mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 01:13:11 +08:00
923 lines
35 KiB
C++
923 lines
35 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*//Implementation of the Gaussian mixture model background subtraction from:
|
|
//
|
|
//"Improved adaptive Gausian mixture model for background subtraction"
|
|
//Z.Zivkovic
|
|
//International Conference Pattern Recognition, UK, August, 2004
|
|
//http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
|
//The code is very fast and performs also shadow detection.
|
|
//Number of Gausssian components is adapted per pixel.
|
|
//
|
|
// and
|
|
//
|
|
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
|
|
//Z.Zivkovic, F. van der Heijden
|
|
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
|
|
//
|
|
//The algorithm similar to the standard Stauffer&Grimson algorithm with
|
|
//additional selection of the number of the Gaussian components based on:
|
|
//
|
|
//"Recursive unsupervised learning of finite mixture models "
|
|
//Z.Zivkovic, F.van der Heijden
|
|
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
|
|
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
|
|
//
|
|
//
|
|
//Example usage with as cpp class
|
|
// BackgroundSubtractorMOG2 bg_model;
|
|
//For each new image the model is updates using:
|
|
// bg_model(img, fgmask);
|
|
//
|
|
//Example usage as part of the CvBGStatModel:
|
|
// CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
|
|
//
|
|
// //update for each frame
|
|
// cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
|
|
//
|
|
// //release at the program termination
|
|
// cvReleaseBGStatModel( &bg_model );
|
|
//
|
|
//Author: Z.Zivkovic, www.zoranz.net
|
|
//Date: 7-April-2011, Version:1.0
|
|
///////////*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_video.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
/*
|
|
Interface of Gaussian mixture algorithm from:
|
|
|
|
"Improved adaptive Gausian mixture model for background subtraction"
|
|
Z.Zivkovic
|
|
International Conference Pattern Recognition, UK, August, 2004
|
|
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
|
|
|
Advantages:
|
|
-fast - number of Gausssian components is constantly adapted per pixel.
|
|
-performs also shadow detection (see bgfg_segm_test.cpp example)
|
|
|
|
*/
|
|
|
|
// default parameters of gaussian background detection algorithm
|
|
static const int defaultHistory2 = 500; // Learning rate; alpha = 1/defaultHistory2
|
|
static const float defaultVarThreshold2 = 4.0f*4.0f;
|
|
static const int defaultNMixtures2 = 5; // maximal number of Gaussians in mixture
|
|
static const float defaultBackgroundRatio2 = 0.9f; // threshold sum of weights for background test
|
|
static const float defaultVarThresholdGen2 = 3.0f*3.0f;
|
|
static const float defaultVarInit2 = 15.0f; // initial variance for new components
|
|
static const float defaultVarMax2 = 5*defaultVarInit2;
|
|
static const float defaultVarMin2 = 4.0f;
|
|
|
|
// additional parameters
|
|
static const float defaultfCT2 = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
|
|
static const unsigned char defaultnShadowDetection2 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
|
|
static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
|
|
|
|
|
|
class BackgroundSubtractorMOG2Impl : public BackgroundSubtractorMOG2
|
|
{
|
|
public:
|
|
//! the default constructor
|
|
BackgroundSubtractorMOG2Impl()
|
|
{
|
|
frameSize = Size(0,0);
|
|
frameType = 0;
|
|
|
|
nframes = 0;
|
|
history = defaultHistory2;
|
|
varThreshold = defaultVarThreshold2;
|
|
bShadowDetection = 1;
|
|
|
|
nmixtures = defaultNMixtures2;
