mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
8b4871a28d
* Use only absolute prior boxes explicit sizes. Remove scales attributes. * Simplified PriorBox layer forward pass
259 lines
9.8 KiB
Python
259 lines
9.8 KiB
Python
# This file is a part of OpenCV project.
|
|
# It is a subject to the license terms in the LICENSE file found in the top-level directory
|
|
# of this distribution and at http://opencv.org/license.html.
|
|
#
|
|
# Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
# Third party copyrights are property of their respective owners.
|
|
#
|
|
# Use this script to get the text graph representation (.pbtxt) of SSD-based
|
|
# deep learning network trained in TensorFlow Object Detection API.
|
|
# Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function.
|
|
# See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
|
|
import tensorflow as tf
|
|
import argparse
|
|
from math import sqrt
|
|
from tensorflow.core.framework.node_def_pb2 import NodeDef
|
|
from google.protobuf import text_format
|
|
|
|
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
|
|
'SSD model from TensorFlow Object Detection API. '
|
|
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
|
|
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
|
|
parser.add_argument('--output', required=True, help='Path to output text graph.')
|
|
parser.add_argument('--num_classes', default=90, type=int, help='Number of trained classes.')
|
|
parser.add_argument('--min_scale', default=0.2, type=float, help='Hyper-parameter of ssd_anchor_generator from config file.')
|
|
parser.add_argument('--max_scale', default=0.95, type=float, help='Hyper-parameter of ssd_anchor_generator from config file.')
|
|
parser.add_argument('--num_layers', default=6, type=int, help='Hyper-parameter of ssd_anchor_generator from config file.')
|
|
parser.add_argument('--aspect_ratios', default=[1.0, 2.0, 0.5, 3.0, 0.333], type=float, nargs='+',
|
|
help='Hyper-parameter of ssd_anchor_generator from config file.')
|
|
parser.add_argument('--image_width', default=300, type=int, help='Training images width.')
|
|
parser.add_argument('--image_height', default=300, type=int, help='Training images height.')
|
|
args = parser.parse_args()
|
|
|
|
# Nodes that should be kept.
|
|
keepOps = ['Conv2D', 'BiasAdd', 'Add', 'Relu6', 'Placeholder', 'FusedBatchNorm',
|
|
'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool']
|
|
|
|
# Nodes attributes that could be removed because they are not used during import.
|
|
unusedAttrs = ['T', 'data_format', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu',
|
|
'Index', 'Tperm', 'is_training', 'Tpaddings']
|
|
|
|
# Node with which prefixes should be removed
|
|
prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Postprocessor/', 'Preprocessor/')
|
|
|
|
# Read the graph.
|
|
with tf.gfile.FastGFile(args.input, 'rb') as f:
|
|
graph_def = tf.GraphDef()
|
|
graph_def.ParseFromString(f.read())
|
|
|
|
def getUnconnectedNodes():
|
|
unconnected = []
|
|
for node in graph_def.node:
|
|
unconnected.append(node.name)
|
|
for inp in node.input:
|
|
if inp in unconnected:
|
|
unconnected.remove(inp)
|
|
return unconnected
|
|
|
|
removedNodes = []
