opencv/modules/dnn/src/net_cann.cpp
SaltFish-T ab6bffc6f8
Merge pull request #23936 from SaltFish-T:4.x
Update opencv dnn to support cann version >=6.3 #23936

1.modify the search path of "libopsproto.so" in OpenCVFindCANN.cmake
2.add the search path of "libgraph_base.so" in OpenCVFindCANN.cmake
3.automatic check Ascend socVersion,and test on Ascend310/Ascend310B/Ascend910B well
2023-07-27 14:21:30 +03:00

374 lines
13 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <opencv2/core/utils/logger.hpp>
#include "net_impl.hpp"
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
#ifdef HAVE_CANN
static std::shared_ptr<ge::ModelBufferData> compileCannGraph(std::shared_ptr<ge::Graph> graph);
class NetImplCann CV_FINAL : public Net::Impl
{
public:
typedef Net::Impl Base;
bool newWasSupported, netWasConverted;
explicit NetImplCann(const Ptr<Net::Impl>& basePtr)
: Net::Impl()
{
CV_LOG_INFO(NULL, "Initializing NetImplCann");
basePtr_ = basePtr;
newWasSupported = true;
netWasConverted = false;
init();
CV_LOG_INFO(NULL, "Finished initializing NetImplCann");
}
void init()
{
CV_TRACE_FUNCTION();
CV_Assert(basePtr_);
Net::Impl& base = *basePtr_;
CV_Assert(!base.netWasAllocated);
CV_Assert(!base.netWasQuantized); // does not support quantized net for now
netInputLayer = base.netInputLayer;
blobsToKeep = base.blobsToKeep;
layers = base.layers;
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++)
{
LayerData& ld = it->second;
ld.resetAllocation();
}
layerNameToId = base.layerNameToId;
outputNameToId = base.outputNameToId;
preferableBackend = DNN_BACKEND_CANN;
preferableTarget = DNN_TARGET_NPU; // force using NPU
hasDynamicShapes = base.hasDynamicShapes;
CV_Assert(base.backendWrappers.empty()); //backendWrappers = base.backendWrappers;
lastLayerId = base.lastLayerId;
netWasAllocated = base.netWasAllocated;
netWasQuantized = base.netWasQuantized;
fusion = base.fusion;
}
bool empty() const override
{
return Base::empty();
}
void setPreferableBackend(Net& net, int backendId) override
{
if (backendId == preferableBackend)
return; // no-op
else
CV_Error(Error::StsError, "DNN: Can't switch backend from CANN to other");
Ptr<Net::Impl>& impl_ptr_ref = accessor::DnnNetAccessor::getImplPtrRef(net);
impl_ptr_ref = basePtr_;
basePtr_->setPreferableBackend(net, backendId);
}
void setPreferableTarget(int targetId) override
{
if (targetId != preferableTarget)
{
CV_Error(Error::StsError, "DNN: Can't switch target from NPU to other");
}
}
Ptr<BackendWrapper> wrap(Mat& host) override
{
return Ptr<BackendWrapper>(new CannBackendWrapper(host));
}
// void fuseLayers(const std::vector<LayerPin>& blobsToKeep_); // fusion is done in the CANN graph engine
void initBackend(const std::vector<LayerPin>& blobsToKeep_) override;
void forwardLayer(LayerData& ld) override;
};
void NetImplCann::initBackend(const std::vector<LayerPin>& blobsToKeep_)
{
CV_TRACE_FUNCTION();
CV_CheckEQ(preferableBackend, DNN_BACKEND_CANN, "");
// netWasAllocated turns to false if requested output is changed or input shape changes
if (netWasConverted && netWasAllocated)
return;
if (!netWasConverted)
{
newWasSupported = true;
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
auto& ld = it->second;
auto layer = ld.layerInstance;
if (ld.id != 0 && !layer->supportBackend(preferableBackend))
{
newWasSupported = false;
CV_LOG_ONCE_WARNING(NULL, "DNN/CANN: layer (name=" << ld.name << ", type=" << ld.type << ") is not supported by CANN backend. Going back to default backend on CPU target");
}
}
}
if (!newWasSupported)
return ;
// initialize each blob wrappers' names
for (MapIdToLayerData::const_iterator it = layers.begin(); it != layers.end(); ++it)
{
const LayerData& ld = it->second;
if (ld.id == 0)
