opencv/modules/3d/test/ocl/test_tsdf.cpp
Rostislav Vasilikhin 8b7e586faa
Merge pull request #22598 from savuor:icp_oframe_readonly
Complement PR: #3366@contrib
Changes

    OdometryFrame losts its getters: a user can provide data at construction stage only, pyramids and other generated data is read-only now
    OdometryFrame is based on UMats: no TMat templates inside, CPU operations are done with UMat::getMat() method, chaining issues are solved ad-hoc
    No more Odometry::createOdometryFrame() method, frames are compatible with all odometry algorithms
    Normals computer is cached inside Odometry and exposed to API as well as its settings
    Volume::raycast() won't return the result in OdometryFrame anymore
    Added test for Odometry::prepareFrame*() & other test fixes
    Minor code improvements

TODOs:

    fix TODOs in code
    lower acceptable accuracy errors
2022-10-24 16:34:01 +03:00

678 lines
20 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "../test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace opencv_test {
namespace {
using namespace cv;
/** Reprojects screen point to camera space given z coord. */
struct Reprojector
{
Reprojector() {}
inline Reprojector(Matx33f intr)
{
fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1);
cx = intr(0, 2), cy = intr(1, 2);
}
template<typename T>
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
{
T x = p.z * (p.x - cx) * fxinv;
T y = p.z * (p.y - cy) * fyinv;
return cv::Point3_<T>(x, y, p.z);
}
float fxinv, fyinv, cx, cy;
};
template<class Scene>
struct RenderInvoker : ParallelLoopBody
{
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
Reprojector _reproj, float _depthFactor, bool _onlySemisphere)
: ParallelLoopBody(),
frame(_frame),
pose(_pose),
reproj(_reproj),
depthFactor(_depthFactor),
onlySemisphere(_onlySemisphere)
{ }
virtual void operator ()(const cv::Range& r) const
{
for (int y = r.start; y < r.end; y++)
{
float* frameRow = frame[y];
for (int x = 0; x < frame.cols; x++)
{
float pix = 0;
Point3f orig = pose.translation();
// direction through pixel
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
float xyt = 1.f / (screenVec.x * screenVec.x +
screenVec.y * screenVec.y + 1.f);
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
// screen space axis
dir.y = -dir.y;
const float maxDepth = 20.f;
const float maxSteps = 256;
float t = 0.f;
for (int step = 0; step < maxSteps && t < maxDepth; step++)
{
Point3f p = orig + dir * t;
float d = Scene::map(p, onlySemisphere);
if (d < 0.000001f)
{
float depth = std::sqrt(t * t * xyt);
pix = depth * depthFactor;
break;
}
t += d;
}
frameRow[x] = pix;
}
}
}
Mat_<float>& frame;
Affine3f pose;
Reprojector reproj;
float depthFactor;
bool onlySemisphere;
};
struct Scene
{
virtual ~Scene() {}
static Ptr<Scene> create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere);
virtual Mat depth(Affine3f pose) = 0;
virtual std::vector<Affine3f> getPoses() = 0;
};
struct SemisphereScene : Scene
{
const int framesPerCycle = 72;
const float nCycles = 0.25f;
const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f));
Size frameSize;
Matx33f intr;
float depthFactor;
bool onlySemisphere;
SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) :
frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere)
{ }
static float map(Point3f p, bool onlySemisphere)
{
float plane = p.y + 0.5f;
Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f);
float sphereRadius = 0.5f;
float sphere = (float)cv::norm(spherePose) - sphereRadius;
float sphereMinusBox = sphere;
float subSphereRadius = 0.05f;
Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f);
