opencv/modules/stitching/src/seam_finders.cpp

1718 lines
59 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/imgproc/detail/gcgraph.hpp"
#include <map>
namespace cv {
namespace detail {
Ptr<SeamFinder> SeamFinder::createDefault(int type)
{
if (type == NO)
return makePtr<NoSeamFinder>();
if (type == VORONOI_SEAM)
return makePtr<VoronoiSeamFinder>();
if (type == DP_SEAM)
return makePtr<DpSeamFinder>();
CV_Error(Error::StsBadArg, "unsupported seam finder method");
}
void PairwiseSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks)
{
LOGLN("Finding seams...");
if (src.size() == 0)
return;
#if ENABLE_LOG
int64 t = getTickCount();
#endif
images_ = src;
sizes_.resize(src.size());
for (size_t i = 0; i < src.size(); ++i)
sizes_[i] = src[i].size();
corners_ = corners;
masks_ = masks;
run();
LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}
void PairwiseSeamFinder::run()
{
for (size_t i = 0; i < sizes_.size() - 1; ++i)
{
for (size_t j = i + 1; j < sizes_.size(); ++j)
{
Rect roi;
if (overlapRoi(corners_[i], corners_[j], sizes_[i], sizes_[j], roi))
findInPair(i, j, roi);
}
}
}
void VoronoiSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks)
{
PairwiseSeamFinder::find(src, corners, masks);
}
void VoronoiSeamFinder::find(const std::vector<Size> &sizes, const std::vector<Point> &corners,
std::vector<UMat> &masks)
{
LOGLN("Finding seams...");
if (sizes.size() == 0)
return;
#if ENABLE_LOG
int64 t = getTickCount();
#endif
sizes_ = sizes;
corners_ = corners;
masks_ = masks;
run();
LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}
void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi)
{
const int gap = 10;
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
Size img1 = sizes_[first], img2 = sizes_[second];
Mat mask1 = masks_[first].getMat(ACCESS_RW), mask2 = masks_[second].getMat(ACCESS_RW);
Point tl1 = corners_[first], tl2 = corners_[second];
// Cut submasks with some gap
for (int y = -gap; y < roi.height + gap; ++y)
{
for (int x = -gap; x < roi.width + gap; ++x)
{
int y1 = roi.y - tl1.y + y;
int x1 = roi.x - tl1.x + x;
if (y1 >= 0 && x1 >= 0 && y1 < img1.height && x1 < img1.width)
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
else
submask1.at<uchar>(y + gap, x + gap) = 0;
int y2 = roi.y - tl2.y + y;
int x2 = roi.x - tl2.x + x;
if (y2 >= 0 && x2 >= 0 && y2 < img2.height && x2 < img2.width)
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
else
submask2.at<uchar>(y + gap, x + gap) = 0;
}
}
Mat collision = (submask1 != 0) & (submask2 != 0);
Mat unique1 = submask1.clone(); unique1.setTo(0, collision);
Mat unique2 = submask2.clone(); unique2.setTo(0, collision);
Mat dist1, dist2;
distanceTransform(unique1 == 0, dist1, DIST_L1, 3);
distanceTransform(unique2 == 0, dist2, DIST_L1, 3);
Mat seam = dist1 < dist2;
for (int y = 0; y < roi.height; ++y)
{
for (int x = 0; x < roi.width; ++x)
{
if (seam.at<uchar>(y + gap, x + gap))
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
else
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
}
}
}
DpSeamFinder::DpSeamFinder(CostFunction costFunc) : costFunc_(costFunc), ncomps_(0) {}
DpSeamFinder::DpSeamFinder(String costFunc)
{
ncomps_ = 0;
if (costFunc == "COLOR")
costFunc_ = COLOR;
else if (costFunc == "COLOR_GRAD")
costFunc_ = COLOR_GRAD;
else
CV_Error(-1, "Unknown cost function");
}
void DpSeamFinder::setCostFunction(String costFunc)
{
if (costFunc == "COLOR")
costFunc_ = COLOR;
else if (costFunc == "COLOR_GRAD")
costFunc_ = COLOR_GRAD;
else
CV_Error(-1, "Unknown cost function");
}
void DpSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners, std::vector<UMat> &masks)
{
LOGLN("Finding seams...");
#if ENABLE_LOG
int64 t = getTickCount();
#endif
if (src.size() == 0)
return;
std::vector<std::pair<size_t, size_t> > pairs;
for (size_t i = 0; i+1 < src.size(); ++i)
for (size_t j = i+1; j < src.size(); ++j)
pairs.push_back(std::make_pair(i, j));
{
std::vector<Mat> _src(src.size());
for (size_t i = 0; i < src.size(); ++i) _src[i] = src[i].getMat(ACCESS_READ);
sort(pairs.begin(), pairs.end(), ImagePairLess(_src, corners));
}
std::reverse(pairs.begin(), pairs.end());
for (size_t i = 0; i < pairs.size(); ++i)
{
size_t i0 = pairs[i].first, i1 = pairs[i].second;
Mat mask0 = masks[i0].getMat(ACCESS_RW), mask1 = masks[i1].getMat(ACCESS_RW);
process(src[i0].getMat(ACCESS_READ), src[i1].getMat(ACCESS_READ), corners[i0], corners[i1], mask0, mask1);
}
LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}
void DpSeamFinder::process(
const Mat &image1, const Mat &image2, Point tl1, Point tl2,
Mat &mask1, Mat &mask2)
{
CV_INSTRUMENT_REGION();
CV_Assert(image1.size() == mask1.size());
CV_Assert(image2.size() == mask2.size());
Point intersectTl(std::max(tl1.x, tl2.x), std::max(tl1.y, tl2.y));
Point intersectBr(std::min(tl1.x + image1.cols, tl2.x + image2.cols),
std::min(tl1.y + image1.rows, tl2.y + image2.rows));
if (intersectTl.x >= intersectBr.x || intersectTl.y >= intersectBr.y)