|
|
backgroundRatio = defaultBackgroundRatio2;
|
|
fVarInit = defaultVarInit2;
|
|
fVarMax = defaultVarMax2;
|
|
fVarMin = defaultVarMin2;
|
|
|
|
varThresholdGen = defaultVarThresholdGen2;
|
|
fCT = defaultfCT2;
|
|
nShadowDetection = defaultnShadowDetection2;
|
|
fTau = defaultfTau;
|
|
|
|
opencl_ON = true;
|
|
}
|
|
//! the full constructor that takes the length of the history,
|
|
// the number of gaussian mixtures, the background ratio parameter and the noise strength
|
|
BackgroundSubtractorMOG2Impl(int _history, float _varThreshold, bool _bShadowDetection=true)
|
|
{
|
|
frameSize = Size(0,0);
|
|
frameType = 0;
|
|
|
|
nframes = 0;
|
|
history = _history > 0 ? _history : defaultHistory2;
|
|
varThreshold = (_varThreshold>0)? _varThreshold : defaultVarThreshold2;
|
|
bShadowDetection = _bShadowDetection;
|
|
|
|
nmixtures = defaultNMixtures2;
|
|
backgroundRatio = defaultBackgroundRatio2;
|
|
fVarInit = defaultVarInit2;
|
|
fVarMax = defaultVarMax2;
|
|
fVarMin = defaultVarMin2;
|
|
|
|
varThresholdGen = defaultVarThresholdGen2;
|
|
fCT = defaultfCT2;
|
|
nShadowDetection = defaultnShadowDetection2;
|
|
fTau = defaultfTau;
|
|
name_ = "BackgroundSubtractor.MOG2";
|
|
|
|
opencl_ON = true;
|
|
}
|
|
//! the destructor
|
|
~BackgroundSubtractorMOG2Impl() {}
|
|
//! the update operator
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
|
|
|
|
//! computes a background image which are the mean of all background gaussians
|
|
virtual void getBackgroundImage(OutputArray backgroundImage) const;
|
|
|
|
//! re-initiaization method
|
|
void initialize(Size _frameSize, int _frameType)
|
|
{
|
|
frameSize = _frameSize;
|
|
frameType = _frameType;
|
|
nframes = 0;
|
|
|
|
int nchannels = CV_MAT_CN(frameType);
|
|
CV_Assert( nchannels <= CV_CN_MAX );
|
|
CV_Assert( nmixtures <= 255);
|
|
|
|
if (ocl::useOpenCL() && opencl_ON)
|
|
{
|
|
create_ocl_apply_kernel();
|
|
kernel_getBg.create("getBackgroundImage2_kernel", ocl::video::bgfg_mog2_oclsrc, format( "-D CN=%d -D NMIXTURES=%d", nchannels, nmixtures));
|
|
|
|
if (kernel_apply.empty() || kernel_getBg.empty())
|
|
opencl_ON = false;
|
|
}
|
|
else opencl_ON = false;
|
|
|
|
if (opencl_ON)
|
|
{
|
|
u_weight.create(frameSize.height * nmixtures, frameSize.width, CV_32FC1);
|
|
u_weight.setTo(Scalar::all(0));
|
|
|
|
u_variance.create(frameSize.height * nmixtures, frameSize.width, CV_32FC1);
|
|
u_variance.setTo(Scalar::all(0));
|
|
|
|
if (nchannels==3)
|
|
nchannels=4;
|
|
u_mean.create(frameSize.height * nmixtures, frameSize.width, CV_32FC(nchannels)); //4 channels
|
|
u_mean.setTo(Scalar::all(0));
|
|
|
|
//make the array for keeping track of the used modes per pixel - all zeros at start
|
|
u_bgmodelUsedModes.create(frameSize, CV_8UC1);
|
|
u_bgmodelUsedModes.setTo(cv::Scalar::all(0));
|
|
}
|
|
else
|
|
{
|
|
// for each gaussian mixture of each pixel bg model we store ...
|
|
// the mixture weight (w),
|
|
// the mean (nchannels values) and
|
|
// the covariance
|
|
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + nchannels), CV_32F );
|
|
//make the array for keeping track of the used modes per pixel - all zeros at start
|
|
bgmodelUsedModes.create(frameSize,CV_8U);
|
|
bgmodelUsedModes = Scalar::all(0);
|
|
}
|
|
}
|
|
|
|
virtual AlgorithmInfo* info() const { return 0; }
|
|
|
|
virtual int getHistory() const { return history; }
|
|
virtual void setHistory(int _nframes) { history = _nframes; }
|
|
|
|
virtual int getNMixtures() const { return nmixtures; }
|
|
virtual void setNMixtures(int nmix) { nmixtures = nmix; }
|
|
|
|
virtual double getBackgroundRatio() const { return backgroundRatio; }