float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius;
float res;
if (!onlySemisphere)
res = min({ sphereMinusBox, subSphere, plane });
else
res = sphereMinusBox;
return res;
}
Mat depth(Affine3f pose) override
{
Mat_<float> frame(frameSize);
Reprojector reproj(intr);
Range range(0, frame.rows);
parallel_for_(range, RenderInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere));
return std::move(frame);
}
std::vector<Affine3f> getPoses() override
{
std::vector<Affine3f> poses;
for (int i = 0; i < framesPerCycle * nCycles; i++)
{
float angle = (float)(CV_2PI * i / framesPerCycle);
Affine3f pose;
pose = pose.rotate(startPose.rotation());
pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle);
pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle),
startPose.translation()[1],
startPose.translation()[2] * cos(angle)));
poses.push_back(pose);
}
return poses;
}
};
Ptr<Scene> Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere)
{
return makePtr<SemisphereScene>(sz, _intr, _depthFactor, _onlySemisphere);
}
// this is a temporary solution
// ----------------------------
typedef cv::Vec4f ptype;
typedef cv::Mat_< ptype > Points;
typedef Points Normals;
typedef Size2i Size;
template<int p>
inline float specPow(float x)
{
if (p % 2 == 0)
{
float v = specPow<p / 2>(x);
return v * v;
}
else
{
float v = specPow<(p - 1) / 2>(x);
return v * v * x;
}
}
template<>
inline float specPow<0>(float /*x*/)
{
return 1.f;
}
template<>
inline float specPow<1>(float x)
{
return x;
}
inline cv::Vec3f fromPtype(const ptype& x)
{
return cv::Vec3f(x[0], x[1], x[2]);
}
inline Point3f normalize(const Vec3f& v)
{
double nv = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
return v * (nv ? 1. / nv : 0.);
}
void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose)
{
Size sz = _points.size();
image.create(sz, CV_8UC4);
Points points = _points.getMat();
Normals normals = _normals.getMat();
Mat_<Vec4b> img = image.getMat();
Range range(0, sz.height);
const int nstripes = -1;
parallel_for_(range, [&](const Range&)
{
for (int y = range.start; y < range.end; y++)
{
Vec4b* imgRow = img[y];
const ptype* ptsRow = points[y];
const ptype* nrmRow = normals[y];
for (int x = 0; x < sz.width; x++)
{
Point3f p = fromPtype(ptsRow[x]);
Point3f n = fromPtype(nrmRow[x]);
Vec4b color;
if (cvIsNaN(p.x) || cvIsNaN(p.y) || cvIsNaN(p.z))
{
color = Vec4b(0, 32, 0, 0);
}
else
{
const float Ka = 0.3f; //ambient coeff
const float Kd = 0.5f; //diffuse coeff
const float Ks = 0.2f; //specular coeff
const int sp = 20; //specular power
const float Ax = 1.f; //ambient color, can be RGB
const float Dx = 1.f; //diffuse color, can be RGB
const float Sx = 1.f; //specular color, can be RGB
const float Lx = 1.f; //light color
Point3f l = normalize(lightPose.translation() - Vec3f(p));
Point3f v = normalize(-Vec3f(p));
Point3f r = normalize(Vec3f(2.f * n * n.dot(l) - l));
uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) +
Lx * Ks * Sx * specPow<sp>(max(0.f, r.dot(v)))) * 255.f);
color = Vec4b(ix, ix, ix, 0);
}
imgRow[x] = color;
}
}
}, nstripes);
}
// ----------------------------
void displayImage(Mat depth, Mat points, Mat normals, float depthFactor, Vec3f lightPose)
{
Mat image;
patchNaNs(points);
imshow("depth", depth * (1.f / depthFactor / 4.f));
renderPointsNormals(points, normals, image, lightPose);
imshow("render", image);
waitKey(2000);
destroyAllWindows();
}
void normalsCheck(Mat normals)
{
Vec4f vector;
for (auto pvector = normals.begin<Vec4f>(); pvector < normals.end<Vec4f>(); pvector++)
{
vector = *pvector;
if (!cvIsNaN(vector[0]))
{
