mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
8f99083726
Add layer forward interface with InputArrayOfArrays and OutputArrayOfArrays parameters, it allows UMat buffer to be processed and transferred in the layers. Signed-off-by: Li Peng <peng.li@intel.com>
334 lines
12 KiB
C++
334 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "op_halide.hpp"
|
|
#include "opencl_kernels_dnn.hpp"
|
|
#include <algorithm>
|
|
#include <stdlib.h>
|
|
using std::max;
|
|
#ifdef HAVE_OPENCL
|
|
using namespace cv::dnn::ocl4dnn;
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class SoftMaxLayerImpl : public SoftmaxLayer
|
|
{
|
|
public:
|
|
|
|
SoftMaxLayerImpl(const LayerParams& params)
|
|
{
|
|
axisRaw = params.get<int>("axis", 1);
|
|
logSoftMax = params.get<int>("log_softmax", false);
|
|
setParamsFrom(params);
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
Ptr<OCL4DNNSoftmax<float> > softmaxOp;
|
|
#endif
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
MatShape shape = inputs[0];
|
|
int cAxis = clamp(axisRaw, shape.size());
|
|
shape[cAxis] = 1;
|
|
internals.assign(1, shape);
|
|
return inplace;
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
{
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1;
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays itns)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
std::vector<UMat> internals;
|
|
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
itns.getUMatVector(internals);
|
|
|
|
if (softmaxOp.empty())
|
|
{
|
|
OCL4DNNSoftmaxConfig config;
|
|
|
|
config.in_shape = shape(inputs[0]);
|
|
config.axis = axisRaw;
|
|
config.channels = inputs[0].size[axisRaw];
|
|
config.logsoftmax = logSoftMax;
|
|
|
|
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config));
|
|
}
|
|
|
|
UMat& src = inputs[0];
|
|
UMat& dstMat = outputs[0];
|
|
|
|
if (softmaxOp->Forward(src, dstMat))
|
|
return true;
|
|
|
|
UMat& bufMat = internals[0];
|
|
src.copyTo(dstMat);
|
|
|
|
int axis = clamp(axisRaw, src.dims);
|
|
MatShape s = shape(src);
|
|
size_t outerSize = total(s, 0, axis);
|
|
size_t channels = src.size[axis];
|
|
size_t innerSize = total(s, axis + 1);
|
|
|
|
String buildOpts = String("-DT=") + ocl::typeToStr(src.type());
|
|
ocl::Kernel kmax, ksub, ksum, kdiv;
|
|
|
|
if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts))
|
|
return false;
|
|
|
|
if (!ksub.create("kernel_channel_subtract", ocl::dnn::softmax_oclsrc, buildOpts))
|
|
return false;
|
|
|
|
if (!ksum.create("kernel_channel_sum", ocl::dnn::softmax_oclsrc, buildOpts))
|
|
return false;
|
|
|
|
if (logSoftMax) buildOpts += " -DLOG_SOFTMAX ";
|
|
if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts))
|
|
return false;
|
|
|
|
size_t wgSize = ocl::Device::getDefault().maxWorkGroupSize();
|
|
size_t bufSize = internals[0].total();
|
|
size_t totalSize = src.total();
|
|
|
|
// adjust local/global size
|
|
size_t internal_localSize[1] = { (bufSize == 1) ? 1 : wgSize };
|
|
size_t internal_globalSize[1] = { divUp(bufSize, (unsigned int)internal_localSize[0]) * internal_localSize[0] };
|
|
|
|
// adjust local/global size (total)
|
|
size_t total_localSize[1] = { (totalSize == 1) ? 1 : wgSize };
|
|
size_t total_globalSize[1] = { divUp(totalSize, (unsigned int)total_localSize[0]) * total_localSize[0] };
|
|
|
|
kmax.args((int)outerSize, (int)channels, (int)innerSize,
|
|
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
|
|
if (!kmax.run(1, internal_globalSize, internal_localSize, false))
|
|
return false;
|
|
|
|
ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
|
|
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
|
|
if (!ksub.run(1, total_globalSize, total_localSize, false))
|
|
return false;
|
|
|
|
cv::exp(dstMat, dstMat);
|
|
|
|
ksum.args((int)outerSize, (int)channels, (int)innerSize,
|
|
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
|
|
if (!ksum.run(1, internal_globalSize, internal_localSize, false))
|
|
return false;
|
|
|
|
kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
|
|
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
|
|
if (!kdiv.run(1, total_globalSize, total_localSize, false))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
}
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
const Mat &src = *inputs[0];
|
|
Mat &dst = outputs[0];
|
|
|
|
int axis = clamp(axisRaw, src.dims);
|
|
size_t outerSize = src.total(0, axis), channels = src.size[axis],
|
|
innerSize = src.total(axis + 1);
|
|
|
|
CV_Assert(src.type() == CV_32F);
|
|
CV_Assert(src.isContinuous() && dst.isContinuous());
|
|
|
|
const float *srcPtr = src.ptr<float>();
|
|
float *dstPtr = dst.ptr<float>();
|
|
float *bufPtr = internals[0].ptr<float>();
|
|
|
|
size_t outerStep = src.total(axis);
|
|
size_t cnStep = src.total(axis + 1);
|
|
|
|
//compute max along axis
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
{
|
|
size_t srcOffset = outerDim * outerStep;
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float));
|
|
|
|
for (size_t cnDim = 1; cnDim < channels; cnDim++)
|
|
{
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]);
|
|
}
|
|
}
|
|
|
|
//subtract max
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
{
|
|
size_t srcOffset = outerDim * outerStep;
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
{
|
|
const int offset = srcOffset + cnDim * cnStep;
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
dstPtr[offset + i] = srcPtr[offset + i] - bufPtr[bufOffset + i];
|
|
}
|
|
}
|
|
|
|
cv::exp(dst, dst);
|
|
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
{
|
|
size_t srcOffset = outerDim * outerStep;
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
//sum exp along axis
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
bufPtr[bufOffset + i] = 0.f;
|
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
{
|
|
const int offset = srcOffset + cnDim * cnStep;
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
bufPtr[bufOffset + i] += dstPtr[offset + i];
|
|
}
|
|
|
|
//divide by computed sum
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
{
|
|
const int offset = srcOffset + cnDim * cnStep;
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
dstPtr[offset + i] /= bufPtr[bufOffset + i];
|
|
}
|
|
if (logSoftMax)
|
|
{
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
{
|
|
const int offset = srcOffset + cnDim * cnStep;
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
dstPtr[offset + i] = log(dstPtr[offset + i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
int inW, inH, inC, inN;
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
|
|
|
if (inW != 1 || inH != 1)
|
|
CV_Error(cv::Error::StsNotImplemented,
|
|
"Halide backend for SoftMax with spatial size "
|
|
"more than 1x1 is not implemented");
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
|
|
Halide::Func expInput("expInput");
|
|
Halide::RDom r(0, inW, 0, inH, 0, inC);
|
|
expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n));
|
|
Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n));
|
|
top(x, y, c, n) = expInput(x, y, c, n) / globalSum;
|
|
return Ptr<BackendNode>(new HalideBackendNode(top));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const
|
|
{
|
|
(void)outputs; // suppress unused variable warning
|
|
int64 flops = 0;
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += 4*total(inputs[i]);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
|
|
int axisRaw;
|
|
};
|
|
|
|
Ptr<SoftmaxLayer> SoftmaxLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<SoftmaxLayer>(new SoftMaxLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|