|
|
virtual void setBackgroundRatio(double _backgroundRatio) { backgroundRatio = (float)_backgroundRatio; }
|
|
|
|
virtual double getVarThreshold() const { return varThreshold; }
|
|
virtual void setVarThreshold(double _varThreshold) { varThreshold = _varThreshold; }
|
|
|
|
virtual double getVarThresholdGen() const { return varThresholdGen; }
|
|
virtual void setVarThresholdGen(double _varThresholdGen) { varThresholdGen = (float)_varThresholdGen; }
|
|
|
|
virtual double getVarInit() const { return fVarInit; }
|
|
virtual void setVarInit(double varInit) { fVarInit = (float)varInit; }
|
|
|
|
virtual double getVarMin() const { return fVarMin; }
|
|
virtual void setVarMin(double varMin) { fVarMin = (float)varMin; }
|
|
|
|
virtual double getVarMax() const { return fVarMax; }
|
|
virtual void setVarMax(double varMax) { fVarMax = (float)varMax; }
|
|
|
|
virtual double getComplexityReductionThreshold() const { return fCT; }
|
|
virtual void setComplexityReductionThreshold(double ct) { fCT = (float)ct; }
|
|
|
|
virtual bool getDetectShadows() const { return bShadowDetection; }
|
|
virtual void setDetectShadows(bool detectshadows)
|
|
{
|
|
if ((bShadowDetection && detectshadows) || (!bShadowDetection && !detectshadows))
|
|
return;
|
|
bShadowDetection = detectshadows;
|
|
if (!kernel_apply.empty())
|
|
{
|
|
create_ocl_apply_kernel();
|
|
CV_Assert( !kernel_apply.empty() );
|
|
}
|
|
}
|
|
|
|
virtual int getShadowValue() const { return nShadowDetection; }
|
|
virtual void setShadowValue(int value) { nShadowDetection = (uchar)value; }
|
|
|
|
virtual double getShadowThreshold() const { return fTau; }
|
|
virtual void setShadowThreshold(double value) { fTau = (float)value; }
|
|
|
|
virtual void write(FileStorage& fs) const
|
|
{
|
|
fs << "name" << name_
|
|
<< "history" << history
|
|
<< "nmixtures" << nmixtures
|
|
<< "backgroundRatio" << backgroundRatio
|
|
<< "varThreshold" << varThreshold
|
|
<< "varThresholdGen" << varThresholdGen
|
|
<< "varInit" << fVarInit
|
|
<< "varMin" << fVarMin
|
|
<< "varMax" << fVarMax
|
|
<< "complexityReductionThreshold" << fCT
|
|
<< "detectShadows" << (int)bShadowDetection
|
|
<< "shadowValue" << (int)nShadowDetection
|
|
<< "shadowThreshold" << fTau;
|
|
}
|
|
|
|
virtual void read(const FileNode& fn)
|
|
{
|
|
CV_Assert( (String)fn["name"] == name_ );
|
|
history = (int)fn["history"];
|
|
nmixtures = (int)fn["nmixtures"];
|
|
backgroundRatio = (float)fn["backgroundRatio"];
|
|
varThreshold = (double)fn["varThreshold"];
|
|
varThresholdGen = (float)fn["varThresholdGen"];
|
|
fVarInit = (float)fn["varInit"];
|
|
fVarMin = (float)fn["varMin"];
|
|
fVarMax = (float)fn["varMax"];
|
|
fCT = (float)fn["complexityReductionThreshold"];
|
|
bShadowDetection = (int)fn["detectShadows"] != 0;
|
|
nShadowDetection = saturate_cast<uchar>((int)fn["shadowValue"]);
|
|
fTau = (float)fn["shadowThreshold"];
|
|
}
|
|
|
|
protected:
|
|
Size frameSize;
|
|
int frameType;
|
|
Mat bgmodel;
|
|
Mat bgmodelUsedModes;//keep track of number of modes per pixel
|
|
|
|
//for OCL
|
|
|
|
mutable bool opencl_ON;
|
|
|
|
UMat u_weight;
|
|
UMat u_variance;
|
|
UMat u_mean;
|
|
UMat u_bgmodelUsedModes;
|
|
|
|
mutable ocl::Kernel kernel_apply;
|
|
mutable ocl::Kernel kernel_getBg;
|
|
|
|
int nframes;
|
|
int history;
|
|
int nmixtures;
|
|
//! here it is the maximum allowed number of mixture components.
|
|
//! Actual number is determined dynamically per pixel
|
|
double varThreshold;
|
|
// threshold on the squared Mahalanobis distance to decide if it is well described
|
|
// by the background model or not. Related to Cthr from the paper.
