|
|
getMaxFilterDims((const CvLSVMFilterObject**)(detector->filters), detector->num_components,
|
|
detector->num_part_filters, &maxXBorder, &maxYBorder);
|
|
// Create feature pyramid with nullable border
|
|
H = createFeaturePyramidWithBorder(image, maxXBorder, maxYBorder);
|
|
// Search object
|
|
error = searchObjectThresholdSomeComponents(H, (const CvLSVMFilterObject**)(detector->filters),
|
|
detector->num_components, detector->num_part_filters, detector->b, detector->score_threshold,
|
|
&points, &oppPoints, &score, &kPoints, numThreads);
|
|
if (error != LATENT_SVM_OK)
|
|
{
|
|
return NULL;
|
|
}
|
|
// Clipping boxes
|
|
clippingBoxes(image->width, image->height, points, kPoints);
|
|
clippingBoxes(image->width, image->height, oppPoints, kPoints);
|
|
// NMS procedure
|
|
nonMaximumSuppression(kPoints, points, oppPoints, score, overlap_threshold,
|
|
&numBoxesOut, &pointsOut, &oppPointsOut, &scoreOut);
|
|
|
|
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvObjectDetection), storage );
|
|
|
|
for (int i = 0; i < numBoxesOut; i++)
|
|
{
|
|
CvObjectDetection detection = {{0, 0, 0, 0}, 0};
|
|
detection.score = scoreOut[i];
|
|
CvRect bounding_box = {0, 0, 0, 0};
|
|
bounding_box.x = pointsOut[i].x;
|
|
bounding_box.y = pointsOut[i].y;
|
|
bounding_box.width = oppPointsOut[i].x - pointsOut[i].x;
|
|
bounding_box.height = oppPointsOut[i].y - pointsOut[i].y;
|
|
detection.rect = bounding_box;
|
|
cvSeqPush(result_seq, &detection);
|
|
}
|
|
cvConvertImage(image, image, CV_CVTIMG_SWAP_RB);
|
|
|
|
freeFeaturePyramidObject(&H);
|
|
free(points);
|
|
free(oppPoints);
|
|
free(score);
|
|
|
|
return result_seq;
|
|
}
|