opencv/modules/python/src2/cv2_numpy.hpp
Vincent Rabaud 8f7e55a60b Replace static numpy allocator by function containing static.
That enables the numpy code to be its own library, in case
some users want to (e.g. CLIF library).
2024-04-26 14:38:18 +02:00

218 lines
5.8 KiB
C++

#ifndef CV2_NUMPY_HPP
#define CV2_NUMPY_HPP
#include "cv2.hpp"
#include "opencv2/core.hpp"
class NumpyAllocator : public cv::MatAllocator
{
public:
NumpyAllocator() { stdAllocator = cv::Mat::getStdAllocator(); }
~NumpyAllocator() {}
cv::UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const;
cv::UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, cv::AccessFlag flags, cv::UMatUsageFlags usageFlags) const CV_OVERRIDE;
bool allocate(cv::UMatData* u, cv::AccessFlag accessFlags, cv::UMatUsageFlags usageFlags) const CV_OVERRIDE;
void deallocate(cv::UMatData* u) const CV_OVERRIDE;
const cv::MatAllocator* stdAllocator;
};
inline NumpyAllocator& GetNumpyAllocator() {static NumpyAllocator gNumpyAllocator;return gNumpyAllocator;}
//======================================================================================================================
// HACK(?): function from cv2_util.hpp
extern int failmsg(const char *fmt, ...);
namespace {
template<class T>
NPY_TYPES asNumpyType()
{
return NPY_OBJECT;
}
template<>
NPY_TYPES asNumpyType<bool>()
{
return NPY_BOOL;
}
#define CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(src, dst) \
template<> \
NPY_TYPES asNumpyType<src>() \
{ \
return NPY_##dst; \
} \
template<> \
NPY_TYPES asNumpyType<u##src>() \
{ \
return NPY_U##dst; \
}
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int8_t, INT8)
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int16_t, INT16)
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int32_t, INT32)
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int64_t, INT64)
#undef CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION
template<>
NPY_TYPES asNumpyType<float>()
{
return NPY_FLOAT;
}
template<>
NPY_TYPES asNumpyType<double>()
{
return NPY_DOUBLE;
}
template <class T>
PyArray_Descr* getNumpyTypeDescriptor()
{
return PyArray_DescrFromType(asNumpyType<T>());
}
template <>
PyArray_Descr* getNumpyTypeDescriptor<size_t>()
{
#if SIZE_MAX == ULONG_MAX
return PyArray_DescrFromType(NPY_ULONG);
#elif SIZE_MAX == ULLONG_MAX
return PyArray_DescrFromType(NPY_ULONGLONG);
#else
return PyArray_DescrFromType(NPY_UINT);
#endif
}
template <class T, class U>
bool isRepresentable(U value) {
return (std::numeric_limits<T>::min() <= value) && (value <= std::numeric_limits<T>::max());
}
template<class T>
bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to)
{
return PyArray_CanCastTo(PyArray_DescrFromScalar(obj), to) != 0;
}
template<>
bool canBeSafelyCasted<size_t>(PyObject* obj, PyArray_Descr* to)
{
PyArray_Descr* from = PyArray_DescrFromScalar(obj);
if (PyArray_CanCastTo(from, to))
{
return true;
}
else
{
// False negative scenarios:
// - Signed input is positive so it can be safely cast to unsigned output
// - Input has wider limits but value is representable within output limits
// - All the above
if (PyDataType_ISSIGNED(from))
{
int64_t input = 0;
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<int64_t>());
return (input >= 0) && isRepresentable<size_t>(static_cast<uint64_t>(input));
}
else
{
uint64_t input = 0;
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<uint64_t>());
return isRepresentable<size_t>(input);
}
return false;
}
}
template<class T>
bool parseNumpyScalar(PyObject* obj, T& value)
{
if (PyArray_CheckScalar(obj))
{
// According to the numpy documentation:
// There are 21 statically-defined PyArray_Descr objects for the built-in data-types
// So descriptor pointer is not owning.
PyArray_Descr* to = getNumpyTypeDescriptor<T>();
if (canBeSafelyCasted<T>(obj, to))
{
PyArray_CastScalarToCtype(obj, &value, to);
return true;
}
}
return false;
}
struct SafeSeqItem
{
PyObject * item;
SafeSeqItem(PyObject *obj, size_t idx) { item = PySequence_GetItem(obj, idx); }
~SafeSeqItem() { Py_XDECREF(item); }
private:
SafeSeqItem(const SafeSeqItem&); // = delete
SafeSeqItem& operator=(const SafeSeqItem&); // = delete
};
template <class T>
class RefWrapper
{
public:
RefWrapper(T& item) : item_(item) {}
T& get() CV_NOEXCEPT { return item_; }
private:
T& item_;
};
// In order to support this conversion on 3.x branch - use custom reference_wrapper
// and C-style array instead of std::array<T, N>
template <class T, std::size_t N>
bool parseSequence(PyObject* obj, RefWrapper<T> (&value)[N], const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (!PySequence_Check(obj))
{
failmsg("Can't parse '%s'. Input argument doesn't provide sequence "
"protocol", info.name);
return false;
}
const std::size_t sequenceSize = PySequence_Size(obj);
if (sequenceSize != N)
{
failmsg("Can't parse '%s'. Expected sequence length %lu, got %lu",
info.name, N, sequenceSize);
return false;
}
for (std::size_t i = 0; i < N; ++i)
{
SafeSeqItem seqItem(obj, i);
if (!pyopencv_to(seqItem.item, value[i].get(), info))
{
failmsg("Can't parse '%s'. Sequence item with index %lu has a "
"wrong type", info.name, i);
return false;
}
}
return true;
}
} // namespace
#endif // CV2_NUMPY_HPP