opencv/modules/dnn/src/layers/fully_connected_layer.cpp
Li Peng 8f99083726 Add new layer forward interface
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.

Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00

414 lines
15 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include "opencl_kernels_dnn.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_OPENCL
using namespace cv::dnn::ocl4dnn;
#endif
namespace cv
{
namespace dnn
{
class FullyConnectedLayerImpl : public InnerProductLayer
{
public:
enum { VEC_ALIGN = 8 };
#ifdef HAVE_OPENCL
Ptr<OCL4DNNInnerProduct<float> > innerProductOp;
std::vector<UMat> umat_blobs;
#endif
FullyConnectedLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
int numOutput = params.get<int>("num_output");
int innerSize = (int)blobs[0].total() / numOutput;
bias = params.get<bool>("bias_term", true);
axis = params.get<int>("axis", 1);
CV_Assert(blobs[0].dims >= 2 && (size_t)(innerSize * numOutput) == blobs[0].total());
CV_Assert(!bias || (blobs.size() == 2 && (size_t)numOutput == blobs[1].total()));
weightsMat = blobs[0] = blobs[0].reshape(1, numOutput);
int vecsize = weightsMat.cols;
if( vecsize % VEC_ALIGN != 0 )
{
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
Mat weightsBuf(weightsMat.rows, vecsize_aligned, weightsMat.type());
Mat wpadding = weightsBuf.colRange(vecsize, vecsize_aligned);
wpadding.setTo(Scalar::all(0.));
weightsMat = weightsBuf.colRange(0, vecsize);
blobs[0].copyTo(weightsMat);
}
if (bias)
biasMat = blobs[1] = blobs[1].reshape(1, 1);
else
biasMat = Mat::zeros(1, numOutput, weightsMat.type());
#ifdef HAVE_OPENCL
size_t n = blobs.size();
umat_blobs.resize(n);
for (int i = 0; i < n; i++) umat_blobs[i] = blobs[i].getUMat(ACCESS_READ);
#endif
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &) const
{
CV_Assert(inputs.size() == 1);
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
CV_Assert(blobs[0].dims == 2);
int cAxis = clamp(axis, inputs[0]);
int numOutput = blobs[0].size[0];
MatShape outShape(cAxis + 1);
for (int i = 0; i < cAxis; ++i)
outShape[i] = inputs[0][i];
outShape.back() = numOutput;
outputs.resize(inputs.size(), outShape);
CV_Assert(!bias || (size_t)numOutput == blobs[1].total());
return false;
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1;
}
virtual bool setActivation(const Ptr<ActivationLayer>& layer)
{
activ = layer;
return !activ.empty();
}
class FullyConnected : public ParallelLoopBody
{
public:
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false) {}
static void run(const Mat& srcMat, const Mat& weights, const Mat& biasMat,
Mat& dstMat, const ActivationLayer* activ, int nstripes)
{
CV_Assert( srcMat.dims == 2 && srcMat.cols == weights.cols &&
dstMat.rows == srcMat.rows && dstMat.cols == weights.rows &&
srcMat.type() == weights.type() && weights.type() == dstMat.type() &&
srcMat.type() == CV_32F &&
(biasMat.empty() || (biasMat.type() == srcMat.type() &&
biasMat.isContinuous() && (int)biasMat.total() == dstMat.cols)) );
FullyConnected p;
p.srcMat = &srcMat;
p.weights = &weights;
p.biasMat = &biasMat;
p.dstMat = &dstMat;
p.nstripes = nstripes;
p.activ = activ;
p.useAVX = checkHardwareSupport(CPU_AVX);
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const
{
int valign = FullyConnectedLayerImpl::VEC_ALIGN;
int nsamples = srcMat->rows;
int nw0 = weights->rows;
int k, vecsize = srcMat->cols;
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
size_t total = (size_t)nsamples*nw0;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = r.end == nstripes ? total : std::min(r.end*stripeSize, total);
size_t wstep = weights->step1();
AutoBuffer<float> srcbuf(vecsize_aligned + valign);
float* sptr = alignPtr((float*)srcbuf, (int)(valign*sizeof(float)));
for( k = vecsize; k < vecsize_aligned; k++ )
sptr[k] = 0.f;
for( size_t ofs = stripeStart; ofs < stripeEnd; )
{
int sampleIdx = (int)(ofs / nw0);
int delta = (int)(ofs - (size_t)sampleIdx*nw0);
const float* sptr_ = srcMat->ptr<float>(sampleIdx);
const float* wptr = weights->ptr<float>(delta);
float* dptr = dstMat->ptr<float>(sampleIdx) + delta;