|
|
|
|
# Detect unfused batch normalization nodes and fuse them.
|
|
def fuse_batch_normalization():
|
|
pattern = ['Add', 'Rsqrt', 'Mul', 'Mul', 'Mul', 'Sub', 'Add']
|
|
candidates = []
|
|
|
|
for node in graph_def.node:
|
|
if node.op == pattern[len(candidates)]:
|
|
candidates.append(node)
|
|
else:
|
|
candidates = []
|
|
|
|
if len(candidates) == len(pattern):
|
|
inp = candidates[3].input[0]
|
|
gamma = candidates[2].input[1]
|
|
beta = candidates[5].input[0]
|
|
moving_mean = candidates[4].input[0]
|
|
moving_variance = candidates[0].input[0]
|
|
|
|
name = node.name
|
|
node.Clear()
|
|
node.name = name
|
|
node.op = 'FusedBatchNorm'
|
|
node.input.append(inp)
|
|
node.input.append(gamma)
|
|
node.input.append(beta)
|
|
node.input.append(moving_mean)
|
|
node.input.append(moving_variance)
|
|
text_format.Merge('f: 0.001', node.attr["epsilon"])
|
|
|
|
for candidate in candidates[:-1]:
|
|
graph_def.node.remove(candidate)
|
|
candidates = []
|
|
|
|
fuse_batch_normalization()
|
|
|
|
# Removes Identity nodes
|
|
def removeIdentity():
|
|
identities = {}
|
|
for node in graph_def.node:
|
|
if node.op == 'Identity':
|
|
identities[node.name] = node.input[0]
|
|
|
|
for node in graph_def.node:
|
|
for i in range(len(node.input)):
|
|
if node.input[i] in identities:
|
|
node.input[i] = identities[node.input[i]]
|
|
|
|
removeIdentity()
|
|
|
|
# Remove extra nodes and attributes.
|
|
for i in reversed(range(len(graph_def.node))):
|
|
op = graph_def.node[i].op
|
|
name = graph_def.node[i].name
|
|
|
|
if (not op in keepOps) or name.startswith(prefixesToRemove):
|
|
if op != 'Const':
|
|
removedNodes.append(name)
|
|
|
|
del graph_def.node[i]
|
|
else:
|
|
for attr in unusedAttrs:
|
|
if attr in graph_def.node[i].attr:
|
|
del graph_def.node[i].attr[attr]
|
|
|
|
# Remove references to removed nodes except Const nodes.
|
|
for node in graph_def.node:
|
|
for i in reversed(range(len(node.input))):
|
|
if node.input[i] in removedNodes:
|
|
del node.input[i]
|
|
|
|
# Connect input node to the first layer
|
|
assert(graph_def.node[0].op == 'Placeholder')
|
|
# assert(graph_def.node[1].op == 'Conv2D')
|
|
weights = graph_def.node[1].input[0]
|
|
for i in range(len(graph_def.node[1].input)):
|
|
graph_def.node[1].input.pop()
|
|
graph_def.node[1].input.append(graph_def.node[0].name)
|
|
graph_def.node[1].input.append(weights)
|
|
|
|
# Create SSD postprocessing head ###############################################
|
|
|
|
# Concatenate predictions of classes, predictions of bounding boxes and proposals.
|
|
|
|
concatAxis = NodeDef()
|
|
concatAxis.name = 'concat/axis_flatten'
|
|
concatAxis.op = 'Const'
|
|
text_format.Merge(
|
|
'tensor {'
|
|
' dtype: DT_INT32'
|
|
' tensor_shape { }'
|
|
' int_val: -1'
|
|
'}', concatAxis.attr["value"])
|
|
graph_def.node.extend([concatAxis])
|
|
|
|
def addConcatNode(name, inputs):
|
|
concat = NodeDef()
|
|
concat.name = name
|
|
concat.op = 'ConcatV2'
|
|
for inp in inputs:
|
|
concat.input.append(inp)
|
|
concat.input.append(concatAxis.name)
|
|
graph_def.node.extend([concat])
|
|
|
|
for label in ['ClassPredictor', 'BoxEncodingPredictor']:
|
|
concatInputs = []
|
|
for i in range(args.num_layers):
|
|
# Flatten predictions
|
|
flatten = NodeDef()
|
|
inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label)
|
|
flatten.input.append(inpName)
|
|
flatten.name = inpName + '/Flatten'
|
|
flatten.op = 'Flatten'
|
|
|
|
concatInputs.append(flatten.name)
|
|
graph_def.node.extend([flatten])
|
|
addConcatNode('%s/concat' % label, concatInputs)
|
|
|
|
# Add layers that generate anchors (bounding boxes proposals).
|
|
scales = [args.min_scale + (args.max_scale - args.min_scale) * i / (args.num_layers - 1)
|
|
for i in range(args.num_layers)] + [1.0]
|
|
|
|
def tensorMsg(values):
|
|
msg = 'tensor { dtype: DT_FLOAT tensor_shape { dim { size: %d } }' % len(values)
|
|
for value in values:
|
|
msg += 'float_val: %f ' % value
|
|
return msg + '}'
|
|
|
|
priorBoxes = []
|
|
for i in range(args.num_layers):
|
|
priorBox = NodeDef()
|
|
priorBox.name = 'PriorBox_%d' % i
|
|
priorBox.op = 'PriorBox'
|
|
priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i)
|
|
priorBox.input.append(graph_def.node[0].name) # image_tensor
|
|
|
|
text_format.Merge('b: false', priorBox.attr["flip"])
|
|
text_format.Merge('b: false', priorBox.attr["clip"])
|
|
|
|
if i == 0:
|
|
widths = [args.min_scale * 0.5, args.min_scale * sqrt(2.0), args.min_scale * sqrt(0.5)]
|
|
heights = [args.min_scale * 0.5, args.min_scale / sqrt(2.0), args.min_scale / sqrt(0.5)]
|
|
else:
|
|
widths = [scales[i] * sqrt(ar) for ar in args.aspect_ratios]
|
|
heights = [scales[i] / sqrt(ar) for ar in args.aspect_ratios]
|
|
|
|
widths += [sqrt(scales[i] * scales[i + 1])]
|
|
heights += [sqrt(scales[i] * scales[i + 1])]
|
|
widths = [w * args.image_width for w in widths]
|
|
heights = [h * args.image_height for h in heights]
|
|
text_format.Merge(tensorMsg(widths), priorBox.attr["width"])
|
|
text_format.Merge(tensorMsg(heights), priorBox.attr["height"])
|
|
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), priorBox.attr["variance"])
|
|
|
|
graph_def.node.extend([priorBox])
|
|
priorBoxes.append(priorBox.name)
|
|
|
|
addConcatNode('PriorBox/concat', priorBoxes)
|
|
|
|
# Sigmoid for classes predictions and DetectionOutput layer
|
|
sigmoid = NodeDef()
|
|
sigmoid.name = 'ClassPredictor/concat/sigmoid'
|
|
sigmoid.op = 'Sigmoid'
|
|
sigmoid.input.append('ClassPredictor/concat')
|
|
graph_def.node.extend([sigmoid])
|
|
|
|
detectionOut = NodeDef()
|
|
detectionOut.name = 'detection_out'
|
|
detectionOut.op = 'DetectionOutput'
|
|
|
|
detectionOut.input.append('BoxEncodingPredictor/concat')
|
|
detectionOut.input.append(sigmoid.name)
|
|
detectionOut.input.append('PriorBox/concat')
|
|
|
|
text_format.Merge('i: %d' % (args.num_classes + 1), detectionOut.attr['num_classes'])
|
|
text_format.Merge('b: true', detectionOut.attr['share_location'])
|
|
text_format.Merge('i: 0', detectionOut.attr['background_label_id'])
|
|
text_format.Merge('f: 0.6', detectionOut.attr['nms_threshold'])
|
|
text_format.Merge('i: 100', detectionOut.attr['top_k'])
|
|
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
|
|
text_format.Merge('i: 100', detectionOut.attr['keep_top_k'])
|
|
text_format.Merge('f: 0.01', detectionOut.attr['confidence_threshold'])
|
|
text_format.Merge('b: true', detectionOut.attr['loc_pred_transposed'])
|
|
|
|
graph_def.node.extend([detectionOut])
|
|
|
|
while True:
|
|
unconnectedNodes = getUnconnectedNodes()
|
|
unconnectedNodes.remove(detectionOut.name)
|
|
if not unconnectedNodes:
|
|
break
|
|
|
|
for name in unconnectedNodes:
|
|
for i in range(len(graph_def.node)):
|
|
if graph_def.node[i].name == name:
|
|
del graph_def.node[i]
|
|
break
|
|
|
|
# Save as text.
|
|
tf.train.write_graph(graph_def, "", args.output, as_text=True)
|