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
auto cannWrapper = ld.outputBlobsWrappers[i].dynamicCast<CannBackendWrapper>();
// cannWrapper->name = netInputLayer->outNames.empty() ? cv::format("%s_%d", ld.name.c_str(), i) : netInputLayer->outNames[i];
cannWrapper->name = std::string("y");
}
}
else
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
auto cannWrapper = ld.outputBlobsWrappers[i].dynamicCast<CannBackendWrapper>();
// cannWrapper->name = ld.outputBlobsWrappers.size() > 1 ? (ld.name + ":" + std::to_string(i)) : ld.name;
cannWrapper->name = ld.outputBlobsWrappers.size() > 1 ? (std::string("y") + std::to_string(i)) : std::string("y");
}
}
}
// convert layers to CANN operators,
// collect graph input and output operators,
// collect and input and output wrappers
int firstOutputLayerId = -1;
std::vector<Ptr<BackendNode> > netInputNodes;
std::vector<ge::Operator> graphInputOps, graphOutputOps;
std::vector<Ptr<BackendWrapper>> graphInputWrappers, graphOutputWrappers;
CV_LOG_INFO(NULL, "DNN/CANN: converting layers to CANN operators");
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData& ld = it->second;
auto layer = ld.layerInstance;
if (ld.id == 0)
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); i++)
{
// retrieve tensor description
auto wrapper = ld.outputBlobsWrappers[i];
graphInputWrappers.push_back(wrapper);
auto cannWrapper = wrapper.dynamicCast<CannBackendWrapper>();
CV_Assert(!cannWrapper.empty());
// create graph input op
std::string inputOpName = netInputLayer->outNames.empty() ? cv::format("%s_%d", ld.name.c_str(), i) : netInputLayer->outNames[i];
auto inputOp = std::make_shared<ge::op::Data>(inputOpName);
inputOp->update_input_desc_x(*(cannWrapper->desc_));
inputOp->update_output_desc_y(*(cannWrapper->desc_));
graphInputOps.push_back(*inputOp);
netInputNodes.push_back(Ptr<BackendNode>(new CannBackendNode(inputOp)));
}
}
else
{
ld.skip = true; // skip all cann operators
std::vector<Ptr<BackendNode> > layerInputNodes;
for (int i = 0; i < ld.inputBlobsId.size(); i++)
{
int layerInputLid = ld.inputBlobsId[i].lid;
int layerInputOid = ld.inputBlobsId[i].oid;
if (layerInputLid == 0)
{
layerInputNodes.push_back(netInputNodes[layerInputOid]);
}
else
{
layerInputNodes.push_back(layers[layerInputLid].backendNodes[preferableBackend]);
}
}
CV_LOG_INFO(NULL, "DNN/CANN: converting layer " << ld.name << "@" << ld.type << "@" << ld.id << " to CANN operator");
auto backendNode = layer->initCann(ld.inputBlobsWrappers, ld.outputBlobsWrappers, layerInputNodes); // it's ok if ld.name is empty
// collect outputs
bool isOutputNode = ld.consumers.size() == 0 ? true : false;
if (isOutputNode)
{
if (firstOutputLayerId < 0)
firstOutputLayerId = ld.id;
auto cannNode = backendNode.dynamicCast<CannBackendNode>();
graphOutputOps.push_back(*(cannNode->getOp()));
// assume cann graph outputs and dnn net outputs have the same order
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
graphOutputWrappers.push_back(ld.outputBlobsWrappers[i]);
}
}
ld.backendNodes[preferableBackend] = backendNode;
}
}
CV_LOG_INFO(NULL, "DNN/CANN: done converting layers to CANN operators");
// build graph from collected graph inputs and outputs
CV_LOG_INFO(NULL, "DNN/CANN: building ge::Graph");
std::string graphName = cv::format("graph_%d", networkId);
std::shared_ptr<ge::Graph> graph = std::make_shared<ge::Graph>(graphName.c_str());
(void)graph->SetInputs(graphInputOps);
(void)graph->SetOutputs(graphOutputOps);
CV_LOG_INFO(NULL, "DNN/CANN: done building ge::Graph");
// convert ge::Graph to OM buffer
CV_LOG_INFO(NULL, "DNN/CANN: converting ge::Graph to OM buffer");
std::shared_ptr<ge::ModelBufferData> modelBuffer = compileCannGraph(graph);