return; // there are no conflicts
unionTl_ = Point(std::min(tl1.x, tl2.x), std::min(tl1.y, tl2.y));
unionBr_ = Point(std::max(tl1.x + image1.cols, tl2.x + image2.cols),
std::max(tl1.y + image1.rows, tl2.y + image2.rows));
unionSize_ = Size(unionBr_.x - unionTl_.x, unionBr_.y - unionTl_.y);
mask1_ = Mat::zeros(unionSize_, CV_8U);
mask2_ = Mat::zeros(unionSize_, CV_8U);
Mat tmp = mask1_(Rect(tl1.x - unionTl_.x, tl1.y - unionTl_.y, mask1.cols, mask1.rows));
mask1.copyTo(tmp);
tmp = mask2_(Rect(tl2.x - unionTl_.x, tl2.y - unionTl_.y, mask2.cols, mask2.rows));
mask2.copyTo(tmp);
// find both images contour masks
contour1mask_ = Mat::zeros(unionSize_, CV_8U);
contour2mask_ = Mat::zeros(unionSize_, CV_8U);
for (int y = 0; y < unionSize_.height; ++y)
{
for (int x = 0; x < unionSize_.width; ++x)
{
if (mask1_(y, x) &&
((x == 0 || !mask1_(y, x-1)) || (x == unionSize_.width-1 || !mask1_(y, x+1)) ||
(y == 0 || !mask1_(y-1, x)) || (y == unionSize_.height-1 || !mask1_(y+1, x))))
{
contour1mask_(y, x) = 255;
}
if (mask2_(y, x) &&
((x == 0 || !mask2_(y, x-1)) || (x == unionSize_.width-1 || !mask2_(y, x+1)) ||
(y == 0 || !mask2_(y-1, x)) || (y == unionSize_.height-1 || !mask2_(y+1, x))))
{
contour2mask_(y, x) = 255;
}
}
}
findComponents();
findEdges();
resolveConflicts(image1, image2, tl1, tl2, mask1, mask2);
}
void DpSeamFinder::findComponents()
{
// label all connected components and get information about them
ncomps_ = 0;
labels_.create(unionSize_);
states_.clear();
tls_.clear();
brs_.clear();
contours_.clear();
for (int y = 0; y < unionSize_.height; ++y)
{
for (int x = 0; x < unionSize_.width; ++x)
{
if (mask1_(y, x) && mask2_(y, x))
labels_(y, x) = std::numeric_limits<int>::max();
else if (mask1_(y, x))
labels_(y, x) = std::numeric_limits<int>::max()-1;
else if (mask2_(y, x))
labels_(y, x) = std::numeric_limits<int>::max()-2;
else
labels_(y, x) = 0;
}
}
for (int y = 0; y < unionSize_.height; ++y)
{
for (int x = 0; x < unionSize_.width; ++x)
{
if (labels_(y, x) >= std::numeric_limits<int>::max()-2)
{
if (labels_(y, x) == std::numeric_limits<int>::max())
states_.push_back(INTERS);
else if (labels_(y, x) == std::numeric_limits<int>::max()-1)
states_.push_back(FIRST);
else if (labels_(y, x) == std::numeric_limits<int>::max()-2)
states_.push_back(SECOND);
floodFill(labels_, Point(x, y), ++ncomps_);
tls_.push_back(Point(x, y));
brs_.push_back(Point(x+1, y+1));
contours_.push_back(std::vector<Point>());
}
if (labels_(y, x))
{
int l = labels_(y, x);
int ci = l-1;
tls_[ci].x = std::min(tls_[ci].x, x);
tls_[ci].y = std::min(tls_[ci].y, y);
brs_[ci].x = std::max(brs_[ci].x, x+1);
brs_[ci].y = std::max(brs_[ci].y, y+1);
if ((x == 0 || labels_(y, x-1) != l) || (x == unionSize_.width-1 || labels_(y, x+1) != l) ||
(y == 0 || labels_(y-1, x) != l) || (y == unionSize_.height-1 || labels_(y+1, x) != l))
{
contours_[ci].push_back(Point(x, y));
}
}
}
}
}
void DpSeamFinder::findEdges()
{
// find edges between components
std::map<std::pair<int, int>, int> wedges; // weighted edges
for (int ci = 0; ci < ncomps_-1; ++ci)
{
for (int cj = ci+1; cj < ncomps_; ++cj)
{
wedges[std::make_pair(ci, cj)] = 0;
wedges[std::make_pair(cj, ci)] = 0;
}
}
for (int ci = 0; ci < ncomps_; ++ci)
{
for (size_t i = 0; i < contours_[ci].size(); ++i)
{
int x = contours_[ci][i].x;
int y = contours_[ci][i].y;
int l = ci + 1;
if (x > 0 && labels_(y, x-1) && labels_(y, x-1) != l)
{
wedges[std::make_pair(ci, labels_(y, x-1)-1)]++;
wedges[std::make_pair(labels_(y, x-1)-1, ci)]++;
}
if (y > 0 && labels_(y-1, x) && labels_(y-1, x) != l)
{
wedges[std::make_pair(ci, labels_(y-1, x)-1)]++;
wedges[std::make_pair(labels_(y-1, x)-1, ci)]++;
}
if (x < unionSize_.width-1 && labels_(y, x+1) && labels_(y, x+1) != l)
{
wedges[std::make_pair(ci, labels_(y, x+1)-1)]++;
wedges[std::make_pair(labels_(y, x+1)-1, ci)]++;
}
if (y < unionSize_.height-1 && labels_(y+1, x) && labels_(y+1, x) != l)
{
wedges[std::make_pair(ci, labels_(y+1, x)-1)]++;
wedges[std::make_pair(labels_(y+1, x)-1, ci)]++;
}
}
}
edges_.clear();
for (int ci = 0; ci < ncomps_-1; ++ci)
{
for (int cj = ci+1; cj < ncomps_; ++cj)
{
std::map<std::pair<int, int>, int>::iterator itr = wedges.find(std::make_pair(ci, cj));
if (itr != wedges.end() && itr->second > 0)
edges_.insert(itr->first);
itr = wedges.find(std::make_pair(cj, ci));
if (itr != wedges.end() && itr->second > 0)
edges_.insert(itr->first);
}
}
}
void DpSeamFinder::resolveConflicts(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2)
{
if (costFunc_ == COLOR_GRAD)
computeGradients(image1, image2);
// resolve conflicts between components
bool hasConflict = true;
while (hasConflict)
{
int c1 = 0, c2 = 0;
hasConflict = false;
for (std::set<std::pair<int, int> >::iterator itr = edges_.begin(); itr != edges_.end(); ++itr)
{
c1 = itr->first;
c2 = itr->second;
if ((states_[c1] & INTERS) && (states_[c1] & (~INTERS)) != states_[c2])
{
hasConflict = true;
break;
}
}
if (hasConflict)
{
int l1 = c1+1, l2 = c2+1;
if (hasOnlyOneNeighbor(c1))