|
|
// This does not influence the update of the background. A typical value could be 4 sigma
|
|
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
|
|
|
|
/////////////////////////
|
|
// less important parameters - things you might change but be carefull
|
|
////////////////////////
|
|
float backgroundRatio;
|
|
// corresponds to fTB=1-cf from the paper
|
|
// TB - threshold when the component becomes significant enough to be included into
|
|
// the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
|
// For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
|
// it is considered foreground
|
|
// float noiseSigma;
|
|
float varThresholdGen;
|
|
//correspondts to Tg - threshold on the squared Mahalan. dist. to decide
|
|
//when a sample is close to the existing components. If it is not close
|
|
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
|
|
//Smaller Tg leads to more generated components and higher Tg might make
|
|
//lead to small number of components but they can grow too large
|
|
float fVarInit;
|
|
float fVarMin;
|
|
float fVarMax;
|
|
//initial variance for the newly generated components.
|
|
//It will will influence the speed of adaptation. A good guess should be made.
|
|
//A simple way is to estimate the typical standard deviation from the images.
|
|
//I used here 10 as a reasonable value
|
|
// min and max can be used to further control the variance
|
|
float fCT;//CT - complexity reduction prior
|
|
//this is related to the number of samples needed to accept that a component
|
|
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
|
|
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
|
|
|
|
//shadow detection parameters
|
|
bool bShadowDetection;//default 1 - do shadow detection
|
|
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
|
|
float fTau;
|
|
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
|
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
|
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
|
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
|
|
String name_;
|
|
|
|
bool ocl_getBackgroundImage(OutputArray backgroundImage) const;
|
|
bool ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate=-1);
|
|
void create_ocl_apply_kernel();
|
|
};
|
|
|
|
struct GaussBGStatModel2Params
|
|
{
|
|
//image info
|
|
int nWidth;
|
|
int nHeight;
|
|
int nND;//number of data dimensions (image channels)
|
|
|
|
bool bPostFiltering;//defult 1 - do postfiltering - will make shadow detection results also give value 255
|
|
double minArea; // for postfiltering
|
|
|
|
bool bInit;//default 1, faster updates at start
|
|
|
|
/////////////////////////
|
|
//very important parameters - things you will change
|
|
////////////////////////
|
|
float fAlphaT;
|
|
//alpha - speed of update - if the time interval you want to average over is T
|
|
//set alpha=1/T. It is also usefull at start to make T slowly increase
|
|
//from 1 until the desired T
|
|
float fTb;
|
|
//Tb - threshold on the squared Mahalan. dist. to decide if it is well described
|
|
//by the background model or not. Related to Cthr from the paper.
|
|
//This does not influence the update of the background. A typical value could be 4 sigma
|
|
//and that is Tb=4*4=16;
|
|
|
|
/////////////////////////
|
|
//less important parameters - things you might change but be carefull
|
|
////////////////////////
|
|
float fTg;
|
|
//Tg - threshold on the squared Mahalan. dist. to decide
|
|
//when a sample is close to the existing components. If it is not close
|
|
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
|
|
//Smaller Tg leads to more generated components and higher Tg might make
|
|
//lead to small number of components but they can grow too large
|
|
float fTB;//1-cf from the paper
|
|
//TB - threshold when the component becomes significant enough to be included into
|
|
//the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
|
//For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
|
//it is considered foreground
|
|
float fVarInit;
|
|
float fVarMax;
|
|
float fVarMin;
|
|
//initial standard deviation for the newly generated components.
|
|
//It will will influence the speed of adaptation. A good guess should be made.
|
|
//A simple way is to estimate the typical standard deviation from the images.