float length = vector[0] * vector[0] +
vector[1] * vector[1] +
vector[2] * vector[2];
ASSERT_LT(abs(1 - length), 0.0001f) << "There is normal with length != 1";
}
}
}
int counterOfValid(Mat points)
{
Vec4f* v;
int i, j;
int count = 0;
for (i = 0; i < points.rows; ++i)
{
v = (points.ptr<Vec4f>(i));
for (j = 0; j < points.cols; ++j)
{
if ((v[j])[0] != 0 ||
(v[j])[1] != 0 ||
(v[j])[2] != 0)
{
count++;
}
}
}
return count;
}
enum class VolumeTestFunction
{
RAYCAST = 0,
FETCH_NORMALS = 1,
FETCH_POINTS_NORMALS = 2
};
enum class VolumeTestSrcType
{
MAT = 0,
ODOMETRY_FRAME = 1
};
void normal_test_custom_framesize(VolumeType volumeType, VolumeTestFunction testFunction, VolumeTestSrcType testSrcType)
{
VolumeSettings vs(volumeType);
Volume volume(volumeType, vs);
Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight());
Matx33f intr;
vs.getCameraIntegrateIntrinsics(intr);
bool onlySemisphere = true;
float depthFactor = vs.getDepthFactor();
Vec3f lightPose = Vec3f::all(0.f);
Ptr<Scene> scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere);
std::vector<Affine3f> poses = scene->getPoses();
Mat depth = scene->depth(poses[0]);
UMat udepth;
depth.copyTo(udepth);
UMat upoints, unormals, utmpnormals;
Mat points, normals;
AccessFlag af = ACCESS_READ;
OdometryFrame odf(noArray(), udepth);
if (testSrcType == VolumeTestSrcType::MAT)
volume.integrate(depth, poses[0].matrix);
else
volume.integrate(odf, poses[0].matrix);
if (testFunction == VolumeTestFunction::RAYCAST)
{
volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, upoints, unormals);
}
else if (testFunction == VolumeTestFunction::FETCH_NORMALS)
{
if (testSrcType == VolumeTestSrcType::MAT)
{
// takes only point from raycast for checking fetched normals on the display
volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, upoints, utmpnormals);
// volume.fetchPointsNormals(upoints, utmpnormals);
volume.fetchNormals(upoints, unormals);
}
}
else if (testFunction == VolumeTestFunction::FETCH_POINTS_NORMALS)
{
if (testSrcType == VolumeTestSrcType::MAT) // Odometry frame or Mats
{
volume.fetchPointsNormals(upoints, unormals);
}
}
normals = unormals.getMat(af);
points = upoints.getMat(af);
if (testFunction == VolumeTestFunction::RAYCAST && cvtest::debugLevel > 0)
displayImage(depth, points, normals, depthFactor, lightPose);
normalsCheck(normals);
}
void normal_test_common_framesize(VolumeType volumeType, VolumeTestFunction testFunction, VolumeTestSrcType testSrcType)
{
VolumeSettings vs(volumeType);
Volume volume(volumeType, vs);
Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight());
Matx33f intr;
vs.getCameraIntegrateIntrinsics(intr);
bool onlySemisphere = true;
float depthFactor = vs.getDepthFactor();
Vec3f lightPose = Vec3f::all(0.f);
Ptr<Scene> scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere);
std::vector<Affine3f> poses = scene->getPoses();
Mat depth = scene->depth(poses[0]);
UMat udepth;
depth.copyTo(udepth);
UMat upoints, unormals, utmpnormals;
Mat points, normals;
AccessFlag af = ACCESS_READ;
OdometryFrame odf(noArray(), udepth);
if (testSrcType == VolumeTestSrcType::MAT)
volume.integrate(depth, poses[0].matrix);
else
volume.integrate(odf, poses[0].matrix);
if (testFunction == VolumeTestFunction::RAYCAST)
{
volume.raycast(poses[0].matrix, upoints, unormals);
}
else if (testFunction == VolumeTestFunction::FETCH_NORMALS)
{
if (testSrcType == VolumeTestSrcType::MAT)
{
// takes only point from raycast for checking fetched normals on the display
volume.raycast(poses[0].matrix, upoints, utmpnormals);
//volume.fetchPointsNormals(upoints, utmpnormals);
volume.fetchNormals(upoints, unormals);