{
// if the first components has only one adjacent component
for (int y = tls_[c1].y; y < brs_[c1].y; ++y)
for (int x = tls_[c1].x; x < brs_[c1].x; ++x)
if (labels_(y, x) == l1)
labels_(y, x) = l2;
states_[c1] = states_[c2] == FIRST ? SECOND : FIRST;
}
else
{
// if the first component has more than one adjacent component
Point p1, p2;
if (getSeamTips(c1, c2, p1, p2))
{
std::vector<Point> seam;
bool isHorizontalSeam;
if (estimateSeam(image1, image2, tl1, tl2, c1, p1, p2, seam, isHorizontalSeam))
updateLabelsUsingSeam(c1, c2, seam, isHorizontalSeam);
}
states_[c1] = states_[c2] == FIRST ? INTERS_SECOND : INTERS_FIRST;
}
const int c[] = {c1, c2};
const int l[] = {l1, l2};
for (int i = 0; i < 2; ++i)
{
// update information about the (i+1)-th component
int x0 = tls_[c[i]].x, x1 = brs_[c[i]].x;
int y0 = tls_[c[i]].y, y1 = brs_[c[i]].y;
tls_[c[i]] = Point(std::numeric_limits<int>::max(), std::numeric_limits<int>::max());
brs_[c[i]] = Point(std::numeric_limits<int>::min(), std::numeric_limits<int>::min());
contours_[c[i]].clear();
for (int y = y0; y < y1; ++y)
{
for (int x = x0; x < x1; ++x)
{
if (labels_(y, x) == l[i])
{
tls_[c[i]].x = std::min(tls_[c[i]].x, x);
tls_[c[i]].y = std::min(tls_[c[i]].y, y);
brs_[c[i]].x = std::max(brs_[c[i]].x, x+1);
brs_[c[i]].y = std::max(brs_[c[i]].y, y+1);
if ((x == 0 || labels_(y, x-1) != l[i]) || (x == unionSize_.width-1 || labels_(y, x+1) != l[i]) ||
(y == 0 || labels_(y-1, x) != l[i]) || (y == unionSize_.height-1 || labels_(y+1, x) != l[i]))
{
contours_[c[i]].push_back(Point(x, y));
}
}
}
}
}
// remove edges
edges_.erase(std::make_pair(c1, c2));
edges_.erase(std::make_pair(c2, c1));
}
}
// update masks
int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y;
int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y;
for (int y = 0; y < mask2.rows; ++y)
{
for (int x = 0; x < mask2.cols; ++x)
{
int l = labels_(y - dy2, x - dx2);
if (l > 0 && (states_[l-1] & FIRST) && mask1.at<uchar>(y - dy2 + dy1, x - dx2 + dx1))
mask2.at<uchar>(y, x) = 0;
}
}
for (int y = 0; y < mask1.rows; ++y)
{
for (int x = 0; x < mask1.cols; ++x)
{
int l = labels_(y - dy1, x - dx1);
if (l > 0 && (states_[l-1] & SECOND) && mask2.at<uchar>(y - dy1 + dy2, x - dx1 + dx2))
mask1.at<uchar>(y, x) = 0;
}
}
}
void DpSeamFinder::computeGradients(const Mat &image1, const Mat &image2)
{
CV_Assert(image1.channels() == 3 || image1.channels() == 4);
CV_Assert(image2.channels() == 3 || image2.channels() == 4);
CV_Assert(costFunction() == COLOR_GRAD);
Mat gray;
if (image1.channels() == 3)
cvtColor(image1, gray, COLOR_BGR2GRAY);
else if (image1.channels() == 4)
cvtColor(image1, gray, COLOR_BGRA2GRAY);
Sobel(gray, gradx1_, CV_32F, 1, 0);
Sobel(gray, grady1_, CV_32F, 0, 1);
if (image2.channels() == 3)
cvtColor(image2, gray, COLOR_BGR2GRAY);
else if (image2.channels() == 4)
cvtColor(image2, gray, COLOR_BGRA2GRAY);
Sobel(gray, gradx2_, CV_32F, 1, 0);
Sobel(gray, grady2_, CV_32F, 0, 1);
}
bool DpSeamFinder::hasOnlyOneNeighbor(int comp)
{
std::set<std::pair<int, int> >::iterator begin, end;
begin = edges_.lower_bound(std::make_pair(comp, std::numeric_limits<int>::min()));
end = edges_.upper_bound(std::make_pair(comp, std::numeric_limits<int>::max()));
return ++begin == end;
}
bool DpSeamFinder::closeToContour(int y, int x, const Mat_<uchar> &contourMask)
{
const int rad = 2;
for (int dy = -rad; dy <= rad; ++dy)
{
if (y + dy >= 0 && y + dy < unionSize_.height)
{
for (int dx = -rad; dx <= rad; ++dx)
{
if (x + dx >= 0 && x + dx < unionSize_.width &&
contourMask(y + dy, x + dx))
{
return true;
}
}
}
}
return false;
}
bool DpSeamFinder::getSeamTips(int comp1, int comp2, Point &p1, Point &p2)
{
CV_Assert(states_[comp1] & INTERS);
// find special points
std::vector<Point> specialPoints;
int l2 = comp2+1;
for (size_t i = 0; i < contours_[comp1].size(); ++i)
{
int x = contours_[comp1][i].x;
int y = contours_[comp1][i].y;
if (closeToContour(y, x, contour1mask_) &&
closeToContour(y, x, contour2mask_) &&
((x > 0 && labels_(y, x-1) == l2) ||
(y > 0 && labels_(y-1, x) == l2) ||
(x < unionSize_.width-1 && labels_(y, x+1) == l2) ||
(y < unionSize_.height-1 && labels_(y+1, x) == l2)))
{
specialPoints.push_back(Point(x, y));
}
}
if (specialPoints.size() < 2)
return false;
// find clusters
std::vector<int> labels;
cv::partition(specialPoints, labels, ClosePoints(10));
int nlabels = *std::max_element(labels.begin(), labels.end()) + 1;
if (nlabels < 2)
return false;
std::vector<Point> sum(nlabels);
std::vector<std::vector<Point> > points(nlabels);
for (size_t i = 0; i < specialPoints.size(); ++i)
{
sum[labels[i]] += specialPoints[i];
points[labels[i]].push_back(specialPoints[i]);
}
// select two most distant clusters
int idx[2] = {-1,-1};
double maxDist = -std::numeric_limits<double>::max();
for (int i = 0; i < nlabels-1; ++i)
{
for (int j = i+1; j < nlabels; ++j)
{
double size1 = static_cast<double>(points[i].size()), size2 = static_cast<double>(points[j].size());