|
|
//I used here 10 as a reasonable value
|
|
float fCT;//CT - complexity reduction prior
|
|
//this is related to the number of samples needed to accept that a component
|
|
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
|
|
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
|
|
|
|
//even less important parameters
|
|
int nM;//max number of modes - const - 4 is usually enough
|
|
|
|
//shadow detection parameters
|
|
bool bShadowDetection;//default 1 - do shadow detection
|
|
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
|
|
float fTau;
|
|
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
|
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
|
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
|
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
};
|
|
|
|
struct GMM
|
|
{
|
|
float weight;
|
|
float variance;
|
|
};
|
|
|
|
// shadow detection performed per pixel
|
|
// should work for rgb data, could be usefull for gray scale and depth data as well
|
|
// See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
CV_INLINE bool
|
|
detectShadowGMM(const float* data, int nchannels, int nmodes,
|
|
const GMM* gmm, const float* mean,
|
|
float Tb, float TB, float tau)
|
|
{
|
|
float tWeight = 0;
|
|
|
|
// check all the components marked as background:
|
|
for( int mode = 0; mode < nmodes; mode++, mean += nchannels )
|
|
{
|
|
GMM g = gmm[mode];
|
|
|
|
float numerator = 0.0f;
|
|
float denominator = 0.0f;
|
|
for( int c = 0; c < nchannels; c++ )
|
|
{
|
|
numerator += data[c] * mean[c];
|
|
denominator += mean[c] * mean[c];
|
|
}
|
|
|
|
// no division by zero allowed
|
|
if( denominator == 0 )
|
|
return false;
|
|
|
|
// if tau < a < 1 then also check the color distortion
|
|
if( numerator <= denominator && numerator >= tau*denominator )
|
|
{
|
|
float a = numerator / denominator;
|
|
float dist2a = 0.0f;
|
|
|
|
for( int c = 0; c < nchannels; c++ )
|
|
{
|
|
float dD= a*mean[c] - data[c];
|
|
dist2a += dD*dD;
|
|
}
|
|
|
|
if (dist2a < Tb*g.variance*a*a)
|
|
return true;
|
|
};
|
|
|
|
tWeight += g.weight;
|
|
if( tWeight > TB )
|
|
return false;
|
|
};
|
|
return false;
|
|
}
|
|
|
|
//update GMM - the base update function performed per pixel
|
|
//
|
|
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
|
|
//Z.Zivkovic, F. van der Heijden
|
|
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
|
|
//
|
|
//The algorithm similar to the standard Stauffer&Grimson algorithm with
|
|
//additional selection of the number of the Gaussian components based on:
|
|
//
|
|
//"Recursive unsupervised learning of finite mixture models "
|
|
//Z.Zivkovic, F.van der Heijden
|
|
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
|
|
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
|
|
|
|
class MOG2Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MOG2Invoker(const Mat& _src, Mat& _dst,
|
|
GMM* _gmm, float* _mean,
|
|
uchar* _modesUsed,
|
|
int _nmixtures, float _alphaT,
|
|
float _Tb, float _TB, float _Tg,
|
|
float _varInit, float _varMin, float _varMax,
|
|
float _prune, float _tau, bool _detectShadows,
|
|
uchar _shadowVal)
|
|
{
|
|
src = &_src;
|
|
dst = &_dst;
|
|
gmm0 = _gmm;
|
|
mean0 = _mean;
|
|
modesUsed0 = _modesUsed;
|
|
nmixtures = _nmixtures;
|
|
alphaT = _alphaT;
|
|
Tb = _Tb;
|
|
TB = _TB;
|
|
Tg = _Tg;
|
|
varInit = _varInit;
|
|
varMin = MIN(_varMin, _varMax);
|
|
varMax = MAX(_varMin, _varMax);
|
|
prune = _prune;
|
|
tau = _tau;
|
|
detectShadows = _detectShadows;
|
|
shadowVal = _shadowVal;
|
|
}
|
|
|
|
void operator()(const Range& range) const
|
|
{
|
|
int y0 = range.start, y1 = range.end;
|
|
int ncols = src->cols, nchannels = src->channels();
|
|
AutoBuffer<float> buf(src->cols*nchannels);
|
|
float alpha1 = 1.f - alphaT;
|
|
float dData[CV_CN_MAX];
|
|
|
|
for( int y = y0; y < y1; y++ )
|
|
{
|
|
const float* data = buf;
|
|
if( src->depth() != CV_32F )
|
|
src->row(y).convertTo(Mat(1, ncols, CV_32FC(nchannels), (void*)data), CV_32F);
|
|
else
|
|
data = src->ptr<float>(y);
|
|
|
|
float* mean = mean0 + ncols*nmixtures*nchannels*y;
|
|
GMM* gmm = gmm0 + ncols*nmixtures*y;
|
|
uchar* modesUsed = modesUsed0 + ncols*y;
|
|
uchar* mask = dst->ptr(y);
|
|
|
|
for( int x = 0; x < ncols; x++, data += nchannels, gmm += nmixtures, mean += nmixtures*nchannels )
|
|
{
|
|
//calculate distances to the modes (+ sort)
|
|
//here we need to go in descending order!!!
