mirror of
https://github.com/opencv/opencv.git
synced 2024-12-13 16:09:23 +08:00
3bcab8db0a
Reworked multiview calibration interface #26221 - Use InputArray / OutputArray - Use enum for camera type - Sort parameters according guidelines - Made more outputs optional - Introduce flags and added tests for intrinsics and extrinsics guess. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
773 lines
31 KiB
C++
773 lines
31 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
|
|
#include "../src/fisheye.hpp"
|
|
#include "opencv2/videoio.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
class fisheyeTest : public ::testing::Test {
|
|
|
|
protected:
|
|
const static cv::Size imageSize;
|
|
const static cv::Matx33d K;
|
|
const static cv::Vec4d D;
|
|
const static cv::Matx33d R;
|
|
const static cv::Vec3d T;
|
|
std::string datasets_repository_path;
|
|
|
|
virtual void SetUp() {
|
|
datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye");
|
|
}
|
|
|
|
protected:
|
|
std::string combine(const std::string& _item1, const std::string& _item2);
|
|
};
|
|
|
|
const cv::Size fisheyeTest::imageSize(1280, 800);
|
|
|
|
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843,
|
|
0, 560.506767351568, 381.939424848348,
|
|
0, 0, 1);
|
|
|
|
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
|
|
|
|
|
|
const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
|
|
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
|
|
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
|
|
|
|
const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
|
|
|
|
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2)
|
|
{
|
|
std::string item1 = _item1, item2 = _item2;
|
|
std::replace(item1.begin(), item1.end(), '\\', '/');
|
|
std::replace(item2.begin(), item2.end(), '\\', '/');
|
|
|
|
if (item1.empty())
|
|
return item2;
|
|
|
|
if (item2.empty())
|
|
return item1;
|
|
|
|
char last = item1[item1.size()-1];
|
|
return item1 + (last != '/' ? "/" : "") + item2;
|
|
}
|
|
|
|
TEST_F(fisheyeTest, Calibration)
|
|
{
|
|
const int n_images = 34;
|
|
|
|
const cv::Matx33d goldK(558.4780870585967, 0, 620.4585053962692,
|
|
0, 560.5067667343917, 381.9394122875291,
|
|
0, 0, 1);
|
|
const cv::Vec4d goldD(-0.00146136, -0.00329847, 0.00605742, -0.00374201);
|
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
|
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
|
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_CHECK_COND;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
|
|
cv::Matx33d theK;
|
|
cv::Vec4d theD;
|
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
|
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
|
|
|
|
EXPECT_MAT_NEAR(theK, goldK, 1e-8);
|
|
EXPECT_MAT_NEAR(theD, goldD, 1e-8);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, CalibrationWithFixedFocalLength)
|
|
{
|
|
const int n_images = 34;
|
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
|
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
|
|
|
|
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_CHECK_COND;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
flag |= cv::CALIB_FIX_FOCAL_LENGTH;
|
|
flag |= cv::CALIB_USE_INTRINSIC_GUESS;
|
|
|
|
cv::Matx33d theK = this->K;
|
|
const cv::Matx33d newK(
|
|
558.478088, 0.000000, 620.458461,
|
|
0.000000, 560.506767, 381.939362,
|
|
0.000000, 0.000000, 1.000000);
|
|
|
|
cv::Vec4d theD;
|
|
const cv::Vec4d newD(-0.001461, -0.003298, 0.006057, -0.003742);
|
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
|
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
|
|
|
|
// ensure that CALIB_FIX_FOCAL_LENGTH works and focal lenght has not changed
|
|
EXPECT_EQ(theK(0,0), K(0,0));
|
|
EXPECT_EQ(theK(1,1), K(1,1));
|
|
|
|
EXPECT_MAT_NEAR(theK, newK, 1e-6);
|
|
EXPECT_MAT_NEAR(theD, newD, 1e-6);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, Homography)
|
|
{
|
|
const int n_images = 1;
|
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
|
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
|
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
cv::internal::IntrinsicParams param;
|
|
param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI),
|
|
cv::Vec2d(imageSize.width / 2.0 - 0.5, imageSize.height / 2.0 - 0.5));
|
|
|
|