double cx1 = cvRound(sum[i].x / size1), cy1 = cvRound(sum[i].y / size1);
double cx2 = cvRound(sum[j].x / size2), cy2 = cvRound(sum[j].y / size2);
double dist = (cx1 - cx2) * (cx1 - cx2) + (cy1 - cy2) * (cy1 - cy2);
if (dist > maxDist)
{
maxDist = dist;
idx[0] = i;
idx[1] = j;
}
}
}
// select two points closest to the clusters' centers
Point p[2];
for (int i = 0; i < 2; ++i)
{
double size = static_cast<double>(points[idx[i]].size());
double cx = cvRound(sum[idx[i]].x / size);
double cy = cvRound(sum[idx[i]].y / size);
size_t closest = points[idx[i]].size();
double minDist = std::numeric_limits<double>::max();
for (size_t j = 0; j < points[idx[i]].size(); ++j)
{
double dist = (points[idx[i]][j].x - cx) * (points[idx[i]][j].x - cx) +
(points[idx[i]][j].y - cy) * (points[idx[i]][j].y - cy);
if (dist < minDist)
{
minDist = dist;
closest = j;
}
}
p[i] = points[idx[i]][closest];
}
p1 = p[0];
p2 = p[1];
return true;
}
namespace
{
template <typename T>
float diffL2Square3(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2)
{
const T *r1 = image1.ptr<T>(y1);
const T *r2 = image2.ptr<T>(y2);
return static_cast<float>(sqr(r1[3*x1] - r2[3*x2]) + sqr(r1[3*x1+1] - r2[3*x2+1]) +
sqr(r1[3*x1+2] - r2[3*x2+2]));
}
template <typename T>
float diffL2Square4(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2)
{
const T *r1 = image1.ptr<T>(y1);
const T *r2 = image2.ptr<T>(y2);
return static_cast<float>(sqr(r1[4*x1] - r2[4*x2]) + sqr(r1[4*x1+1] - r2[4*x2+1]) +
sqr(r1[4*x1+2] - r2[4*x2+2]));
}
} // namespace
void DpSeamFinder::computeCosts(
const Mat &image1, const Mat &image2, Point tl1, Point tl2,
int comp, Mat_<float> &costV, Mat_<float> &costH)
{
CV_Assert(states_[comp] & INTERS);
// compute costs
float (*diff)(const Mat&, int, int, const Mat&, int, int) = 0;
if (image1.type() == CV_32FC3 && image2.type() == CV_32FC3)
diff = diffL2Square3<float>;
else if (image1.type() == CV_8UC3 && image2.type() == CV_8UC3)
diff = diffL2Square3<uchar>;
else if (image1.type() == CV_32FC4 && image2.type() == CV_32FC4)
diff = diffL2Square4<float>;
else if (image1.type() == CV_8UC4 && image2.type() == CV_8UC4)
diff = diffL2Square4<uchar>;
else
CV_Error(Error::StsBadArg, "both images must have CV_32FC3(4) or CV_8UC3(4) type");
int l = comp+1;
Rect roi(tls_[comp], brs_[comp]);
int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y;
int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y;
const float badRegionCost = normL2(Point3f(255.f, 255.f, 255.f),
Point3f(0.f, 0.f, 0.f));
costV.create(roi.height, roi.width+1);
for (int y = roi.y; y < roi.br().y; ++y)
{
for (int x = roi.x; x < roi.br().x+1; ++x)
{
if (x > 0 && x < labels_.cols &&
labels_(y, x) == l && labels_(y, x-1) == l
)
{
float costColor = (diff(image1, y + dy1, x + dx1 - 1, image2, y + dy2, x + dx2) +
diff(image1, y + dy1, x + dx1, image2, y + dy2, x + dx2 - 1)) / 2;
if (costFunc_ == COLOR)
costV(y - roi.y, x - roi.x) = costColor;
else if (costFunc_ == COLOR_GRAD)
{
float costGrad = std::abs(gradx1_(y + dy1, x + dx1)) + std::abs(gradx1_(y + dy1, x + dx1 - 1)) +
std::abs(gradx2_(y + dy2, x + dx2)) + std::abs(gradx2_(y + dy2, x + dx2 - 1)) + 1.f;
costV(y - roi.y, x - roi.x) = costColor / costGrad;
}
}
else
costV(y - roi.y, x - roi.x) = badRegionCost;
}
}
costH.create(roi.height+1, roi.width);
for (int y = roi.y; y < roi.br().y+1; ++y)
{
for (int x = roi.x; x < roi.br().x; ++x)
{
if (y > 0 && y < labels_.rows &&
labels_(y, x) == l && labels_(y-1, x) == l
)
{
float costColor = (diff(image1, y + dy1 - 1, x + dx1, image2, y + dy2, x + dx2) +
diff(image1, y + dy1, x + dx1, image2, y + dy2 - 1, x + dx2)) / 2;
if (costFunc_ == COLOR)
costH(y - roi.y, x - roi.x) = costColor;
else if (costFunc_ == COLOR_GRAD)
{
float costGrad = std::abs(grady1_(y + dy1, x + dx1)) + std::abs(grady1_(y + dy1 - 1, x + dx1)) +
std::abs(grady2_(y + dy2, x + dx2)) + std::abs(grady2_(y + dy2 - 1, x + dx2)) + 1.f;
costH(y - roi.y, x - roi.x) = costColor / costGrad;
}
}
else
costH(y - roi.y, x - roi.x) = badRegionCost;
}
}
}
bool DpSeamFinder::estimateSeam(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp,
Point p1, Point p2, std::vector<Point> &seam, bool &isHorizontal)
{
CV_Assert(states_[comp] & INTERS);
Mat_<float> costV, costH;
computeCosts(image1, image2, tl1, tl2, comp, costV, costH);
Rect roi(tls_[comp], brs_[comp]);
Point src = p1 - roi.tl();
Point dst = p2 - roi.tl();
int l = comp+1;
// estimate seam direction
bool swapped = false;
isHorizontal = std::abs(dst.x - src.x) > std::abs(dst.y - src.y);
if (isHorizontal)
{
if (src.x > dst.x)
{
std::swap(src, dst);
swapped = true;
}
}
else if (src.y > dst.y)
{
swapped = true;
std::swap(src, dst);
}
// find optimal control
Mat_<uchar> control = Mat::zeros(roi.size(), CV_8U);
Mat_<uchar> reachable = Mat::zeros(roi.size(), CV_8U);
Mat_<float> cost = Mat::zeros(roi.size(), CV_32F);
reachable(src) = 1;
cost(src) = 0.f;
int nsteps;
std::pair<float, int> steps[3];
if (isHorizontal)
{
for (int x = src.x+1; x <= dst.x; ++x)
{