|
|
bool background = false;//return value -> true - the pixel classified as background
|
|
|
|
//internal:
|
|
bool fitsPDF = false;//if it remains zero a new GMM mode will be added
|
|
int nmodes = modesUsed[x], nNewModes = nmodes;//current number of modes in GMM
|
|
float totalWeight = 0.f;
|
|
|
|
float* mean_m = mean;
|
|
|
|
//////
|
|
//go through all modes
|
|
for( int mode = 0; mode < nmodes; mode++, mean_m += nchannels )
|
|
{
|
|
float weight = alpha1*gmm[mode].weight + prune;//need only weight if fit is found
|
|
int swap_count = 0;
|
|
////
|
|
//fit not found yet
|
|
if( !fitsPDF )
|
|
{
|
|
//check if it belongs to some of the remaining modes
|
|
float var = gmm[mode].variance;
|
|
|
|
//calculate difference and distance
|
|
float dist2;
|
|
|
|
if( nchannels == 3 )
|
|
{
|
|
dData[0] = mean_m[0] - data[0];
|
|
dData[1] = mean_m[1] - data[1];
|
|
dData[2] = mean_m[2] - data[2];
|
|
dist2 = dData[0]*dData[0] + dData[1]*dData[1] + dData[2]*dData[2];
|
|
}
|
|
else
|
|
{
|
|
dist2 = 0.f;
|
|
for( int c = 0; c < nchannels; c++ )
|
|
{
|
|
dData[c] = mean_m[c] - data[c];
|
|
dist2 += dData[c]*dData[c];
|
|
}
|
|
}
|
|
|
|
//background? - Tb - usually larger than Tg
|
|
if( totalWeight < TB && dist2 < Tb*var )
|
|
background = true;
|
|
|
|
//check fit
|
|
if( dist2 < Tg*var )
|
|
{
|
|
/////
|
|
//belongs to the mode
|
|
fitsPDF = true;
|
|
|
|
//update distribution
|
|
|
|
//update weight
|
|
weight += alphaT;
|
|
float k = alphaT/weight;
|
|
|
|
//update mean
|
|
for( int c = 0; c < nchannels; c++ )
|
|
mean_m[c] -= k*dData[c];
|
|
|
|
//update variance
|
|
float varnew = var + k*(dist2-var);
|
|
//limit the variance
|
|
varnew = MAX(varnew, varMin);
|
|
varnew = MIN(varnew, varMax);
|
|
gmm[mode].variance = varnew;
|
|
|
|
//sort
|
|
//all other weights are at the same place and
|
|
//only the matched (iModes) is higher -> just find the new place for it
|
|
for( int i = mode; i > 0; i-- )
|
|
{
|
|
//check one up
|
|
if( weight < gmm[i-1].weight )
|
|
break;
|
|
|
|
swap_count++;
|
|
//swap one up
|
|
std::swap(gmm[i], gmm[i-1]);
|
|
for( int c = 0; c < nchannels; c++ )
|
|
std::swap(mean[i*nchannels + c], mean[(i-1)*nchannels + c]);
|
|
}
|
|
//belongs to the mode - bFitsPDF becomes 1
|
|
/////
|
|
}
|
|
}//!bFitsPDF)
|
|
|
|
//check prune
|
|
if( weight < -prune )
|
|
{
|
|
weight = 0.0;
|
|
nmodes--;
|
|
}
|
|
|
|
gmm[mode-swap_count].weight = weight;//update weight by the calculated value
|
|
totalWeight += weight;
|
|
}
|
|
//go through all modes
|
|
//////
|
|
|
|
//renormalize weights
|
|
totalWeight = 1.f/totalWeight;
|
|
for( int mode = 0; mode < nmodes; mode++ )
|
|
{
|
|
gmm[mode].weight *= totalWeight;
|
|
}
|
|
|
|
nmodes = nNewModes;
|
|
|
|
//make new mode if needed and exit
|
|
if( !fitsPDF && alphaT > 0.f )
|
|
{
|
|
// replace the weakest or add a new one
|
|
int mode = nmodes == nmixtures ? nmixtures-1 : nmodes++;
|
|
|
|
if (nmodes==1)
|
|
gmm[mode].weight = 1.f;
|
|
else
|
|
{
|
|
gmm[mode].weight = alphaT;
|
|
|
|
// renormalize all other weights
|
|
for( int i = 0; i < nmodes-1; i++ )
|
|
gmm[i].weight *= alpha1;
|
|
}
|
|
|
|
// init
|
|
for( int c = 0; c < nchannels; c++ )
|
|
mean[mode*nchannels + c] = data[c];
|
|
|
|
gmm[mode].variance = varInit;
|
|
|
|
//sort
|
|
//find the new place for it
|
|
for( int i = nmodes - 1; i > 0; i-- )
|
|
{
|
|
// check one up
|
|
if( alphaT < gmm[i-1].weight )
|
|
break;
|
|
|
|
// swap one up
|
|
std::swap(gmm[i], gmm[i-1]);
|
|
for( int c = 0; c < nchannels; c++ )
|
|
std::swap(mean[i*nchannels + c], mean[(i-1)*nchannels + c]);
|
|
}
|
|
}
|
|
|
|
//set the number of modes
|
|
modesUsed[x] = uchar(nmodes);
|
|
mask[x] = background ? 0 :
|
|
detectShadows && detectShadowGMM(data, nchannels, nmodes, gmm, mean, Tb, TB, tau) ?
