mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 07:09:12 +08:00
fa5ed62a66
dnn: refactor ONNX MatMul with fastGemm #24694 Done: - [x] add backends - [x] CUDA - [x] OpenVINO - [x] CANN - [x] OpenCL - [x] Vulkan - [x] add perf tests - [x] const B case ### Benchmark Tests are done on M1. All data is in milliseconds (ms). | Configuration | MatMul (Prepacked) | MatMul | InnerProduct | | - | - | - | - | | A=[12, 197, 197], B=[12, 197, 64], trans_a=0, trans_b=0 | **0.39** | 0.41 | 1.33 | | A=[12, 197, 64], B=[12, 64, 197], trans_a=0, trans_b=0 | **0.42** | 0.42 | 1.17 | | A=[12, 50, 64], B=[12, 64, 50], trans_a=0, trans_b=0 | **0.13** | 0.15 | 0.33 | | A=[12, 50, 50], B=[12, 50, 64], trans_a=0, trans_b=0 | **0.11** | 0.13 | 0.22 | | A=[16, 197, 197], B=[16, 197, 64], trans_a=0, trans_b=0 | **0.46** | 0.54 | 1.46 | | A=[16, 197, 64], B=[16, 64, 197], trans_a=0, trans_b=0 | **0.46** | 0.95 | 1.74 | | A=[16, 50, 64], B=[16, 64, 50], trans_a=0, trans_b=0 | **0.18** | 0.32 | 0.43 | | A=[16, 50, 50], B=[16, 50, 64], trans_a=0, trans_b=0 | **0.15** | 0.25 | 0.25 | ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
416 lines
12 KiB
C++
416 lines
12 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "perf_precomp.hpp"
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include <numeric>
|
|
|
|
namespace opencv_test {
|
|
|
|
struct GemmParam_t {
|
|
std::vector<int> a_shape;
|
|
std::vector<int> b_shape;
|
|
std::vector<int> c_shape;
|
|
bool trans_a;
|
|
bool trans_b;
|
|
|
|
GemmParam_t(std::vector<int> a_shape_, std::vector<int> b_shape_, std::vector<int> c_shape_ = {}, bool trans_a_ = false, bool trans_b_ = false)
|
|
: a_shape(a_shape_), b_shape(b_shape_), c_shape(c_shape_), trans_a(trans_a_), trans_b(trans_b_) {}
|
|
};
|
|
|
|
// TODO: Dsiable most of the test cases except vision transformers to save time
|
|
static const GemmParam_t test_gemm_configs[] = {
|
|
// vision transformers cases
|
|
{ { 768, 768 }, { 768, 768 }, { 768 } },
|
|
{ { 1024, 1024 }, { 1024, 1024 }, { 1024 } },
|
|
{ { 50, 768 }, { 768, 2304 } },
|
|
{ { 197, 768 }, { 768, 2304 } },
|
|
{ { 50, 1024 }, { 1024, 3072 } },
|
|
{ { 197, 1024 }, { 1024, 3072 } },
|
|
|
|
// these cases are commented to save testing time
|
|
/*
|
|
// square mat
|
|
{ { 64, 64 }, { 64, 64 } },
|
|
{ { 128, 128 }, { 128, 128 } },
|
|
{ { 256, 256 }, { 256, 256 } },
|
|
{ { 512, 512 }, { 512, 512 } },
|
|
{ { 1024, 1024 }, { 1024, 1024 } },
|
|
{ { 4096, 4096 }, { 4096, 4096 } },
|
|
|
|
// retangular mat
|
|
{ { 256, 256 }, { 256, 1024 } },
|
|
{ { 256, 1024 }, { 1024, 256 } },
|
|
{ { 256, 1024 }, { 1024, 1024 } },
|
|
{ { 1024, 1024 }, { 1024, 256 } },
|
|
{ { 1024, 256 }, { 256, 1024 } },
|
|
{ { 1024, 256 }, { 256, 256 } },
|
|
|
|
// with C
|
|
{ { 256, 256 }, { 256, 256 }, { 256 } },
|
|
{ { 256, 256 }, { 256, 1024 }, { 1024 } },
|
|
{ { 256, 1024 }, { 1024, 256 }, { 256 } },
|
|
{ { 256, 1024 }, { 1024, 1024 }, { 1024 } },
|
|
{ { 1024, 1024 }, { 1024, 256 }, { 256 } },
|
|
{ { 1024, 256 }, { 256, 1024 }, { 1024 } },
|
|
{ { 1024, 256 }, { 256, 256 }, { 256 } },
|
|
|
|
// with C and trans_b
|
|
{ { 256, 256 }, { 256, 256 }, { 256 } , false, true},
|
|
{ { 256, 1024 }, { 256, 1024 }, { 256 } , false, true},
|
|
{ { 256, 1024 }, { 1024, 1024 }, { 1024 } , false, true},
|
|
{ { 1024, 1024 }, { 1024, 1024 }, { 1024 } , false, true},
