opencv/3rdparty/clapack/src/dlarf.c
Vadim Pisarevsky 2ee9d21dae
Merge pull request #18571 from vpisarev:add_lapack
Added clapack

* bring a small subset of Lapack, automatically converted to C, into OpenCV

* added missing lsame_ prototype

* * small fix in make_clapack script
* trying to fix remaining CI problems

* fixed character arrays' initializers

* get rid of F2C_STR_MAX

* * added back single-precision versions for QR, LU and Cholesky decompositions. It adds very little extra overhead.
* added stub version of sdesdd.
* uncommented calls to all the single-precision Lapack functions from opencv/core/src/hal_internal.cpp.

* fixed warning from Visual Studio + cleaned f2c runtime a bit

* * regenerated Lapack w/o forward declarations of intrinsic functions (such as sqrt(), r_cnjg() etc.)
* at once, trailing whitespaces are removed from the generated sources, just in case
* since there is no declarations of intrinsic functions anymore, we could turn some of them into inline functions

* trying to eliminate the crash on ARM

* fixed API and semantics of s_copy

* * CLapack has been tested successfully. It's now time to restore the standard LAPACK detection procedure
* removed some more trailing whitespaces

* * retained only the essential stuff in CLapack
* added checks to lapack calls to gracefully return "not implemented" instead of returning invalid results with "ok" status