cv::Mat _imagePoints (imagePoints[0]);
|
|
cv::Mat _objectPoints(objectPoints[0]);
|
|
|
|
cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t();
|
|
_objectPoints = _objectPoints.reshape(1, (int)_objectPoints.total()).t();
|
|
cv::Mat objectPointsMean, covObjectPoints;
|
|
|
|
int Np = imagePointsNormalized.cols;
|
|
cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, cv::COVAR_NORMAL | cv::COVAR_COLS);
|
|
cv::SVD svd(covObjectPoints);
|
|
cv::Mat theR(svd.vt);
|
|
|
|
if (cv::norm(theR(cv::Rect(2, 0, 1, 2))) < 1e-6)
|
|
theR = cv::Mat::eye(3,3, CV_64FC1);
|
|
if (cv::determinant(theR) < 0)
|
|
theR = -theR;
|
|
|
|
cv::Mat theT = -theR * objectPointsMean;
|
|
cv::Mat X_new = theR * _objectPoints + theT * cv::Mat::ones(1, Np, CV_64FC1);
|
|
cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2));
|
|
|
|
cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1);
|
|
X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2));
|
|
cv::Mat mrep = H * M;
|
|
|
|
cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep);
|
|
|
|
cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t();
|
|
|
|
cv::Vec2d std_err;
|
|
cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err);
|
|
std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1));
|
|
|
|
cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901);
|
|
EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, EstimateUncertainties)
|
|
{
|
|
const int n_images = 34;
|
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
|
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
|
|
|
|
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_CHECK_COND;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
|
|
cv::Matx33d theK;
|
|
cv::Vec4d theD;
|
|
std::vector<cv::Vec3d> rvec;
|
|
std::vector<cv::Vec3d> tvec;
|
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
|
|
rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6));
|
|
|
|
cv::internal::IntrinsicParams param, errors;
|
|
cv::Vec2d err_std;
|
|
double thresh_cond = 1e6;
|
|
int check_cond = 1;
|
|
param.Init(cv::Vec2d(theK(0,0), theK(1,1)), cv::Vec2d(theK(0,2), theK(1, 2)), theD);
|
|
param.isEstimate = std::vector<uchar>(9, 1);
|
|
param.isEstimate[4] = 0;
|
|
|
|
errors.isEstimate = param.isEstimate;
|
|
|
|
double rms;
|
|
|
|
cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec,
|
|
errors, err_std, thresh_cond, check_cond, rms);
|
|
|
|
EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.34250246865020720, 1.36037536429654530), 1e-6);
|
|
EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.92070526160049848, 0.84383585812851514), 1e-6);
|
|
EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.0053379581373996041, 0.017389792901700545, 0.022036256089491224, 0.0094714594258908952), 1e-7);
|
|
EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-7);
|
|
CV_Assert(fabs(rms - 0.263782587133546) < 1e-10);
|
|
CV_Assert(errors.alpha == 0);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, stereoCalibrate)
|
|
{
|
|
const int n_images = 34;
|
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images);
|
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images);
|
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
|
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_right.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i];
|
|
fs_right.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
cv::Matx33d K1, K2, theR;
|
|
cv::Vec3d theT;
|
|
cv::Vec4d D1, D2;
|
|
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_CHECK_COND;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
|
|
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
|
|
K1, D1, K2, D2, imageSize, theR, theT, flag,
|
|
cv::TermCriteria(3, 12, 0));
|
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
|
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235,
|
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
|
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
|
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412,
|
|
0, 562.849402029712, 380.555455380889,
|
|
0, 0, 1);
|
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359,
|
|
0, 561.90171021422, 380.401340535339,
|
|
0, 0, 1);
|
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
|
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
|
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10);
|
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10);
|
|
|
|
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10);
|
|
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10);
|
|
|
|
EXPECT_MAT_NEAR(D1, D1_correct, 1e-10);
|
|
EXPECT_MAT_NEAR(D2, D2_correct, 1e-10);
|
|
|
|
}
|
|
|
|
TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic)
|
|
{
|
|
const int n_images = 34;
|
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images);
|
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images);
|
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
|
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_right.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i];
|
|
fs_right.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
cv::Matx33d theR;
|
|
cv::Vec3d theT;
|
|
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_CHECK_COND;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
flag |= cv::CALIB_FIX_INTRINSIC;
|
|
|
|
cv::Matx33d K1 (561.195925927249, 0, 621.282400272412,
|
|
0, 562.849402029712, 380.555455380889,
|
|
0, 0, 1);
|
|
|
|
cv::Matx33d K2 (560.395452535348, 0, 678.971652040359,
|
|
0, 561.90171021422, 380.401340535339,
|
|
0, 0, 1);
|
|
|
|
cv::Vec4d D1 (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
|
|
cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
|
|
|
|
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
|
|
K1, D1, K2, D2, imageSize, theR, theT, flag,
|
|
cv::TermCriteria(3, 12, 0));
|
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
|
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235,
|
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
|
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
|
|
|
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10);
|
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, CalibrationWithDifferentPointsNumber)
|
|
{
|
|
const int n_images = 2;
|
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
|
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
|
|
|
|
std::vector<cv::Point2d> imgPoints1(10);
|
|
std::vector<cv::Point2d> imgPoints2(15);
|
|
|
|
std::vector<cv::Point3d> objectPoints1(imgPoints1.size());
|
|
std::vector<cv::Point3d> objectPoints2(imgPoints2.size());
|
|
|
|
for (size_t i = 0; i < imgPoints1.size(); i++)
|
|
{
|
|
imgPoints1[i] = cv::Point2d((double)i, (double)i);
|
|
objectPoints1[i] = cv::Point3d((double)i, (double)i, 10.0);
|
|
}
|
|
|
|
for (size_t i = 0; i < imgPoints2.size(); i++)
|
|
{
|
|
imgPoints2[i] = cv::Point2d(i + 0.5, i + 0.5);
|
|
objectPoints2[i] = cv::Point3d(i + 0.5, i + 0.5, 10.0);
|
|
}
|
|
|
|
imagePoints[0] = imgPoints1;
|
|
imagePoints[1] = imgPoints2;
|
|
objectPoints[0] = objectPoints1;
|
|
objectPoints[1] = objectPoints2;
|
|
|
|
cv::Matx33d theK = cv::Matx33d::eye();
|
|
cv::Vec4d theD;
|
|
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_USE_INTRINSIC_GUESS;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, cv::Size(100, 100), theK, theD,
|
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
|
|
}
|
|
|
|
|
|
TEST_F(fisheyeTest, stereoCalibrateWithPerViewTransformations)
|
|
{
|
|
const int n_images = 34;
|
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images);
|
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images);
|
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
|
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_right.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i];
|
|
fs_right.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
cv::Matx33d K1, K2, theR;
|
|
cv::Vec3d theT;
|
|
cv::Vec4d D1, D2;
|
|
|
|
std::vector<cv::Mat> rvecs, tvecs;
|
|
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_CHECK_COND;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
|
|
double rmsErrorStereoCalib = cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
|
|
K1, D1, K2, D2, imageSize, theR, theT, rvecs, tvecs, flag,
|
|
cv::TermCriteria(3, 12, 0));
|
|
|
|
std::vector<cv::Point2d> reprojectedImgPts[2] = { std::vector<cv::Point2d>(n_images),
|
|
std::vector<cv::Point2d>(n_images) };
|
|
size_t totalPoints = 0;
|
|
double totalMSError[2] = { 0, 0 };
|
|
for( size_t i = 0; i < n_images; i++ )
|
|
{
|
|
cv::Matx33d viewRotMat1, viewRotMat2;
|
|
cv::Vec3d viewT1, viewT2;
|
|
cv::Mat rVec;
|
|
cv::Rodrigues( rvecs[i], rVec );
|
|
rVec.convertTo(viewRotMat1, CV_64F);
|
|
tvecs[i].convertTo(viewT1, CV_64F);
|
|
|
|
viewRotMat2 = theR * viewRotMat1;
|
|
cv::Vec3d T2t = theR * viewT1;
|
|
viewT2 = T2t + theT;
|
|
|
|
cv::Vec3d viewRotVec1, viewRotVec2;
|
|
cv::Rodrigues(viewRotMat1, viewRotVec1);
|
|
cv::Rodrigues(viewRotMat2, viewRotVec2);
|
|
|
|
double alpha1 = K1(0, 1) / K1(0, 0);
|
|
double alpha2 = K2(0, 1) / K2(0, 0);
|
|
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[0], viewRotVec1, viewT1, K1, D1, alpha1);
|
|
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[1], viewRotVec2, viewT2, K2, D2, alpha2);
|
|
|
|
double viewMSError[2] = {
|
|
cv::norm(leftPoints[i], reprojectedImgPts[0], cv::NORM_L2SQR),
|
|
cv::norm(rightPoints[i], reprojectedImgPts[1], cv::NORM_L2SQR)
|
|
};
|
|
|
|
size_t n = objectPoints[i].size();
|
|
totalMSError[0] += viewMSError[0];
|
|
totalMSError[1] += viewMSError[1];
|
|
totalPoints += n;
|
|
}
|
|
double rmsErrorFromReprojectedImgPts = std::sqrt((totalMSError[0] + totalMSError[1]) / (2 * totalPoints));
|
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
|
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235,
|
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
|
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
|
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412,
|
|
0, 562.849402029712, 380.555455380889,
|
|
0, 0, 1);
|
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359,
|
|
0, 561.90171021422, 380.401340535339,
|
|
0, 0, 1);
|
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
|
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
|
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10);
|
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10);
|
|
|
|
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10);
|
|
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10);
|
|
|
|
EXPECT_MAT_NEAR(D1, D1_correct, 1e-10);
|
|
EXPECT_MAT_NEAR(D2, D2_correct, 1e-10);
|
|
|
|
EXPECT_NEAR(rmsErrorStereoCalib, rmsErrorFromReprojectedImgPts, 1e-4);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, multiview_calibration)
|
|
{
|
|
const int n_images = 34;
|
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
|
|
std::vector<std::vector<cv::Point2f> > leftPoints(n_images);
|
|
std::vector<std::vector<cv::Point2f> > rightPoints(n_images);
|
|
std::vector<std::vector<cv::Point3f> > objectPoints(n_images);
|
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_right.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i];
|
|
fs_right.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
std::vector<std::vector<cv::Mat>> image_points_all(2, std::vector<cv::Mat>(leftPoints.size()));
|
|
for (int i = 0; i < (int)leftPoints.size(); i++) {
|
|
cv::Mat left_pts(leftPoints[i], false) , right_pts(rightPoints[i], false);
|
|
left_pts.copyTo(image_points_all[0][i]);
|
|
right_pts.copyTo(image_points_all[1][i]);
|
|
}
|
|
std::vector<cv::Size> image_sizes(2, imageSize);
|
|
cv::Mat visibility_mat = cv::Mat_<uchar>::ones(2, (int)leftPoints.size());
|
|
std::vector<cv::Mat> Rs, Ts, Ks, distortions, rvecs0, tvecs0;
|
|
std::vector<uchar> models(2, cv::CALIB_MODEL_FISHEYE);
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_CHECK_COND;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
|
|
std::vector<int> all_flags(2, flag);
|
|
|
|
calibrateMultiview(objectPoints, image_points_all, image_sizes, visibility_mat, models,
|
|
Rs, Ts, Ks, distortions, 0, all_flags, rvecs0, tvecs0);
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
|
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235,
|
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
|
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
|
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412,
|
|
0, 562.849402029712, 380.555455380889,
|
|
0, 0, 1);
|
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359,
|
|
0, 561.90171021422, 380.401340535339,
|
|
0, 0, 1);
|
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
|
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
|
|
|
|
cv::Mat theR;
|
|
cv::Rodrigues(Rs[1], theR);
|
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-2);
|
|
EXPECT_MAT_NEAR(Ts[1], T_correct, 5e-3);
|
|
|
|
EXPECT_MAT_NEAR(Ks[0], K1_correct, 4);
|
|
EXPECT_MAT_NEAR(Ks[1], K2_correct, 5);
|
|
|
|
EXPECT_MAT_NEAR(distortions[0], D1_correct, 1e-2);
|
|
EXPECT_MAT_NEAR(distortions[1], D2_correct, 5e-2);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, cameraRegistrationWithPerViewTransformations)
|
|
{
|
|
const int n_images = 34;
|
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
|
|
|
std::vector<std::vector<cv::Point2f> > leftPoints(n_images);
|
|
std::vector<std::vector<cv::Point2f> > rightPoints(n_images);
|
|
std::vector<std::vector<cv::Point3f> > objectPoints(n_images);
|
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_left.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i];
|
|
fs_left.release();
|
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_right.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i];
|
|
fs_right.release();
|
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
|
|
CV_Assert(fs_object.isOpened());
|
|
for(int i = 0; i < n_images; ++i)
|
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
|
|
fs_object.release();
|
|
|
|
cv::Matx33d K1, K2, theR;
|
|
cv::Vec3d theT;
|
|
cv::Vec4d D1, D2;
|
|
|
|
int flag = 0;
|
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC;
|
|
flag |= cv::CALIB_CHECK_COND;
|
|
flag |= cv::CALIB_FIX_SKEW;
|
|
|
|
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
|
|
K1, D1, K2, D2, imageSize, theR, theT,flag, cv::TermCriteria(3, 12, 0));
|
|
|
|
cv::Mat E, F, perViewErrors;
|
|
std::vector<cv::Mat> rvecs, tvecs;
|
|
flag = 0;
|
|
double rmsErrorRegisterCamera = cv::registerCameras(objectPoints, objectPoints, leftPoints, rightPoints,
|
|
K1, D1, CALIB_MODEL_FISHEYE,
|
|
K2, D2, CALIB_MODEL_FISHEYE,
|
|
theR, theT, E, F, rvecs, tvecs, perViewErrors, flag,
|
|
cv::TermCriteria(3, 12, 0));
|
|
std::vector<cv::Point2f> reprojectedImgPts[2] = { std::vector<cv::Point2f>(n_images),
|
|
std::vector<cv::Point2f>(n_images) };
|
|
size_t totalPoints = 0;
|
|
double totalMSError[2] = { 0, 0 };
|
|
for( size_t i = 0; i < n_images; i++ )
|
|
{
|
|
cv::Matx33d viewRotMat1, viewRotMat2;
|
|
cv::Vec3d viewT1, viewT2;
|
|
cv::Mat rVec;
|
|
cv::Rodrigues( rvecs[i], rVec );
|
|
rVec.convertTo(viewRotMat1, CV_64F);
|
|
tvecs[i].convertTo(viewT1, CV_64F);
|
|
|
|
viewRotMat2 = theR * viewRotMat1;
|
|
cv::Vec3d T2t = theR * viewT1;
|
|
viewT2 = T2t + theT;
|
|
|
|
cv::Vec3d viewRotVec1, viewRotVec2;
|
|
cv::Rodrigues(viewRotMat1, viewRotVec1);
|
|
cv::Rodrigues(viewRotMat2, viewRotVec2);
|
|
|
|
double alpha1 = K1(0, 1) / K1(0, 0);
|
|
double alpha2 = K2(0, 1) / K2(0, 0);
|
|
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[0], viewRotVec1, viewT1, K1, D1, alpha1);
|
|
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[1], viewRotVec2, viewT2, K2, D2, alpha2);
|
|
|
|
double viewMSError[2] = {
|
|
cv::norm(leftPoints[i], reprojectedImgPts[0], cv::NORM_L2SQR),
|
|
cv::norm(rightPoints[i], reprojectedImgPts[1], cv::NORM_L2SQR)
|
|
};
|
|
|
|
size_t n = objectPoints[i].size();
|
|
totalMSError[0] += viewMSError[0];
|
|
totalMSError[1] += viewMSError[1];
|
|
totalPoints += n;
|
|
}
|
|
|
|
double rmsErrorFromReprojectedImgPts = std::sqrt((totalMSError[0] + totalMSError[1]) / (2 * totalPoints));
|
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
|
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235,
|
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
|
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
|
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412,
|
|
0, 562.849402029712, 380.555455380889,
|
|
0, 0, 1);
|
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359,
|
|
0, 561.90171021422, 380.401340535339,
|
|
0, 0, 1);
|
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
|
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
|
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-6);
|
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-6);
|
|
|
|
EXPECT_MAT_NEAR(K1, K1_correct, 1e-4);
|
|
EXPECT_MAT_NEAR(K2, K2_correct, 1e-4);
|
|
|
|
EXPECT_MAT_NEAR(D1, D1_correct, 1e-5);
|
|
EXPECT_MAT_NEAR(D2, D2_correct, 1e-5);
|
|
|
|
EXPECT_NEAR(rmsErrorRegisterCamera, rmsErrorFromReprojectedImgPts, 1e-4);
|
|
}
|
|
|
|
}} // namespace
|