|
|
{ { 1024, 256 }, { 1024, 256 }, { 1024 } , false, true},
|
|
{ { 1024, 256 }, { 256, 256 }, { 256 } , false, true},
|
|
|
|
// with C and trans_b and trans_a
|
|
{ { 256, 256 }, { 256, 256 }, { 256 } , true, true},
|
|
{ { 1024, 256 }, { 256, 1024 }, { 256 } , true, true},
|
|
{ { 256, 1024 }, { 1024, 256 }, { 1024 } , true, true},
|
|
{ { 1024, 1024 }, { 1024, 1024 }, { 1024 } , true, true},
|
|
*/
|
|
};
|
|
|
|
static const GemmParam_t test_matmul_configs[] = {
|
|
// vision transformer cases
|
|
{ {12, 197, 197}, {12, 197, 64} },
|
|
{ {12, 197, 64 }, {12, 64, 197} },
|
|
{ {12, 50, 64}, {12, 64, 50} },
|
|
{ {12, 50, 50}, {12, 50, 64} },
|
|
{ {16, 197, 197}, {16, 197, 64} },
|
|
{ {16, 197, 64 }, {16, 64, 197} },
|
|
{ {16, 50, 64}, {16, 64, 50} },
|
|
{ {16, 50, 50}, {16, 50, 64} },
|
|
};
|
|
|
|
struct GemmParamId
|
|
{
|
|
enum {
|
|
GEMM_0 = 0,
|
|
GEMM_LAST = sizeof(test_gemm_configs) / sizeof(test_gemm_configs[0])
|
|
};
|
|
int val_;
|
|
GemmParamId(int val = 0) : val_(val) {}
|
|
operator int() const { return val_; }
|
|
static ::testing::internal::ParamGenerator<GemmParamId> all()
|
|
{
|
|
enum { NUM = (int)GEMM_LAST };
|
|
GemmParamId v_[NUM]; for (int i = 0; i < NUM; ++i) { v_[i] = GemmParamId(i); } // reduce generated code size
|
|
return ::testing::ValuesIn(v_, v_ + NUM);
|
|
}
|
|
};
|
|
|
|
struct MatMulParamId {
|
|
enum {
|
|
MATMUL_0 = 0,
|
|
MATMUL_LAST = sizeof(test_matmul_configs) / sizeof(test_matmul_configs[0])
|
|
};
|
|
int val_;
|
|
MatMulParamId(int val = 0) : val_(val) {}
|
|
operator int() const { return val_; }
|
|
static ::testing::internal::ParamGenerator<MatMulParamId> all() {
|
|
enum { NUM = (int)MATMUL_LAST };
|
|
MatMulParamId v_[NUM]; for (int i = 0; i < NUM; i++) { v_[i] = MatMulParamId(i); }
|
|
return ::testing::ValuesIn(v_, v_ + NUM);
|
|
}
|
|
};
|
|
|
|
static inline void PrintTo(const GemmParamId& v, std::ostream* os)
|
|
{
|
|
CV_Assert((int)v >= 0); CV_Assert((int)v < GemmParamId::GEMM_LAST);
|
|
const GemmParam_t& p = test_gemm_configs[(int)v];
|
|
|
|
auto print_shape = [os](const std::vector<int>& shape, const std::string tag) {
|
|
if (shape.empty()) {
|
|
return ;
|
|
}
|
|
|
|
*os << tag << "=[";
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (i == shape.size() - 1) {
|
|
*os << shape[i] << "]";
|
|
break;
|
|
}
|
|
*os << shape[i] << ", ";
|
|
}
|
|
};
|
|
|
|
print_shape(p.a_shape, "A");
|
|
print_shape(p.b_shape, ", B");
|
|
print_shape(p.c_shape, ", C");
|
|
*os << ", trans_a=" << p.trans_a << ", trans_b=" << p.trans_b;
|
|
}
|
|
|
|
typedef tuple<GemmParamId, tuple<Backend, Target> > GemmTestParam_t;
|
|
typedef TestBaseWithParam<GemmTestParam_t> Gemm;
|
|
|
|
PERF_TEST_P_(Gemm, gemm)
|
|
{
|
|
int test_id = (int)get<0>(GetParam());
|
|
ASSERT_GE(test_id, 0); ASSERT_LT(test_id, GemmParamId::GEMM_LAST);
|
|
const GemmParam_t& params = test_gemm_configs[test_id];
|
|
auto a_shape = params.a_shape;
|
|
auto b_shape = params.b_shape;
|
|
auto c_shape = params.c_shape;
|
|
auto trans_a = params.trans_a;
|
|
auto trans_b = params.trans_b;
|
|
float alpha = 1.f;
|
|
float beta = 1.f;
|
|
|
|
Backend backend_id = get<0>(get<1>(GetParam()));
|
|
Target target_id = get<1>(get<1>(GetParam()));
|
|
|
|
bool have_bias = c_shape.empty() ? false : true;
|
|
|
|
Mat A(static_cast<int>(a_shape.size()), a_shape.data(), CV_32F);