}
}
else if (testFunction == VolumeTestFunction::FETCH_POINTS_NORMALS)
{
if (testSrcType == VolumeTestSrcType::MAT) // Odometry frame or Mats
{
volume.fetchPointsNormals(upoints, unormals);
}
}
normals = unormals.getMat(af);
points = upoints.getMat(af);
if (testFunction == VolumeTestFunction::RAYCAST && cvtest::debugLevel > 0)
displayImage(depth, points, normals, depthFactor, lightPose);
normalsCheck(normals);
}
void valid_points_test_custom_framesize(VolumeType volumeType, VolumeTestSrcType testSrcType)
{
VolumeSettings vs(volumeType);
Volume volume(volumeType, vs);
Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight());
Matx33f intr;
vs.getCameraIntegrateIntrinsics(intr);
bool onlySemisphere = true;
float depthFactor = vs.getDepthFactor();
Vec3f lightPose = Vec3f::all(0.f);
Ptr<Scene> scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere);
std::vector<Affine3f> poses = scene->getPoses();
Mat depth = scene->depth(poses[0]);
UMat udepth;
depth.copyTo(udepth);
UMat upoints, unormals;
UMat upoints1, unormals1;
Mat points, normals;
AccessFlag af = ACCESS_READ;
int anfas, profile;
OdometryFrame odf(noArray(), udepth);
if (testSrcType == VolumeTestSrcType::MAT)
volume.integrate(depth, poses[0].matrix);
else
volume.integrate(odf, poses[0].matrix);
volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, upoints, unormals);
normals = unormals.getMat(af);
points = upoints.getMat(af);
patchNaNs(points);
anfas = counterOfValid(points);
if (cvtest::debugLevel > 0)
displayImage(depth, points, normals, depthFactor, lightPose);
volume.raycast(poses[17].matrix, frameSize.height, frameSize.width, upoints1, unormals1);
normals = unormals1.getMat(af);
points = upoints1.getMat(af);
patchNaNs(points);
profile = counterOfValid(points);
if (cvtest::debugLevel > 0)
displayImage(depth, points, normals, depthFactor, lightPose);
// TODO: why profile == 2*anfas ?
float percentValidity = float(anfas) / float(profile);
ASSERT_NE(profile, 0) << "There is no points in profile";
ASSERT_NE(anfas, 0) << "There is no points in anfas";
ASSERT_LT(abs(0.5 - percentValidity), 0.3) << "percentValidity out of [0.3; 0.7] (percentValidity=" << percentValidity << ")";
}
void valid_points_test_common_framesize(VolumeType volumeType, VolumeTestSrcType testSrcType)
{
VolumeSettings vs(volumeType);
Volume volume(volumeType, vs);
Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight());
Matx33f intr;
vs.getCameraIntegrateIntrinsics(intr);
bool onlySemisphere = true;
float depthFactor = vs.getDepthFactor();
Vec3f lightPose = Vec3f::all(0.f);
Ptr<Scene> scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere);
std::vector<Affine3f> poses = scene->getPoses();
Mat depth = scene->depth(poses[0]);
UMat udepth;
depth.copyTo(udepth);
UMat upoints, unormals;
UMat upoints1, unormals1;
Mat points, normals;
AccessFlag af = ACCESS_READ;
int anfas, profile;
OdometryFrame odf(noArray(), udepth);
if (testSrcType == VolumeTestSrcType::MAT)
volume.integrate(depth, poses[0].matrix);
else
volume.integrate(odf, poses[0].matrix);
volume.raycast(poses[0].matrix, upoints, unormals);
normals = unormals.getMat(af);
points = upoints.getMat(af);
patchNaNs(points);
anfas = counterOfValid(points);
if (cvtest::debugLevel > 0)
displayImage(depth, points, normals, depthFactor, lightPose);
volume.raycast(poses[17].matrix, upoints1, unormals1);
normals = unormals1.getMat(af);
points = upoints1.getMat(af);
patchNaNs(points);
profile = counterOfValid(points);
if (cvtest::debugLevel > 0)
displayImage(depth, points, normals, depthFactor, lightPose);
// TODO: why profile == 2*anfas ?