const float* biasptr = biasMat->ptr<float>() + delta;
int nw = std::min(nw0 - delta, (int)(stripeEnd - ofs));
memcpy(sptr, sptr_, vecsize*sizeof(sptr[0]));
#if CV_TRY_AVX2
if( useAVX2 )
opt_AVX2::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
#if CV_TRY_AVX
if( useAVX )
opt_AVX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
{
int i = 0;
#if CV_SIMD128
for( ; i <= nw - 4; i += 4, wptr += 4*wstep )
{
v_float32x4 vs0 = v_setall_f32(0.f), vs1 = v_setall_f32(0.f);
v_float32x4 vs2 = v_setall_f32(0.f), vs3 = v_setall_f32(0.f);
for( k = 0; k < vecsize; k += 4 )
{
v_float32x4 v = v_load_aligned(sptr + k);
vs0 += v*v_load_aligned(wptr + k);
vs1 += v*v_load_aligned(wptr + wstep + k);
vs2 += v*v_load_aligned(wptr + wstep*2 + k);
vs3 += v*v_load_aligned(wptr + wstep*3 + k);
}
v_float32x4 s = v_reduce_sum4(vs0, vs1, vs2, vs3);
s += v_load(biasptr + i);
v_store(dptr + i, s);
}
#endif
for( ; i < nw; i++, wptr += wstep )
{
float s0=biasptr[i];
for( k = 0; k < vecsize; k++ )
{
float v = sptr[k];
s0 += v*wptr[k];
}
dptr[i] = s0;
}
}
if(activ)
activ->forwardSlice(dptr, dptr, 1, 1, delta, delta + nw);
ofs += nw;
}
}
const Mat *srcMat, *weights, *biasMat;
const ActivationLayer* activ;
Mat* dstMat;
int nstripes;
bool useAVX;
bool useAVX2;
};
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, InputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
int axisCan = clamp(axis, inputs[0].dims);
int numOutput = umat_blobs[0].size[0];
int innerSize = umat_blobs[0].size[1];
int outerSize = total(shape(inputs[0]), 0, axisCan);
bool ret = true;
if (innerProductOp.empty())
{
OCL4DNNInnerProductConfig config;
config.num_output = numOutput;
config.bias_term = bias;
config.M = outerSize;
config.K = innerSize;
innerProductOp = Ptr<OCL4DNNInnerProduct<float> >(new OCL4DNNInnerProduct<float>(config));
}
UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& srcMat = inputs[i];
UMat& dstMat = outputs[i];
dstMat.setTo(0.0f);
if (!innerProductOp->Forward(srcMat, umat_blobs[0], (bias) ? umat_blobs[1] : UMat(), dstMat))
{
ret = false;
break;
}
if (bias && (outerSize > 1))
{
UMat& biases = umat_blobs[1];
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
}
}
if (ret) return true;
UMat& weights = umat_blobs[0];
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape inshape, outshape;
inshape = shape(outerSize, innerSize);
outshape = shape(outerSize, numOutput);
UMat srcMat, dstMat;
srcMat = inputs[i].reshape(1, inshape.size(), &inshape[0]);
dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);
cv::gemm(srcMat, weights, 1, noArray(), 0, dstMat, GEMM_2_T);
if (bias)
{
UMat& biases = umat_blobs[1];
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
int axisCan = clamp(axis, input[0]->dims);
int outerSize = input[0]->total(0, axisCan);
for (size_t i = 0; i < input.size(); i++)
{
Mat srcMat = input[i]->reshape(1, outerSize);
Mat dstMat = output[i].reshape(1, outerSize);
const int nstripes = getNumThreads();
FullyConnected::run(srcMat, weightsMat, biasMat, dstMat, activ.get(), nstripes);
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
int inW, inH, inC, inN, outC = blobs[0].size[0];
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
auto weights = wrapToHalideBuffer(blobs[0], {inW, inH, inC, outC});
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::RDom r(0, inW, 0, inH, 0, inC);
Halide::Expr topExpr = sum(inputBuffer(r.x, r.y, r.z, n) *
weights(r.x, r.y, r.z, c));
if (bias)
{
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outC});
topExpr += bias(c);
}
top(x, y, c, n) = topExpr;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
(void)inputs; // suppress unused variable warning
long flops = 0;
int innerSize = blobs[0].size[1];
for(int i = 0; i < outputs.size(); i++)
{
flops += 3*innerSize*total(outputs[i]);
}
return flops;
}
bool bias;
Mat weightsMat, biasMat;
Ptr<ActivationLayer> activ;
};
Ptr<InnerProductLayer> InnerProductLayer::create(const LayerParams& params)
{
return Ptr<InnerProductLayer>(new FullyConnectedLayerImpl(params));
}
}
}