|
|
randu(A, -1.0f, 1.0f);
|
|
Mat B(static_cast<int>(b_shape.size()), b_shape.data(), CV_32F);
|
|
randu(B, -1.0f, 1.0f);
|
|
|
|
LayerParams lp;
|
|
lp.type = "Gemm";
|
|
lp.name = "testLayer";
|
|
lp.set("transA", trans_a);
|
|
lp.set("transB", trans_b);
|
|
lp.set("alpha", alpha);
|
|
lp.set("beta", beta);
|
|
lp.set("real_ndims_C", static_cast<int>(c_shape.size()));
|
|
|
|
lp.set("constB", true);
|
|
lp.blobs.push_back(B);
|
|
if (have_bias) {
|
|
Mat C(static_cast<int>(c_shape.size()), c_shape.data(), CV_32F);
|
|
randu(C, -1.0f, 1.0f);
|
|
lp.set("have_bias", true);
|
|
lp.set("constC", true);
|
|
lp.blobs.push_back(C);
|
|
}
|
|
|
|
Net net;
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
net.setPreferableBackend(backend_id);
|
|
net.setPreferableTarget(target_id);
|
|
|
|
// warmup
|
|
{
|
|
net.setInput(A);
|
|
Mat out = net.forward();
|
|
}
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
Mat res = net.forward();
|
|
}
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST_P_(Gemm, innerproduct)
|
|
{
|
|
int test_id = (int)get<0>(GetParam());
|
|
ASSERT_GE(test_id, 0); ASSERT_LT(test_id, GemmParamId::GEMM_LAST);
|
|
const GemmParam_t& params = test_gemm_configs[test_id];
|
|
auto a_shape = params.a_shape;
|
|
auto b_shape = params.b_shape;
|
|
auto c_shape = params.c_shape;
|
|
auto trans_a = params.trans_a;
|
|
auto trans_b = params.trans_b;
|
|
|
|
Backend backend_id = get<0>(get<1>(GetParam()));
|
|
Target target_id = get<1>(get<1>(GetParam()));
|
|
|
|
bool have_bias = c_shape.empty() ? false : true;
|
|
|
|
Mat A(static_cast<int>(a_shape.size()), a_shape.data(), CV_32F);
|
|
randu(A, -1.0f, 1.0f);
|
|
Mat B(static_cast<int>(b_shape.size()), b_shape.data(), CV_32F);
|
|
randu(B, -1.0f, 1.0f);
|
|
|
|
LayerParams lp;
|
|
lp.type = "InnerProduct";
|
|
lp.name = "testLayer";
|
|
if (trans_a) {
|
|
cv::transpose(A, A);
|
|
}
|
|
if (!trans_b) {
|
|
cv::transpose(B, B);
|
|
}
|
|
lp.blobs.push_back(B);
|
|
lp.set("num_output", B.size[0]);
|
|
if (have_bias) {
|
|
Mat C(static_cast<int>(c_shape.size()), c_shape.data(), CV_32F);
|
|
randu(C, -1.0f, 1.0f);
|
|
lp.blobs.push_back(C);
|
|
lp.set("bias_term", true);
|
|
} else {
|
|
lp.set("bias_term", false);
|
|
}
|
|
|
|
Net net;
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
net.setPreferableBackend(backend_id);
|
|
net.setPreferableTarget(target_id);
|
|
|
|
// warmup
|
|
{
|
|
std::vector<std::string> input_names(1);
|
|
input_names[0] = "A";
|
|
net.setInputsNames(input_names);
|
|
net.setInput(A, input_names[0]);
|
|
Mat out = net.forward();
|
|
}
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
Mat res = net.forward();
|
|
}
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
static inline void PrintTo(const MatMulParamId& v, std::ostream* os)
|
|
{
|
|
CV_Assert((int)v >= 0); CV_Assert((int)v < MatMulParamId::MATMUL_LAST);
|
|
const GemmParam_t& p = test_matmul_configs[(int)v];
|
|
|
|
auto print_shape = [os](const std::vector<int>& shape, const std::string tag) {
|
|
if (shape.empty()) {
|
|
return ;
|
|
}
|
|
|
|
*os << tag << "=[";
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (i == shape.size() - 1) {
|
|
*os << shape[i] << "]";
|
|
break;
|
|
}
|
|
*os << shape[i] << ", ";
|
|
}
|
|
};
|
|
|
|
print_shape(p.a_shape, "A");
|
|
print_shape(p.b_shape, ", B");
|
|
