mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
336 lines
12 KiB
C++
336 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "op_halide.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class EltwiseLayerImpl : public EltwiseLayer
|
|
{
|
|
public:
|
|
EltwiseOp op;
|
|
std::vector<float> coeffs;
|
|
|
|
EltwiseLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
op = EltwiseLayer::SUM;
|
|
if (params.has("operation"))
|
|
{
|
|
String operation = params.get<String>("operation").toLowerCase();
|
|
if (operation == "prod")
|
|
op = EltwiseLayer::PROD;
|
|
else if (operation == "sum")
|
|
op = EltwiseLayer::SUM;
|
|
else if (operation == "max")
|
|
op = EltwiseLayer::MAX;
|
|
else
|
|
CV_Error(cv::Error::StsBadArg, "Unknown operaticon type \"" + operation + "\"");
|
|
}
|
|
|
|
if (params.has("coeff"))
|
|
{
|
|
DictValue paramCoeff = params.get("coeff");
|
|
int i, n = paramCoeff.size();
|
|
coeffs.resize(n);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
coeffs[i] = paramCoeff.get<float>(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
{
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
backendId == DNN_BACKEND_HALIDE && haveHalide();
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
CV_Assert(inputs.size() >= 2);
|
|
CV_Assert(coeffs.size() == 0 || coeffs.size() == inputs.size());
|
|
CV_Assert(op == SUM || coeffs.size() == 0);
|
|
|
|
for (int i = 1; i < inputs.size(); i++)
|
|
{
|
|
CV_Assert(inputs[0] == inputs[i]);
|
|
}
|
|
|
|
outputs.assign(1, inputs[0]);
|
|
|
|
return false;
|
|
}
|
|
|
|
class EltwiseInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
const Mat** srcs;
|
|
int nsrcs;
|
|
Mat* dst;
|
|
const std::vector<float>* coeffs;
|
|
EltwiseOp op;
|
|
int nstripes;
|
|
const ActivationLayer* activ;
|
|
|
|
EltwiseInvoker() : srcs(0), nsrcs(0), dst(0), coeffs(0), op(EltwiseLayer::PROD), nstripes(0), activ(0) {}
|
|
|
|
static void run(const Mat** srcs, int nsrcs, Mat& dst,
|
|
const std::vector<float>& coeffs, EltwiseOp op,
|
|
const ActivationLayer* activ, int nstripes)
|
|
{
|
|
CV_Assert(dst.dims == 4 && dst.type() == CV_32F && dst.isContinuous());
|
|
CV_Assert(coeffs.empty() || coeffs.size() == (size_t)nsrcs);
|
|
|
|
for( int i = 0; i > nsrcs; i++ )
|
|
{
|
|
CV_Assert(srcs[i]->size == dst.size &&
|
|
srcs[i]->type() == dst.type() &&
|
|
srcs[i]->isContinuous());
|
|
}
|
|
|
|
EltwiseInvoker p;
|
|
p.srcs = srcs;
|
|
p.nsrcs = nsrcs;
|
|
p.dst = &dst;
|
|
p.op = op;
|
|
p.nstripes = nstripes;
|
|
bool simpleCoeffs = true;
|
|
if( op == EltwiseLayer::SUM && !coeffs.empty() )
|
|
{
|
|
CV_Assert( coeffs.size() == (size_t)nsrcs );
|
|
|
|
for( size_t i = 0; i < coeffs.size(); i++ )
|
|
if( coeffs[i] != 1 )
|
|
{
|
|
simpleCoeffs = false;
|
|
break;
|
|
}
|
|
}
|
|
p.coeffs = simpleCoeffs ? 0 : &coeffs;
|
|
p.activ = activ;
|
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes);
|
|
}
|
|
|
|
void operator()(const Range& r) const
|
|
{
|
|
size_t planeSize = dst->size[2]*dst->size[3];
|
|
size_t total = dst->size[0]*planeSize;
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
size_t stripeStart = r.start*stripeSize;
|
|
size_t stripeEnd = std::min(r.end*stripeSize, total);
|
|
int c, j, k, n = nsrcs;
|
|
int channels = dst->size[1];
|
|
const float* coeffsptr = coeffs && !coeffs->empty() ? &coeffs->at(0) : 0;
|
|
float* dstptr0 = dst->ptr<float>();
|
|
int blockSize0 = 1 << 12, blockSize = blockSize0;
|
|
|
|
for( size_t ofs = stripeStart; ofs < stripeEnd; ofs += blockSize )
|
|
{
|
|
int sampleIdx = (int)(ofs / planeSize);
|
|
int delta = (int)ofs - sampleIdx * planeSize;
|
|
blockSize = std::min(blockSize0, std::min((int)(stripeEnd - ofs), (int)planeSize - delta));
|
|
if( blockSize <= 0 )
|
|
break;
|
|
|
|
for( c = 0; c < channels; c++ )
|
|
{
|
|
size_t globalDelta = delta + (sampleIdx*channels + c)*planeSize;
|
|
const float* srcptr0 = srcs[0]->ptr<float>() + globalDelta;
|
|
float* dstptr = dstptr0 + globalDelta;
|
|
|
|
if( op == EltwiseLayer::PROD )
|
|
{
|
|
for( k = 1; k < n; k++ )
|
|
{
|
|
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
|
|
for( j = 0; j < blockSize; j++ )
|
|
{
|
|
dstptr[j] = srcptr0[j]*srcptr1[j];
|
|
}
|
|
srcptr0 = (const float*)dstptr;
|
|
}
|
|
}
|
|
else if( op == EltwiseLayer::MAX )
|
|
{
|
|
for( k = 1; k < n; k++ )
|
|
{
|
|
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
|
|
for( j = 0; j < blockSize; j++ )
|
|
{
|
|
dstptr[j] = std::max(srcptr0[j], srcptr1[j]);
|
|
}
|
|
srcptr0 = (const float*)dstptr;
|
|
}
|
|
}
|
|
else if( !coeffsptr )
|
|
{
|
|
for( k = 1; k < n; k++ )
|
|
{
|
|
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
|
|
for( j = 0; j < blockSize; j++ )
|
|
{
|
|
dstptr[j] = srcptr0[j] + srcptr1[j];
|
|
}
|
|
srcptr0 = (const float*)dstptr;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float c0 = coeffsptr[0];
|
|
for( k = 1; k < n; k++ )
|
|
{
|
|
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
|
|
float c1 = coeffsptr[k];
|
|
for( j = 0; j < blockSize; j++ )
|
|
{
|
|
dstptr[j] = c0*srcptr0[j] + c1*srcptr1[j];
|
|
}
|
|
srcptr0 = (const float*)dstptr;
|
|
c0 = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( activ )
|
|
{
|
|
float* ptr = dstptr0 + delta + sampleIdx*channels*planeSize;
|
|
activ->forwardSlice(ptr, ptr, blockSize, planeSize, 0, channels);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_Assert(outputs.size() == 1);
|
|
const int nstripes = getNumThreads();
|
|
EltwiseInvoker::run((const Mat**)&inputs[0], (int)inputs.size(), outputs[0],
|
|
coeffs, op, activ.get(), nstripes);
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input)
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Expr topExpr;
|
|
std::vector<Halide::Buffer<> > inputBuffers = halideBuffers(input);
|
|
switch (op)
|
|
{
|
|
case SUM:
|
|
if (coeffs.empty())
|
|
{
|
|
topExpr = inputBuffers[0](x, y, c, n) +
|
|
inputBuffers[1](x, y, c, n);
|
|
for (int i = 2; i < inputBuffers.size(); ++i)
|
|
topExpr += inputBuffers[i](x, y, c, n);
|
|
}
|
|
else
|
|
{
|
|
topExpr = coeffs[0] * inputBuffers[0](x, y, c, n) +
|
|
coeffs[1] * inputBuffers[1](x, y, c, n);
|
|
for (int i = 2; i < inputBuffers.size(); ++i)
|
|
topExpr += coeffs[i] * inputBuffers[i](x, y, c, n);
|
|
}
|
|
break;
|
|
case PROD:
|
|
topExpr = inputBuffers[0](x, y, c, n) *
|
|
inputBuffers[1](x, y, c, n);
|
|
for (int i = 2; i < inputBuffers.size(); ++i)
|
|
topExpr *= inputBuffers[i](x, y, c, n);
|
|
break;
|
|
case MAX:
|
|
topExpr = max(inputBuffers[0](x, y, c, n),
|
|
inputBuffers[1](x, y, c, n));
|
|
for (int i = 2; i < inputBuffers.size(); ++i)
|
|
topExpr = max(topExpr, inputBuffers[i](x, y, c, n));
|
|
break;
|
|
default:
|
|
return Ptr<BackendNode>();
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode(top));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const
|
|
{
|
|
(void)outputs; // suppress unused variable warning
|
|
CV_Assert(inputs.size());
|
|
|
|
long flops = inputs.size() * total(inputs[0]);
|
|
|
|
return flops;
|
|
}
|
|
|
|
bool setActivation(const Ptr<ActivationLayer>& layer)
|
|
{
|
|
activ = layer;
|
|
return !activ.empty();
|
|
}
|
|
|
|
Ptr<ActivationLayer> activ;
|
|
};
|
|
|
|
Ptr<EltwiseLayer> EltwiseLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<EltwiseLayer>(new EltwiseLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|