* disabled warning when building lapack

* cmake: update LAPACK detection

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2020-11-05 21:46:51 +00:00

769 lines
19 KiB
C

/* -- translated by f2c (version 20201020 (for_lapack)). -- */
#include "f2c.h"
//> \brief \b DGER
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
// Definition:
// ===========
//
// SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
//
// .. Scalar Arguments ..
// DOUBLE PRECISION ALPHA
// INTEGER INCX,INCY,LDA,M,N
// ..
// .. Array Arguments ..
// DOUBLE PRECISION A(LDA,*),X(*),Y(*)
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> DGER performs the rank 1 operation
//>
//> A := alpha*x*y**T + A,
//>
//> where alpha is a scalar, x is an m element vector, y is an n element
//> vector and A is an m by n matrix.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> On entry, M specifies the number of rows of the matrix A.
//> M must be at least zero.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> On entry, N specifies the number of columns of the matrix A.
//> N must be at least zero.
//> \endverbatim
//>
//> \param[in] ALPHA
//> \verbatim
//> ALPHA is DOUBLE PRECISION.
//> On entry, ALPHA specifies the scalar alpha.
//> \endverbatim
//>
//> \param[in] X
//> \verbatim
//> X is DOUBLE PRECISION array, dimension at least
//> ( 1 + ( m - 1 )*abs( INCX ) ).
//> Before entry, the incremented array X must contain the m
//> element vector x.
//> \endverbatim
//>
//> \param[in] INCX
//> \verbatim
//> INCX is INTEGER
//> On entry, INCX specifies the increment for the elements of
//> X. INCX must not be zero.
//> \endverbatim
//>
//> \param[in] Y
//> \verbatim
//> Y is DOUBLE PRECISION array, dimension at least
//> ( 1 + ( n - 1 )*abs( INCY ) ).
//> Before entry, the incremented array Y must contain the n
//> element vector y.
//> \endverbatim
//>
//> \param[in] INCY
//> \verbatim
//> INCY is INTEGER
//> On entry, INCY specifies the increment for the elements of
//> Y. INCY must not be zero.
//> \endverbatim
//>
//> \param[in,out] A
//> \verbatim
//> A is DOUBLE PRECISION array, dimension ( LDA, N )
//> Before entry, the leading m by n part of the array A must
//> contain the matrix of coefficients. On exit, A is
//> overwritten by the updated matrix.
//> \endverbatim
//>
//> \param[in] LDA
//> \verbatim
//> LDA is INTEGER
//> On entry, LDA specifies the first dimension of A as declared
//> in the calling (sub) program. LDA must be at least
//> max( 1, m ).
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup double_blas_level2
//
//> \par Further Details:
// =====================
//>
//> \verbatim
//>
//> Level 2 Blas routine.
//>
//> -- Written on 22-October-1986.
//> Jack Dongarra, Argonne National Lab.
//> Jeremy Du Croz, Nag Central Office.
//> Sven Hammarling, Nag Central Office.
//> Richard Hanson, Sandia National Labs.
//> \endverbatim
//>
// =====================================================================
/* Subroutine */ int dger_(int *m, int *n, double *alpha, double *x, int *
incx, double *y, int *incy, double *a, int *lda)
{
// System generated locals
int a_dim1, a_offset, i__1, i__2;
// Local variables
int i__, j, ix, jy, kx, info;
double temp;
extern /* Subroutine */ int xerbla_(char *, int *);
//
// -- Reference BLAS level2 routine (version 3.7.0) --
// -- Reference BLAS is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. External Subroutines ..
// ..
// .. Intrinsic Functions ..
// ..
//
// Test the input parameters.
//
// Parameter adjustments
--x;
--y;
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
// Function Body
info = 0;
if (*m < 0) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 5;
} else if (*incy == 0) {
info = 7;
} else if (*lda < max(1,*m)) {
info = 9;
}
if (info != 0) {
xerbla_("DGER ", &info);
return 0;
}
//
// Quick return if possible.
//
if (*m == 0 || *n == 0 || *alpha == 0.) {
return 0;
}
//
// Start the operations. In this version the elements of A are
// accessed sequentially with one pass through A.
//
if (*incy > 0) {
jy = 1;
} else {
jy = 1 - (*n - 1) * *incy;
}
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (y[jy] != 0.) {
temp = *alpha * y[jy];
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] += x[i__] * temp;
// L10:
}
}
jy += *incy;
// L20:
}
} else {
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*m - 1) * *incx;
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (y[jy] != 0.) {
temp = *alpha * y[jy];
ix = kx;
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] += x[ix] * temp;
ix += *incx;
// L30:
}
}
jy += *incy;
// L40:
}
}
return 0;
//
// End of DGER .
//
} // dger_
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
//> \brief \b DLARF applies an elementary reflector to a general rectangular matrix.
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download DLARF + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarf.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarf.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarf.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
//
// .. Scalar Arguments ..
// CHARACTER SIDE
// INTEGER INCV, LDC, M, N
// DOUBLE PRECISION TAU
// ..
// .. Array Arguments ..
// DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> DLARF applies a real elementary reflector H to a real m by n matrix
//> C, from either the left or the right. H is represented in the form
//>
//> H = I - tau * v * v**T
//>
//> where tau is a real scalar and v is a real vector.
//>
//> If tau = 0, then H is taken to be the unit matrix.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] SIDE
//> \verbatim
//> SIDE is CHARACTER*1
//> = 'L': form H * C
//> = 'R': form C * H
//> \endverbatim
//>
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> The number of rows of the matrix C.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The number of columns of the matrix C.
//> \endverbatim
//>
//> \param[in] V
//> \verbatim
//> V is DOUBLE PRECISION array, dimension
//> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