for (int y = 0; y < roi.height; ++y)
{
// seam follows along upper side of pixels
nsteps = 0;
if (labels_(y + roi.y, x + roi.x) == l)
{
if (reachable(y, x-1))
steps[nsteps++] = std::make_pair(cost(y, x-1) + costH(y, x-1), 1);
if (y > 0 && reachable(y-1, x-1))
steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costH(y-1, x-1) + costV(y-1, x), 2);
if (y < roi.height-1 && reachable(y+1, x-1))
steps[nsteps++] = std::make_pair(cost(y+1, x-1) + costH(y+1, x-1) + costV(y, x), 3);
}
if (nsteps)
{
std::pair<float, int> opt = *min_element(steps, steps + nsteps);
cost(y, x) = opt.first;
control(y, x) = (uchar)opt.second;
reachable(y, x) = 255;
}
}
}
}
else
{
for (int y = src.y+1; y <= dst.y; ++y)
{
for (int x = 0; x < roi.width; ++x)
{
// seam follows along left side of pixels
nsteps = 0;
if (labels_(y + roi.y, x + roi.x) == l)
{
if (reachable(y-1, x))
steps[nsteps++] = std::make_pair(cost(y-1, x) + costV(y-1, x), 1);
if (x > 0 && reachable(y-1, x-1))
steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costV(y-1, x-1) + costH(y, x-1), 2);
if (x < roi.width-1 && reachable(y-1, x+1))
steps[nsteps++] = std::make_pair(cost(y-1, x+1) + costV(y-1, x+1) + costH(y, x), 3);
}
if (nsteps)
{
std::pair<float, int> opt = *min_element(steps, steps + nsteps);
cost(y, x) = opt.first;
control(y, x) = (uchar)opt.second;
reachable(y, x) = 255;
}
}
}
}
if (!reachable(dst))
return false;
// restore seam
Point p = dst;
seam.clear();
seam.push_back(p + roi.tl());
if (isHorizontal)
{
for (; p.x != src.x; seam.push_back(p + roi.tl()))
{
if (control(p) == 2) p.y--;
else if (control(p) == 3) p.y++;
p.x--;
}
}
else
{
for (; p.y != src.y; seam.push_back(p + roi.tl()))
{
if (control(p) == 2) p.x--;
else if (control(p) == 3) p.x++;
p.y--;
}
}
if (!swapped)
std::reverse(seam.begin(), seam.end());
CV_Assert(seam.front() == p1);
CV_Assert(seam.back() == p2);
return true;
}
void DpSeamFinder::updateLabelsUsingSeam(
int comp1, int comp2, const std::vector<Point> &seam, bool isHorizontalSeam)
{
Mat_<int> mask = Mat::zeros(brs_[comp1].y - tls_[comp1].y,
brs_[comp1].x - tls_[comp1].x, CV_32S);
for (size_t i = 0; i < contours_[comp1].size(); ++i)
mask(contours_[comp1][i] - tls_[comp1]) = 255;
for (size_t i = 0; i < seam.size(); ++i)
mask(seam[i] - tls_[comp1]) = 255;
// find connected components after seam carving
int l1 = comp1+1, l2 = comp2+1;
int ncomps = 0;
for (int y = 0; y < mask.rows; ++y)
for (int x = 0; x < mask.cols; ++x)
if (!mask(y, x) && labels_(y + tls_[comp1].y, x + tls_[comp1].x) == l1)
floodFill(mask, Point(x, y), ++ncomps);
for (size_t i = 0; i < contours_[comp1].size(); ++i)
{
int x = contours_[comp1][i].x - tls_[comp1].x;
int y = contours_[comp1][i].y - tls_[comp1].y;
bool ok = false;
static const int dx[] = {-1, +1, 0, 0, -1, +1, -1, +1};
static const int dy[] = {0, 0, -1, +1, -1, -1, +1, +1};
for (int j = 0; j < 8; ++j)
{
int c = x + dx[j];
int r = y + dy[j];
if (c >= 0 && c < mask.cols && r >= 0 && r < mask.rows &&
mask(r, c) && mask(r, c) != 255)
{
ok = true;
mask(y, x) = mask(r, c);
}
}
if (!ok)
mask(y, x) = 0;
}
if (isHorizontalSeam)
{
for (size_t i = 0; i < seam.size(); ++i)
{
int x = seam[i].x - tls_[comp1].x;
int y = seam[i].y - tls_[comp1].y;
if (y < mask.rows-1 && mask(y+1, x) && mask(y+1, x) != 255)
mask(y, x) = mask(y+1, x);
else
mask(y, x) = 0;
}
}
else
{
for (size_t i = 0; i < seam.size(); ++i)
{
int x = seam[i].x - tls_[comp1].x;
int y = seam[i].y - tls_[comp1].y;
if (x < mask.cols-1 && mask(y, x+1) && mask(y, x+1) != 255)
mask(y, x) = mask(y, x+1);
else
mask(y, x) = 0;
}
}
// find new components connected with the second component and
// with other components except the ones we are working with
std::map<int, int> connect2;
std::map<int, int> connectOther;
for (int i = 1; i <= ncomps; ++i)
{
connect2.insert(std::make_pair(i, 0));
connectOther.insert(std::make_pair(i, 0));
}
for (size_t i = 0; i < contours_[comp1].size(); ++i)
{
int x = contours_[comp1][i].x;
int y = contours_[comp1][i].y;
if ((x > 0 && labels_(y, x-1) == l2) ||
(y > 0 && labels_(y-1, x) == l2) ||
(x < unionSize_.width-1 && labels_(y, x+1) == l2) ||
(y < unionSize_.height-1 && labels_(y+1, x) == l2))
{
connect2[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++;
}
if ((x > 0 && labels_(y, x-1) != l1 && labels_(y, x-1) != l2) ||
(y > 0 && labels_(y-1, x) != l1 && labels_(y-1, x) != l2) ||
(x < unionSize_.width-1 && labels_(y, x+1) != l1 && labels_(y, x+1) != l2) ||
(y < unionSize_.height-1 && labels_(y+1, x) != l1 && labels_(y+1, x) != l2))
{
connectOther[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++;
}
}
std::vector<int> isAdjComp(ncomps + 1, 0);
for (std::map<int, int>::iterator itr = connect2.begin(); itr != connect2.end(); ++itr)
{
double len = static_cast<double>(contours_[comp1].size());
int res = 0;
if (itr->second / len > 0.05)
{
std::map<int, int>::const_iterator sub = connectOther.find(itr->first);
if (sub != connectOther.end() && (sub->second / len < 0.1))
{
res = 1;