|
|
shadowVal : 255;
|
|
}
|
|
}
|
|
}
|
|
|
|
const Mat* src;
|
|
Mat* dst;
|
|
GMM* gmm0;
|
|
float* mean0;
|
|
uchar* modesUsed0;
|
|
|
|
int nmixtures;
|
|
float alphaT, Tb, TB, Tg;
|
|
float varInit, varMin, varMax, prune, tau;
|
|
|
|
bool detectShadows;
|
|
uchar shadowVal;
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
bool BackgroundSubtractorMOG2Impl::ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate)
|
|
{
|
|
++nframes;
|
|
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
|
|
CV_Assert(learningRate >= 0);
|
|
|
|
_fgmask.create(_image.size(), CV_8U);
|
|
UMat fgmask = _fgmask.getUMat();
|
|
|
|
const double alpha1 = 1.0f - learningRate;
|
|
|
|
UMat frame = _image.getUMat();
|
|
|
|
float varMax = MAX(fVarMin, fVarMax);
|
|
float varMin = MIN(fVarMin, fVarMax);
|
|
|
|
int idxArg = 0;
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadOnly(frame));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_bgmodelUsedModes));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_weight));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_mean));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_variance));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(fgmask));
|
|
|
|
idxArg = kernel_apply.set(idxArg, (float)learningRate); //alphaT
|
|
idxArg = kernel_apply.set(idxArg, (float)alpha1);
|
|
idxArg = kernel_apply.set(idxArg, (float)(-learningRate*fCT)); //prune
|
|
|
|
idxArg = kernel_apply.set(idxArg, (float)varThreshold); //c_Tb
|
|
idxArg = kernel_apply.set(idxArg, backgroundRatio); //c_TB
|
|
idxArg = kernel_apply.set(idxArg, varThresholdGen); //c_Tg
|
|
idxArg = kernel_apply.set(idxArg, varMin);
|
|
idxArg = kernel_apply.set(idxArg, varMax);
|
|
idxArg = kernel_apply.set(idxArg, fVarInit);
|
|
idxArg = kernel_apply.set(idxArg, fTau);
|
|
if (bShadowDetection)
|
|
kernel_apply.set(idxArg, nShadowDetection);
|
|
|
|
size_t globalsize[] = {frame.cols, frame.rows, 1};
|
|
return kernel_apply.run(2, globalsize, NULL, true);
|
|
}
|
|
|
|
bool BackgroundSubtractorMOG2Impl::ocl_getBackgroundImage(OutputArray _backgroundImage) const
|
|
{
|
|
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3);
|
|
|
|
_backgroundImage.create(frameSize, frameType);
|
|
UMat dst = _backgroundImage.getUMat();
|
|
|
|
int idxArg = 0;
|
|
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_bgmodelUsedModes));
|
|
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_weight));
|
|
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_mean));
|
|
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnly(dst));
|
|
kernel_getBg.set(idxArg, backgroundRatio);
|
|
|
|
size_t globalsize[2] = {u_bgmodelUsedModes.cols, u_bgmodelUsedModes.rows};
|
|
|
|
return kernel_getBg.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
void BackgroundSubtractorMOG2Impl::create_ocl_apply_kernel()
|
|
{
|
|
int nchannels = CV_MAT_CN(frameType);
|
|
String opts = format("-D CN=%d -D NMIXTURES=%d%s", nchannels, nmixtures, bShadowDetection ? " -D SHADOW_DETECT" : "");
|
|
kernel_apply.create("mog2_kernel", ocl::video::bgfg_mog2_oclsrc, opts);
|
|
}
|
|
|
|
void BackgroundSubtractorMOG2Impl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
|
|
{
|
|
bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;
|
|
|
|
if( needToInitialize )
|
|
initialize(_image.size(), _image.type());
|
|
|
|
if (opencl_ON)
|
|
{
|
|
CV_OCL_RUN(opencl_ON, ocl_apply(_image, _fgmask, learningRate))
|
|
|
|
opencl_ON = false;
|
|
initialize(_image.size(), _image.type());
|
|
}
|
|
|
|
Mat image = _image.getMat();
|
|
_fgmask.create( image.size(), CV_8U );
|
|
Mat fgmask = _fgmask.getMat();
|
|
|
|
++nframes;
|
|
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
|
|
CV_Assert(learningRate >= 0);
|
|
|
|
parallel_for_(Range(0, image.rows),
|
|
MOG2Invoker(image, fgmask,
|
|
bgmodel.ptr<GMM>(),
|
|
(float*)(bgmodel.ptr() + sizeof(GMM)*nmixtures*image.rows*image.cols),
|
|
bgmodelUsedModes.ptr(), nmixtures, (float)learningRate,
|
|
(float)varThreshold,
|
|
backgroundRatio, varThresholdGen,
|
|
fVarInit, fVarMin, fVarMax, float(-learningRate*fCT), fTau,
|
|
bShadowDetection, nShadowDetection),
|
|
image.total()/(double)(1 << 16));
|
|
}
|
|
|
|
void BackgroundSubtractorMOG2Impl::getBackgroundImage(OutputArray backgroundImage) const
|
|
{
|
|
if (opencl_ON)
|
|
{
|
|
CV_OCL_RUN(opencl_ON, ocl_getBackgroundImage(backgroundImage))
|
|
|
|
opencl_ON = false;
|
|
return;
|
|
}
|
|
|
|
int nchannels = CV_MAT_CN(frameType);
|
|
CV_Assert(nchannels == 1 || nchannels == 3);
|
|
Mat meanBackground(frameSize, CV_MAKETYPE(CV_8U, nchannels), Scalar::all(0));
|
|
int firstGaussianIdx = 0;
|
|
const GMM* gmm = bgmodel.ptr<GMM>();
|
|
const float* mean = reinterpret_cast<const float*>(gmm + frameSize.width*frameSize.height*nmixtures);
|
|
std::vector<float> meanVal(nchannels, 0.f);
|
|
for(int row=0; row<meanBackground.rows; row++)
|
|
{
|
|
for(int col=0; col<meanBackground.cols; col++)
|
|
{
|
|
int nmodes = bgmodelUsedModes.at<uchar>(row, col);
|
|
float totalWeight = 0.f;
|
|
for(int gaussianIdx = firstGaussianIdx; gaussianIdx < firstGaussianIdx + nmodes; gaussianIdx++)
|
|
{
|
|
GMM gaussian = gmm[gaussianIdx];
|
|
size_t meanPosition = gaussianIdx*nchannels;
|
|
for(int chn = 0; chn < nchannels; chn++)
|
|
{
|
|
meanVal[chn] += gaussian.weight * mean[meanPosition + chn];
|
|
}
|
|
totalWeight += gaussian.weight;
|
|
|
|
if(totalWeight > backgroundRatio)
|
|
break;
|
|
}
|
|
float invWeight = 1.f/totalWeight;
|
|
switch(nchannels)
|
|
{
|
|
case 1:
|
|
meanBackground.at<uchar>(row, col) = (uchar)(meanVal[0] * invWeight);
|
|
meanVal[0] = 0.f;
|
|
break;
|
|
case 3:
|
|
Vec3f& meanVec = *reinterpret_cast<Vec3f*>(&meanVal[0]);
|
|
meanBackground.at<Vec3b>(row, col) = Vec3b(meanVec * invWeight);
|
|
meanVec = 0.f;
|
|
break;
|
|
}
|
|
firstGaussianIdx += nmixtures;
|
|
}
|
|
}
|
|
meanBackground.copyTo(backgroundImage);
|
|
}
|
|
|
|
Ptr<BackgroundSubtractorMOG2> createBackgroundSubtractorMOG2(int _history, double _varThreshold,
|
|
bool _bShadowDetection)
|
|
{
|
|
return makePtr<BackgroundSubtractorMOG2Impl>(_history, (float)_varThreshold, _bShadowDetection);
|
|
}
|
|
|
|
}
|
|
|
|
/* End of file. */
|