opencv/modules/gpu/test/test_remap.cpp
2012-05-29 11:30:44 +00:00

178 lines
6.9 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CUDA
///////////////////////////////////////////////////////////////////
// Gold implementation
namespace
{
template <typename T, template <typename> class Interpolator> void remapImpl(const cv::Mat& src, const cv::Mat& xmap, const cv::Mat& ymap, cv::Mat& dst, int borderType, cv::Scalar borderVal)
{
const int cn = src.channels();
cv::Size dsize = xmap.size();
dst.create(dsize, src.type());
for (int y = 0; y < dsize.height; ++y)
{
for (int x = 0; x < dsize.width; ++x)
{
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = Interpolator<T>::getValue(src, ymap.at<float>(y, x), xmap.at<float>(y, x), c, borderType, borderVal);
}
}
}
void remapGold(const cv::Mat& src, const cv::Mat& xmap, const cv::Mat& ymap, cv::Mat& dst, int interpolation, int borderType, cv::Scalar borderVal)
{
typedef void (*func_t)(const cv::Mat& src, const cv::Mat& xmap, const cv::Mat& ymap, cv::Mat& dst, int borderType, cv::Scalar borderVal);
static const func_t nearest_funcs[] =
{
remapImpl<unsigned char, NearestInterpolator>,
remapImpl<signed char, NearestInterpolator>,
remapImpl<unsigned short, NearestInterpolator>,
remapImpl<short, NearestInterpolator>,
remapImpl<int, NearestInterpolator>,
remapImpl<float, NearestInterpolator>
};
static const func_t linear_funcs[] =
{
remapImpl<unsigned char, LinearInterpolator>,
remapImpl<signed char, LinearInterpolator>,
remapImpl<unsigned short, LinearInterpolator>,
remapImpl<short, LinearInterpolator>,
remapImpl<int, LinearInterpolator>,
remapImpl<float, LinearInterpolator>
};
static const func_t cubic_funcs[] =
{
remapImpl<unsigned char, CubicInterpolator>,
remapImpl<signed char, CubicInterpolator>,
remapImpl<unsigned short, CubicInterpolator>,
remapImpl<short, CubicInterpolator>,
remapImpl<int, CubicInterpolator>,
remapImpl<float, CubicInterpolator>
};
static const func_t* funcs[] = {nearest_funcs, linear_funcs, cubic_funcs};
funcs[interpolation][src.depth()](src, xmap, ymap, dst, borderType, borderVal);
}
}
///////////////////////////////////////////////////////////////////
// Test
PARAM_TEST_CASE(Remap, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
int interpolation;
int borderType;
bool useRoi;
cv::Mat xmap;
cv::Mat ymap;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
interpolation = GET_PARAM(3);
borderType = GET_PARAM(4);
useRoi = GET_PARAM(5);
cv::gpu::setDevice(devInfo.deviceID());
// rotation matrix
const double aplha = CV_PI / 4;
static double M[2][3] = { {std::cos(aplha), -std::sin(aplha), size.width / 2.0},
{std::sin(aplha), std::cos(aplha), 0.0}};
xmap.create(size, CV_32FC1);
ymap.create(size, CV_32FC1);
for (int y = 0; y < size.height; ++y)
{
for (int x = 0; x < size.width; ++x)
{
xmap.at<float>(y, x) = static_cast<float>(M[0][0] * x + M[0][1] * y + M[0][2]);
ymap.at<float>(y, x) = static_cast<float>(M[1][0] * x + M[1][1] * y + M[1][2]);
}
}
}
};
TEST_P(Remap, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Scalar val = randomScalar(0.0, 255.0);
cv::gpu::GpuMat dst = createMat(xmap.size(), type, useRoi);
cv::gpu::remap(loadMat(src, useRoi), dst, loadMat(xmap, useRoi), loadMat(ymap, useRoi), interpolation, borderType, val);
cv::Mat dst_gold;
remapGold(src, xmap, ymap, dst_gold, interpolation, borderType, val);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-3 : 1.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Remap, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)),
WHOLE_SUBMAT));
#endif // HAVE_CUDA