print_shape(p.c_shape, ", C");
|
|
*os << ", trans_a=" << p.trans_a << ", trans_b=" << p.trans_b;
|
|
}
|
|
|
|
using MatMulTestParam_t = tuple<MatMulParamId, tuple<Backend, Target>>;
|
|
using MatMul = TestBaseWithParam<MatMulTestParam_t>;
|
|
|
|
PERF_TEST_P_(MatMul, matmul)
|
|
{
|
|
int test_id = (int)get<0>(GetParam());
|
|
ASSERT_GE(test_id, 0); ASSERT_LT(test_id, MatMulParamId::MATMUL_LAST);
|
|
const GemmParam_t& params = test_matmul_configs[test_id];
|
|
auto a_shape = params.a_shape;
|
|
auto b_shape = params.b_shape;
|
|
auto trans_a = params.trans_a;
|
|
auto trans_b = params.trans_b;
|
|
float alpha = 1.f;
|
|
float beta = 1.f;
|
|
|
|
Backend backend_id = get<0>(get<1>(GetParam()));
|
|
Target target_id = get<1>(get<1>(GetParam()));
|
|
|
|
Mat A(a_shape, CV_32F);
|
|
randu(A, -1.0f, 1.0f);
|
|
Mat B(b_shape, CV_32F);
|
|
randu(B, -1.0f, 1.0f);
|
|
|
|
LayerParams lp;
|
|
lp.type = "MatMul";
|
|
lp.name = "testLayer";
|
|
lp.set("transA", trans_a);
|
|
lp.set("transB", trans_b);
|
|
lp.set("alpha", alpha);
|
|
lp.set("beta", beta);
|
|
lp.blobs.push_back(B);
|
|
|
|
Net net;
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
net.setPreferableBackend(backend_id);
|
|
net.setPreferableTarget(target_id);
|
|
|
|
// warmup
|
|
{
|
|
std::vector<std::string> input_names{"A"};
|
|
net.setInputsNames(input_names);
|
|
net.setInput(A, input_names[0]);
|
|
Mat out = net.forward();
|
|
}
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
Mat res = net.forward();
|
|
}
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST_P_(MatMul, innerproduct)
|
|
{
|
|
int test_id = (int)get<0>(GetParam());
|
|
ASSERT_GE(test_id, 0); ASSERT_LT(test_id, MatMulParamId::MATMUL_LAST);
|
|
const GemmParam_t& params = test_matmul_configs[test_id];
|
|
auto a_shape = params.a_shape;
|
|
auto b_shape = params.b_shape;
|
|
|
|
Backend backend_id = get<0>(get<1>(GetParam()));
|
|
Target target_id = get<1>(get<1>(GetParam()));
|
|
|
|
Mat A(a_shape, CV_32F);
|
|
randu(A, -1.0f, 1.0f);
|
|
Mat B(b_shape, CV_32F);
|
|
randu(B, -1.0f, 1.0f);
|
|
|
|
LayerParams lp;
|
|
lp.type = "InnerProduct";
|
|
lp.name = "testLayer";
|
|
lp.set("axis", (int)(a_shape.size() - 1));
|
|
lp.set("bias_term", false);
|
|
|
|
// pre-transpose
|
|
std::vector<int> order(b_shape.size());
|
|
std::iota(order.begin(), order.end(), 0);
|
|
std::swap(order.back(), order[b_shape.size() - 2]);
|
|
Mat B_transposed;
|
|
transposeND(B, order, B_transposed);
|
|
lp.blobs.push_back(B_transposed);
|
|
lp.set("num_output", int(B_transposed.total(0, b_shape.size() - 1)));
|
|
lp.set("is_matmul", true);
|
|
|
|
Net net;
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
net.setPreferableBackend(backend_id);
|
|
net.setPreferableTarget(target_id);
|
|
|
|
// warmup
|
|
{
|
|
std::vector<std::string> input_names{"A"};
|
|
net.setInputsNames(input_names);
|
|
net.setInput(A, input_names[0]);
|
|
Mat out = net.forward();
|
|
}
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
Mat res = net.forward();
|
|
}
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Gemm, Combine(
|
|
GemmParamId::all(),
|
|
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
|
|
));
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, MatMul, Combine(
|
|
MatMulParamId::all(),
|
|
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
|
|
));
|
|
|
|
} // namespace
|