CV_LOG_INFO(NULL, "DNN/CANN: OM buffer size = " << modelBuffer->length);
CV_LOG_INFO(NULL, "DNN/CANN: done building ge::Graph to OM buffer");
// keep net in the first output node and mark the node runnable
auto& ld = layers[firstOutputLayerId];
auto cannNode = ld.backendNodes[preferableBackend].dynamicCast<CannBackendNode>();
std::shared_ptr<CannNet> net = std::shared_ptr<CannNet>(new CannNet());
net->loadModelBuffer(modelBuffer);
net->bindInputWrappers(graphInputWrappers);
net->bindOutputWrappers(graphOutputWrappers);
cannNode->net = net;
ld.skip = false;
netWasConverted = true;
}
void NetImplCann::forwardLayer(LayerData& ld)
{
CV_TRACE_FUNCTION();
auto layer = ld.layerInstance;
if (!ld.skip)
{
auto it = ld.backendNodes.find(preferableBackend);
if (ld.id == 0 || it == ld.backendNodes.end()) // input layer
{
return Base::forwardLayer(ld);
}
CV_Assert(it != ld.backendNodes.end());
const Ptr<BackendNode>& node = it->second;
CV_Assert(!node.empty());
auto cannNode = node.dynamicCast<CannBackendNode>();
CV_Assert(!cannNode.empty());
CV_Assert(cannNode->net);
TickMeter tm;
tm.start();
cannNode->net->forward();
tm.stop();
int64_t t = tm.getTimeTicks();
layersTimings[ld.id] = (t > 0) ? t : 1;
}
else
{
layersTimings[ld.id] = 0;
}
ld.flag = 1;
}
std::shared_ptr<ge::ModelBufferData> compileCannGraph(std::shared_ptr<ge::Graph> graph)
{
const size_t hdrsize = 32;
std::shared_ptr<ge::ModelBufferData> out_buffer = std::make_shared<ge::ModelBufferData>();
size_t buf_size = (1 << 27), model_size; // default buf_size 128 MB
for (int iter = 0; iter < 2; ++iter)
{
size_t* shared_buf = (size_t*)mmap(NULL, buf_size + hdrsize, PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_ANONYMOUS, -1, 0);
uint8_t* model_data = (uint8_t*)(shared_buf + 1);
pid_t child;
int childstate = 0;
bool ok;
if ((child=fork()) == 0)
{
// initialize engine Ascend310/Ascend310P3/Ascend910B/Ascend310B
std::map<ge::AscendString, ge::AscendString> options = {
{ge::AscendString(ge::ir_option::SOC_VERSION), ge::AscendString(aclrtGetSocName())},
};
ACL_CHECK_GRAPH_RET(ge::aclgrphBuildInitialize(options));
// build
std::shared_ptr<ge::ModelBufferData> om_model = std::make_shared<ge::ModelBufferData>();
std::map<ge::AscendString, ge::AscendString> build_options;
ACL_CHECK_GRAPH_RET(aclgrphBuildModel(*graph, build_options, *om_model));
#if 0
// (optional). Dump model
ge::AscendString graph_name;
graph->GetName(graph_name);
aclgrphDumpGraph(*graph, graph_name.GetString(), 7);
// (optional). Save model
aclgrphSaveModel(graph_name.GetString(), *om_model);
#endif
// finalize engine
ge::aclgrphBuildFinalize();
// send model from child to parent
size_t model_size = om_model->length;
*shared_buf = model_size;
if (model_size > buf_size)
{
exit(1);
}
else
{
memcpy(model_data, om_model->data.get(), model_size);
exit(0);
}
}
waitpid (child, &childstate, 0);
model_size = *shared_buf;
ok = WIFEXITED(childstate) && WEXITSTATUS(childstate) == 0;
if (ok)
{
CV_LOG_INFO(NULL, "Compile success, model size = " << model_size);
out_buffer->data = std::shared_ptr<uint8_t>(new uint8_t[model_size]);
memcpy(out_buffer->data.get(), model_data, model_size);
out_buffer->length = model_size;
}
munmap(shared_buf, buf_size + hdrsize);
if (ok) break;
buf_size = model_size;
}
return out_buffer;
}
void switchToCannBackend(Net& net)
{
CV_TRACE_FUNCTION();
Ptr<Net::Impl>& impl_ptr_ref = accessor::DnnNetAccessor::getImplPtrRef(net);
CV_Assert(impl_ptr_ref);
CV_LOG_INFO(NULL, "DNN: switching to CANN backend... (networkID=" << impl_ptr_ref->networkId << ")");
Ptr<NetImplCann> impl_ptr_cann = makePtr<NetImplCann>(impl_ptr_ref);
impl_ptr_ref = impl_ptr_cann;
}
#endif // HAVE_CANN
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn