mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
141 lines
5.1 KiB
C++
141 lines
5.1 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
class NormalizeBBoxLayerImpl : public NormalizeBBoxLayer
|
|
{
|
|
public:
|
|
NormalizeBBoxLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
pnorm = params.get<float>("p", 2);
|
|
epsilon = params.get<float>("eps", 1e-10f);
|
|
acrossSpatial = params.get<bool>("across_spatial", true);
|
|
CV_Assert(pnorm > 0);
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
CV_Assert(inputs.size() == 1);
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
internals.resize(1, inputs[0]);
|
|
internals[0][0] = 1; // Batch size.
|
|
return true;
|
|
}
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
|
|
CV_Assert(inputs[0]->total() == outputs[0].total());
|
|
|
|
const Mat& inp0 = *inputs[0];
|
|
Mat& buffer = internals[0];
|
|
size_t num = inp0.size[0];
|
|
size_t channels = inp0.size[1];
|
|
size_t channelSize = inp0.total() / (num * channels);
|
|
for (size_t n = 0; n < num; ++n)
|
|
{
|
|
Mat src = Mat(channels, channelSize, CV_32F, (void*)inp0.ptr<float>(n));
|
|
Mat dst = Mat(channels, channelSize, CV_32F, (void*)outputs[0].ptr<float>(n));
|
|
|
|
cv::pow(abs(src), pnorm, buffer);
|
|
|
|
if (acrossSpatial)
|
|
{
|
|
// add eps to avoid overflow
|
|
float absSum = sum(buffer)[0] + epsilon;
|
|
float norm = pow(absSum, 1.0f / pnorm);
|
|
multiply(src, 1.0f / norm, dst);
|
|
}
|
|
else
|
|
{
|
|
Mat norm;
|
|
reduce(buffer, norm, 0, REDUCE_SUM);
|
|
norm += epsilon;
|
|
|
|
// compute inverted norm to call multiply instead divide
|
|
cv::pow(norm, -1.0f / pnorm, norm);
|
|
|
|
repeat(norm, channels, 1, buffer);
|
|
multiply(src, buffer, dst);
|
|
}
|
|
|
|
if (!blobs.empty())
|
|
{
|
|
// scale the output
|
|
Mat scale = blobs[0];
|
|
if (scale.total() == 1)
|
|
{
|
|
// _scale: 1 x 1
|
|
dst *= scale.at<float>(0, 0);
|
|
}
|
|
else
|
|
{
|
|
// _scale: _channels x 1
|
|
CV_Assert(scale.total() == channels);
|
|
repeat(scale, 1, dst.cols, buffer);
|
|
multiply(dst, buffer, dst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
Ptr<NormalizeBBoxLayer> NormalizeBBoxLayer::create(const LayerParams ¶ms)
|
|
{
|
|
return Ptr<NormalizeBBoxLayer>(new NormalizeBBoxLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|