float percentValidity = float(anfas) / float(profile);
ASSERT_NE(profile, 0) << "There is no points in profile";
ASSERT_NE(anfas, 0) << "There is no points in anfas";
ASSERT_LT(abs(0.5 - percentValidity), 0.3) << "percentValidity out of [0.3; 0.7] (percentValidity=" << percentValidity << ")";
}
TEST(TSDF_GPU, raycast_custom_framesize_normals_mat)
{
normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT);
}
TEST(TSDF_GPU, raycast_custom_framesize_normals_frame)
{
normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME);
}
TEST(TSDF_GPU, raycast_common_framesize_normals_mat)
{
normal_test_common_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT);
}
TEST(TSDF_GPU, raycast_common_framesize_normals_frame)
{
normal_test_common_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME);
}
TEST(TSDF_GPU, fetch_points_normals)
{
normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::FETCH_POINTS_NORMALS, VolumeTestSrcType::MAT);
}
TEST(TSDF_GPU, fetch_normals)
{
normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::FETCH_NORMALS, VolumeTestSrcType::MAT);
}
TEST(TSDF_GPU, valid_points_custom_framesize_mat)
{
valid_points_test_custom_framesize(VolumeType::TSDF, VolumeTestSrcType::MAT);
}
TEST(TSDF_GPU, valid_points_custom_framesize_frame)
{
valid_points_test_custom_framesize(VolumeType::TSDF, VolumeTestSrcType::ODOMETRY_FRAME);
}
TEST(TSDF_GPU, valid_points_common_framesize_mat)
{
valid_points_test_common_framesize(VolumeType::TSDF, VolumeTestSrcType::MAT);
}
TEST(TSDF_GPU, valid_points_common_framesize_frame)
{
valid_points_test_common_framesize(VolumeType::TSDF, VolumeTestSrcType::ODOMETRY_FRAME);
}
TEST(HashTSDF_GPU, raycast_custom_framesize_normals_mat)
{
normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT);
}
TEST(HashTSDF_GPU, raycast_custom_framesize_normals_frame)
{
normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME);
}
TEST(HashTSDF_GPU, raycast_common_framesize_normals_mat)
{
normal_test_common_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT);
}
TEST(HashTSDF_GPU, raycast_common_framesize_normals_frame)
{
normal_test_common_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME);
}
TEST(HashTSDF_GPU, fetch_points_normals)
{
normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::FETCH_POINTS_NORMALS, VolumeTestSrcType::MAT);
}
TEST(HashTSDF_GPU, fetch_normals)
{
normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::FETCH_NORMALS, VolumeTestSrcType::MAT);
}
TEST(HashTSDF_GPU, valid_points_custom_framesize_mat)
{
valid_points_test_custom_framesize(VolumeType::HashTSDF, VolumeTestSrcType::MAT);
}
TEST(HashTSDF_GPU, valid_points_custom_framesize_frame)
{
valid_points_test_custom_framesize(VolumeType::HashTSDF, VolumeTestSrcType::ODOMETRY_FRAME);
}
TEST(HashTSDF_GPU, valid_points_common_framesize_mat)
{
valid_points_test_common_framesize(VolumeType::HashTSDF, VolumeTestSrcType::MAT);
}
TEST(HashTSDF_GPU, valid_points_common_framesize_frame)
{
valid_points_test_common_framesize(VolumeType::HashTSDF, VolumeTestSrcType::ODOMETRY_FRAME);
}
}
} // namespace
#endif