}
}
isAdjComp[itr->first] = res;
}
// update labels
for (int y = 0; y < mask.rows; ++y)
for (int x = 0; x < mask.cols; ++x)
if (mask(y, x) && isAdjComp[mask(y, x)])
labels_(y + tls_[comp1].y, x + tls_[comp1].x) = l2;
}
class GraphCutSeamFinder::Impl CV_FINAL : public PairwiseSeamFinder
{
public:
Impl(int cost_type, float terminal_cost, float bad_region_penalty)
: cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {}
~Impl() {}
void find(const std::vector<UMat> &src, const std::vector<Point> &corners, std::vector<UMat> &masks) CV_OVERRIDE;
void findInPair(size_t first, size_t second, Rect roi) CV_OVERRIDE;
private:
void setGraphWeightsColor(const Mat &img1, const Mat &img2,
const Mat &mask1, const Mat &mask2, GCGraph<float> &graph);
void setGraphWeightsColorGrad(const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
GCGraph<float> &graph);
std::vector<Mat> dx_, dy_;
int cost_type_;
float terminal_cost_;
float bad_region_penalty_;
};
void GraphCutSeamFinder::Impl::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks)
{
// Compute gradients
dx_.resize(src.size());
dy_.resize(src.size());
Mat dx, dy;
for (size_t i = 0; i < src.size(); ++i)
{
CV_Assert(src[i].channels() == 3);
Sobel(src[i], dx, CV_32F, 1, 0);
Sobel(src[i], dy, CV_32F, 0, 1);
dx_[i].create(src[i].size(), CV_32F);
dy_[i].create(src[i].size(), CV_32F);
for (int y = 0; y < src[i].rows; ++y)
{
const Point3f* dx_row = dx.ptr<Point3f>(y);
const Point3f* dy_row = dy.ptr<Point3f>(y);
float* dx_row_ = dx_[i].ptr<float>(y);
float* dy_row_ = dy_[i].ptr<float>(y);
for (int x = 0; x < src[i].cols; ++x)
{
dx_row_[x] = normL2(dx_row[x]);
dy_row_[x] = normL2(dy_row[x]);
}
}
}
PairwiseSeamFinder::find(src, corners, masks);
}
void GraphCutSeamFinder::Impl::setGraphWeightsColor(const Mat &img1, const Mat &img2,
const Mat &mask1, const Mat &mask2, GCGraph<float> &graph)
{
const Size img_size = img1.size();
// Set terminal weights
for (int y = 0; y < img_size.height; ++y)
{
for (int x = 0; x < img_size.width; ++x)
{
int v = graph.addVtx();
graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
}
}
// Set regular edge weights
const float weight_eps = 1.f;
for (int y = 0; y < img_size.height; ++y)
{
for (int x = 0; x < img_size.width; ++x)
{
int v = y * img_size.width + x;
if (x < img_size.width - 1)
{
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
weight_eps;
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
weight += bad_region_penalty_;
graph.addEdges(v, v + 1, weight, weight);
}
if (y < img_size.height - 1)
{
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
weight_eps;
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
weight += bad_region_penalty_;
graph.addEdges(v, v + img_size.width, weight, weight);
}
}
}
}
void GraphCutSeamFinder::Impl::setGraphWeightsColorGrad(
const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
GCGraph<float> &graph)
{
const Size img_size = img1.size();
// Set terminal weights
for (int y = 0; y < img_size.height; ++y)
{
for (int x = 0; x < img_size.width; ++x)
{
int v = graph.addVtx();
graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
}
}
// Set regular edge weights
const float weight_eps = 1.f;
for (int y = 0; y < img_size.height; ++y)
{
for (int x = 0; x < img_size.width; ++x)
{
int v = y * img_size.width + x;
if (x < img_size.width - 1)
{
float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) +
dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
weight_eps;
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
weight += bad_region_penalty_;
graph.addEdges(v, v + 1, weight, weight);
}
if (y < img_size.height - 1)
{
float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) +
dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
weight_eps;
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
weight += bad_region_penalty_;
graph.addEdges(v, v + img_size.width, weight, weight);
}
}
}
}
void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi)
{
Mat img1 = images_[first].getMat(ACCESS_READ), img2 = images_[second].getMat(ACCESS_READ);
Mat dx1 = dx_[first], dx2 = dx_[second];
Mat dy1 = dy_[first], dy2 = dy_[second];
Mat mask1 = masks_[first].getMat(ACCESS_RW), mask2 = masks_[second].getMat(ACCESS_RW);
Point tl1 = corners_[first], tl2 = corners_[second];
const int gap = 10;
Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
// Cut subimages and submasks with some gap
for (int y = -gap; y < roi.height + gap; ++y)
{
for (int x = -gap; x < roi.width + gap; ++x)
{
int y1 = roi.y - tl1.y + y;
int x1 = roi.x - tl1.x + x;
if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
{
subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
}
else
{
subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
submask1.at<uchar>(y + gap, x + gap) = 0;
subdx1.at<float>(y + gap, x + gap) = 0.f;
subdy1.at<float>(y + gap, x + gap) = 0.f;
}
int y2 = roi.y - tl2.y + y;
int x2 = roi.x - tl2.x + x;
if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
