mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 10:29:11 +08:00
223 lines
7.4 KiB
C++
223 lines
7.4 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv { namespace ml {
|
|
|
|
ParamGrid::ParamGrid() { minVal = maxVal = 0.; logStep = 1; }
|
|
ParamGrid::ParamGrid(double _minVal, double _maxVal, double _logStep)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
minVal = std::min(_minVal, _maxVal);
|
|
maxVal = std::max(_minVal, _maxVal);
|
|
logStep = std::max(_logStep, 1.);
|
|
}
|
|
|
|
Ptr<ParamGrid> ParamGrid::create(double minval, double maxval, double logstep) {
|
|
return makePtr<ParamGrid>(minval, maxval, logstep);
|
|
}
|
|
|
|
bool StatModel::empty() const { return !isTrained(); }
|
|
|
|
int StatModel::getVarCount() const { return 0; }
|
|
|
|
bool StatModel::train(const Ptr<TrainData>& trainData, int )
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_Assert(!trainData.empty());
|
|
CV_Error(CV_StsNotImplemented, "");
|
|
return false;
|
|
}
|
|
|
|
bool StatModel::train( InputArray samples, int layout, InputArray responses )
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_Assert(!samples.empty());
|
|
return train(TrainData::create(samples, layout, responses));
|
|
}
|
|
|
|
class ParallelCalcError : public ParallelLoopBody
|
|
{
|
|
private:
|
|
const Ptr<TrainData>& data;
|
|
bool &testerr;
|
|
Mat &resp;
|
|
const StatModel &s;
|
|
vector<double> &errStrip;
|
|
public:
|
|
ParallelCalcError(const Ptr<TrainData>& d, bool &t, Mat &_r,const StatModel &w, vector<double> &e) :
|
|
data(d),
|
|
testerr(t),
|
|
resp(_r),
|
|
s(w),
|
|
errStrip(e)
|
|
{
|
|
}
|
|
virtual void operator()(const Range& range) const CV_OVERRIDE
|
|
{
|
|
int idxErr = range.start;
|
|
CV_TRACE_FUNCTION_SKIP_NESTED();
|
|
Mat samples = data->getSamples();
|
|
Mat weights=testerr? data->getTestSampleWeights() : data->getTrainSampleWeights();
|
|
int layout = data->getLayout();
|
|
Mat sidx = testerr ? data->getTestSampleIdx() : data->getTrainSampleIdx();
|
|
const int* sidx_ptr = sidx.ptr<int>();
|
|
bool isclassifier = s.isClassifier();
|
|
Mat responses = data->getResponses();
|
|
int responses_type = responses.type();
|
|
double err = 0;
|
|
|
|
|
|
const float* sw = weights.empty() ? 0 : weights.ptr<float>();
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
int si = sidx_ptr ? sidx_ptr[i] : i;
|
|
double sweight = sw ? static_cast<double>(sw[i]) : 1.;
|
|
Mat sample = layout == ROW_SAMPLE ? samples.row(si) : samples.col(si);
|
|
float val = s.predict(sample);
|
|
float val0 = (responses_type == CV_32S) ? (float)responses.at<int>(si) : responses.at<float>(si);
|
|
|
|
if (isclassifier)
|
|
err += sweight * fabs(val - val0) > FLT_EPSILON;
|
|
else
|
|
err += sweight * (val - val0)*(val - val0);
|
|
if (!resp.empty())
|
|
resp.at<float>(i) = val;
|
|
}
|
|
|
|
|
|
errStrip[idxErr]=err ;
|
|
|
|
};
|
|
ParallelCalcError& operator=(const ParallelCalcError &) {
|
|
return *this;
|
|
};
|
|
};
|
|
|
|
|
|
float StatModel::calcError(const Ptr<TrainData>& data, bool testerr, OutputArray _resp) const
|
|
{
|
|
CV_TRACE_FUNCTION_SKIP_NESTED();
|
|
CV_Assert(!data.empty());
|
|
Mat samples = data->getSamples();
|
|
Mat sidx = testerr ? data->getTestSampleIdx() : data->getTrainSampleIdx();
|
|
Mat weights = testerr ? data->getTestSampleWeights() : data->getTrainSampleWeights();
|
|
int n = (int)sidx.total();
|
|
bool isclassifier = isClassifier();
|
|
Mat responses = data->getResponses();
|
|
|
|
if (n == 0)
|
|
{
|
|
n = data->getNSamples();
|
|
weights = data->getTrainSampleWeights();
|
|
testerr =false;
|
|
}
|
|
|
|
if (n == 0)
|
|
return -FLT_MAX;
|
|
|
|
Mat resp;
|
|
if (_resp.needed())
|
|
resp.create(n, 1, CV_32F);
|
|
|
|
double err = 0;
|
|
vector<double> errStrip(n,0.0);
|
|
ParallelCalcError x(data, testerr, resp, *this,errStrip);
|
|
|
|
parallel_for_(Range(0,n),x);
|
|
|
|
for (size_t i = 0; i < errStrip.size(); i++)
|
|
err += errStrip[i];
|
|
float weightSum= weights.empty() ? n: static_cast<float>(sum(weights)(0));
|
|
if (_resp.needed())
|
|
resp.copyTo(_resp);
|
|
|
|
return (float)(err/ weightSum * (isclassifier ? 100 : 1));
|
|
}
|
|
|
|
/* Calculates upper triangular matrix S, where A is a symmetrical matrix A=S'*S */
|
|
static void Cholesky( const Mat& A, Mat& S )
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_Assert(A.type() == CV_32F);
|
|
|
|
S = A.clone();
|
|
cv::Cholesky ((float*)S.ptr(),S.step, S.rows,NULL, 0, 0);
|
|
S = S.t();
|
|
for (int i=1;i<S.rows;i++)
|
|
for (int j=0;j<i;j++)
|
|
S.at<float>(i,j)=0;
|
|
}
|
|
|
|
/* Generates <sample> from multivariate normal distribution, where <mean> - is an
|
|
average row vector, <cov> - symmetric covariation matrix */
|
|
void randMVNormal( InputArray _mean, InputArray _cov, int nsamples, OutputArray _samples )
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
// check mean vector and covariance matrix
|
|
Mat mean = _mean.getMat(), cov = _cov.getMat();
|
|
int dim = (int)mean.total(); // dimensionality
|
|
CV_Assert(mean.rows == 1 || mean.cols == 1);
|
|
CV_Assert(cov.rows == dim && cov.cols == dim);
|
|
mean = mean.reshape(1,1); // ensure a row vector
|
|
|
|
// generate n-samples of the same dimension, from ~N(0,1)
|
|
_samples.create(nsamples, dim, CV_32F);
|
|
Mat samples = _samples.getMat();
|
|
randn(samples, Scalar::all(0), Scalar::all(1));
|
|
|
|
// decompose covariance using Cholesky: cov = U'*U
|
|
// (cov must be square, symmetric, and positive semi-definite matrix)
|
|
Mat utmat;
|
|
Cholesky(cov, utmat);
|
|
|
|
// transform random numbers using specified mean and covariance
|
|
for( int i = 0; i < nsamples; i++ )
|
|
{
|
|
Mat sample = samples.row(i);
|
|
sample = sample * utmat + mean;
|
|
}
|
|
}
|
|
|
|
}}
|
|
|
|
/* End of file */
|