{
subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
}
else
{
subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
submask2.at<uchar>(y + gap, x + gap) = 0;
subdx2.at<float>(y + gap, x + gap) = 0.f;
subdy2.at<float>(y + gap, x + gap) = 0.f;
}
}
}
const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap);
const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) +
(roi.width - 1 + 2 * gap) * (roi.height + 2 * gap);
GCGraph<float> graph(vertex_count, edge_count);
switch (cost_type_)
{
case GraphCutSeamFinder::COST_COLOR:
setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph);
break;
case GraphCutSeamFinder::COST_COLOR_GRAD:
setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
submask1, submask2, graph);
break;
default:
CV_Error(Error::StsBadArg, "unsupported pixel similarity measure");
}
graph.maxFlow();
for (int y = 0; y < roi.height; ++y)
{
for (int x = 0; x < roi.width; ++x)
{
if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap))
{
if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
}
else
{
if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
}
}
}
}
GraphCutSeamFinder::GraphCutSeamFinder(String cost_type, float terminal_cost, float bad_region_penalty)
{
CostType t;
if (cost_type == "COST_COLOR")
t = COST_COLOR;
else if (cost_type == "COST_COLOR_GRAD")
t = COST_COLOR_GRAD;
else
CV_Error(Error::StsBadFunc, "Unknown cost type function");
impl_ = new Impl(t, terminal_cost, bad_region_penalty);
}
GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty)
: impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {}
GraphCutSeamFinder::~GraphCutSeamFinder() {}
void GraphCutSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks)
{
impl_->find(src, corners, masks);
}
#ifdef HAVE_OPENCV_CUDALEGACY
void GraphCutSeamFinderGpu::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks)
{
// Compute gradients
dx_.resize(src.size());
dy_.resize(src.size());
Mat dx, dy;
for (size_t i = 0; i < src.size(); ++i)
{
CV_Assert(src[i].channels() == 3);
Sobel(src[i], dx, CV_32F, 1, 0);
Sobel(src[i], dy, CV_32F, 0, 1);
dx_[i].create(src[i].size(), CV_32F);
dy_[i].create(src[i].size(), CV_32F);
for (int y = 0; y < src[i].rows; ++y)
{
const Point3f* dx_row = dx.ptr<Point3f>(y);
const Point3f* dy_row = dy.ptr<Point3f>(y);
float* dx_row_ = dx_[i].ptr<float>(y);
float* dy_row_ = dy_[i].ptr<float>(y);
for (int x = 0; x < src[i].cols; ++x)
{
dx_row_[x] = normL2(dx_row[x]);
dy_row_[x] = normL2(dy_row[x]);
}
}
}
PairwiseSeamFinder::find(src, corners, masks);
}
void GraphCutSeamFinderGpu::findInPair(size_t first, size_t second, Rect roi)
{
Mat img1 = images_[first].getMat(ACCESS_READ), img2 = images_[second].getMat(ACCESS_READ);
Mat dx1 = dx_[first], dx2 = dx_[second];
Mat dy1 = dy_[first], dy2 = dy_[second];
Mat mask1 = masks_[first].getMat(ACCESS_READ), mask2 = masks_[second].getMat(ACCESS_READ);
Point tl1 = corners_[first], tl2 = corners_[second];
const int gap = 10;
Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
// Cut subimages and submasks with some gap
for (int y = -gap; y < roi.height + gap; ++y)
{
for (int x = -gap; x < roi.width + gap; ++x)
{
int y1 = roi.y - tl1.y + y;
int x1 = roi.x - tl1.x + x;
if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
{
subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
}
else
{
subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
submask1.at<uchar>(y + gap, x + gap) = 0;
subdx1.at<float>(y + gap, x + gap) = 0.f;
subdy1.at<float>(y + gap, x + gap) = 0.f;
}
int y2 = roi.y - tl2.y + y;
int x2 = roi.x - tl2.x + x;
if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
{
subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
}
else
{
subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
submask2.at<uchar>(y + gap, x + gap) = 0;
subdx2.at<float>(y + gap, x + gap) = 0.f;
subdy2.at<float>(y + gap, x + gap) = 0.f;
}
}
}
Mat terminals, leftT, rightT, top, bottom;
switch (cost_type_)
{
case GraphCutSeamFinder::COST_COLOR:
setGraphWeightsColor(subimg1, subimg2, submask1, submask2,
terminals, leftT, rightT, top, bottom);
break;
case GraphCutSeamFinder::COST_COLOR_GRAD:
setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
submask1, submask2, terminals, leftT, rightT, top, bottom);
break;
default:
CV_Error(Error::StsBadArg, "unsupported pixel similarity measure");
}
cuda::GpuMat terminals_d(terminals);
cuda::GpuMat leftT_d(leftT);
cuda::GpuMat rightT_d(rightT);
cuda::GpuMat top_d(top);
cuda::GpuMat bottom_d(bottom);
cuda::GpuMat labels_d, buf_d;
cuda::graphcut(terminals_d, leftT_d, rightT_d, top_d, bottom_d, labels_d, buf_d);
Mat_<uchar> labels = (Mat)labels_d;
for (int y = 0; y < roi.height; ++y)
{
for (int x = 0; x < roi.width; ++x)
{
if (labels(y + gap, x + gap))
{
if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
}
else
{
if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
}
}
}
}
void GraphCutSeamFinderGpu::setGraphWeightsColor(const Mat &img1, const Mat &img2, const Mat &mask1, const Mat &mask2,
Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom)
{
const Size img_size = img1.size();
terminals.create(img_size, CV_32S);
leftT.create(Size(img_size.height, img_size.width), CV_32S);
rightT.create(Size(img_size.height, img_size.width), CV_32S);
top.create(img_size, CV_32S);
bottom.create(img_size, CV_32S);
Mat_<int> terminals_(terminals);
Mat_<int> leftT_(leftT);
Mat_<int> rightT_(rightT);
Mat_<int> top_(top);
Mat_<int> bottom_(bottom);
// Set terminal weights
for (int y = 0; y < img_size.height; ++y)
{
for (int x = 0; x < img_size.width; ++x)
{
float source = mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f;
float sink = mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f;
terminals_(y, x) = saturate_cast<int>((source - sink) * 255.f);
}
}
// Set regular edge weights
const float weight_eps = 1.f;
for (int y = 0; y < img_size.height; ++y)
{
for (int x = 0; x < img_size.width; ++x)
{
if (x > 0)
{
float weight = normL2(img1.at<Point3f>(y, x - 1), img2.at<Point3f>(y, x - 1)) +
normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
weight_eps;
if (!mask1.at<uchar>(y, x - 1) || !mask1.at<uchar>(y, x) ||
!mask2.at<uchar>(y, x - 1) || !mask2.at<uchar>(y, x))
weight += bad_region_penalty_;
leftT_(x, y) = saturate_cast<int>(weight * 255.f);
}
else
leftT_(x, y) = 0;
if (x < img_size.width - 1)
{
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
weight_eps;
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
weight += bad_region_penalty_;
rightT_(x, y) = saturate_cast<int>(weight * 255.f);
}
else
rightT_(x, y) = 0;
if (y > 0)
{
float weight = normL2(img1.at<Point3f>(y - 1, x), img2.at<Point3f>(y - 1, x)) +
normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
weight_eps;
if (!mask1.at<uchar>(y - 1, x) || !mask1.at<uchar>(y, x) ||
!mask2.at<uchar>(y - 1, x) || !mask2.at<uchar>(y, x))
weight += bad_region_penalty_;
top_(y, x) = saturate_cast<int>(weight * 255.f);
}
else
top_(y, x) = 0;
if (y < img_size.height - 1)
{
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
weight_eps;
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
weight += bad_region_penalty_;
bottom_(y, x) = saturate_cast<int>(weight * 255.f);
}
else
bottom_(y, x) = 0;
}
}
}
void GraphCutSeamFinderGpu::setGraphWeightsColorGrad(
const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom)
{
const Size img_size = img1.size();
terminals.create(img_size, CV_32S);
leftT.create(Size(img_size.height, img_size.width), CV_32S);
rightT.create(Size(img_size.height, img_size.width), CV_32S);
top.create(img_size, CV_32S);
bottom.create(img_size, CV_32S);
Mat_<int> terminals_(terminals);
Mat_<int> leftT_(leftT);
Mat_<int> rightT_(rightT);
Mat_<int> top_(top);
Mat_<int> bottom_(bottom);
// Set terminal weights
for (int y = 0; y < img_size.height; ++y)
{
for (int x = 0; x < img_size.width; ++x)
{
float source = mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f;
float sink = mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f;
terminals_(y, x) = saturate_cast<int>((source - sink) * 255.f);
}
}
// Set regular edge weights
const float weight_eps = 1.f;
for (int y = 0; y < img_size.height; ++y)
{
for (int x = 0; x < img_size.width; ++x)
{
if (x > 0)
{
float grad = dx1.at<float>(y, x - 1) + dx1.at<float>(y, x) +
dx2.at<float>(y, x - 1) + dx2.at<float>(y, x) + weight_eps;
float weight = (normL2(img1.at<Point3f>(y, x - 1), img2.at<Point3f>(y, x - 1)) +
normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x))) / grad +
weight_eps;
if (!mask1.at<uchar>(y, x - 1) || !mask1.at<uchar>(y, x) ||
!mask2.at<uchar>(y, x - 1) || !mask2.at<uchar>(y, x))
weight += bad_region_penalty_;
leftT_(x, y) = saturate_cast<int>(weight * 255.f);
}
else
leftT_(x, y) = 0;
if (x < img_size.width - 1)
{
float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) +
dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
weight_eps;
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
weight += bad_region_penalty_;
rightT_(x, y) = saturate_cast<int>(weight * 255.f);
}
else
rightT_(x, y) = 0;
if (y > 0)
{
float grad = dy1.at<float>(y - 1, x) + dy1.at<float>(y, x) +
dy2.at<float>(y - 1, x) + dy2.at<float>(y, x) + weight_eps;
float weight = (normL2(img1.at<Point3f>(y - 1, x), img2.at<Point3f>(y - 1, x)) +
normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x))) / grad +
weight_eps;
if (!mask1.at<uchar>(y - 1, x) || !mask1.at<uchar>(y, x) ||
!mask2.at<uchar>(y - 1, x) || !mask2.at<uchar>(y, x))
weight += bad_region_penalty_;
top_(y, x) = saturate_cast<int>(weight * 255.f);
}
else
top_(y, x) = 0;
if (y < img_size.height - 1)
{
float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) +
dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
weight_eps;
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
weight += bad_region_penalty_;
bottom_(y, x) = saturate_cast<int>(weight * 255.f);
}
else
bottom_(y, x) = 0;
}
}
}
#endif
} // namespace detail
} // namespace cv