//> or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
//> The vector v in the representation of H. V is not used if
//> TAU = 0.
//> \endverbatim
//>
//> \param[in] INCV
//> \verbatim
//> INCV is INTEGER
//> The increment between elements of v. INCV <> 0.
//> \endverbatim
//>
//> \param[in] TAU
//> \verbatim
//> TAU is DOUBLE PRECISION
//> The value tau in the representation of H.
//> \endverbatim
//>
//> \param[in,out] C
//> \verbatim
//> C is DOUBLE PRECISION array, dimension (LDC,N)
//> On entry, the m by n matrix C.
//> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
//> or C * H if SIDE = 'R'.
//> \endverbatim
//>
//> \param[in] LDC
//> \verbatim
//> LDC is INTEGER
//> The leading dimension of the array C. LDC >= max(1,M).
//> \endverbatim
//>
//> \param[out] WORK
//> \verbatim
//> WORK is DOUBLE PRECISION array, dimension
//> (N) if SIDE = 'L'
//> or (M) if SIDE = 'R'
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup doubleOTHERauxiliary
//
// =====================================================================
/* Subroutine */ int dlarf_(char *side, int *m, int *n, double *v, int *incv,
double *tau, double *c__, int *ldc, double *work)
{
// Table of constant values
double c_b4 = 1.;
double c_b5 = 0.;
int c__1 = 1;
// System generated locals
int c_dim1, c_offset;
double d__1;
// Local variables
int i__;
int applyleft;
extern /* Subroutine */ int dger_(int *, int *, double *, double *, int *,
double *, int *, double *, int *);
extern int lsame_(char *, char *);
extern /* Subroutine */ int dgemv_(char *, int *, int *, double *, double
*, int *, double *, int *, double *, double *, int *);
int lastc, lastv;
extern int iladlc_(int *, int *, double *, int *), iladlr_(int *, int *,
double *, int *);
//
// -- LAPACK auxiliary routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. External Subroutines ..
// ..
// .. External Functions ..
// ..
// .. Executable Statements ..
//
// Parameter adjustments
--v;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
// Function Body
applyleft = lsame_(side, "L");
lastv = 0;
lastc = 0;
if (*tau != 0.) {
// Set up variables for scanning V. LASTV begins pointing to the end
// of V.
if (applyleft) {
lastv = *m;
} else {
lastv = *n;
}
if (*incv > 0) {
i__ = (lastv - 1) * *incv + 1;
} else {
i__ = 1;
}
// Look for the last non-zero row in V.
while(lastv > 0 && v[i__] == 0.) {
--lastv;
i__ -= *incv;
}
if (applyleft) {
// Scan for the last non-zero column in C(1:lastv,:).
lastc = iladlc_(&lastv, n, &c__[c_offset], ldc);
} else {
// Scan for the last non-zero row in C(:,1:lastv).
lastc = iladlr_(m, &lastv, &c__[c_offset], ldc);
}
}
// Note that lastc.eq.0 renders the BLAS operations null; no special
// case is needed at this level.
if (applyleft) {
//
// Form H * C
//
if (lastv > 0) {
//
// w(1:lastc,1) := C(1:lastv,1:lastc)**T * v(1:lastv,1)
//
dgemv_("Transpose", &lastv, &lastc, &c_b4, &c__[c_offset], ldc, &
v[1], incv, &c_b5, &work[1], &c__1);
//
// C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**T
//
d__1 = -(*tau);
dger_(&lastv, &lastc, &d__1, &v[1], incv, &work[1], &c__1, &c__[
c_offset], ldc);
}
} else {
//
// Form C * H
//
if (lastv > 0) {
//
// w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1)
//
dgemv_("No transpose", &lastc, &lastv, &c_b4, &c__[c_offset], ldc,
&v[1], incv, &c_b5, &work[1], &c__1);
//
// C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**T
//
d__1 = -(*tau);
dger_(&lastc, &lastv, &d__1, &work[1], &c__1, &v[1], incv, &c__[
c_offset], ldc);
}
}
return 0;
//
// End of DLARF
//
} // dlarf_
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
//> \brief \b ILADLC scans a matrix for its last non-zero column.
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download ILADLC + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iladlc.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iladlc.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iladlc.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// INTEGER FUNCTION ILADLC( M, N, A, LDA )
//
// .. Scalar Arguments ..
// INTEGER M, N, LDA
// ..
// .. Array Arguments ..
// DOUBLE PRECISION A( LDA, * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> ILADLC scans A for its last non-zero column.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> The number of rows of the matrix A.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The number of columns of the matrix A.
//> \endverbatim
//>
//> \param[in] A
//> \verbatim
//> A is DOUBLE PRECISION array, dimension (LDA,N)
//> The m by n matrix A.
//> \endverbatim
//>
//> \param[in] LDA
//> \verbatim
//> LDA is INTEGER
//> The leading dimension of the array A. LDA >= max(1,M).
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup OTHERauxiliary
//
// =====================================================================
int iladlc_(int *m, int *n, double *a, int *lda)
{
// System generated locals
int a_dim1, a_offset, ret_val, i__1;
// Local variables
int i__;
//
// -- LAPACK auxiliary routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. Executable Statements ..
//
// Quick test for the common case where one corner is non-zero.
// Parameter adjustments
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
// Function Body
if (*n == 0) {
ret_val = *n;
} else if (a[*n * a_dim1 + 1] != 0. || a[*m + *n * a_dim1] != 0.) {
ret_val = *n;
} else {
// Now scan each column from the end, returning with the first non-zero.
for (ret_val = *n; ret_val >= 1; --ret_val) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (a[i__ + ret_val * a_dim1] != 0.) {
return ret_val;
}
}
}
}
return ret_val;
} // iladlc_
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
//> \brief \b ILADLR scans a matrix for its last non-zero row.
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download ILADLR + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iladlr.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iladlr.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iladlr.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// INTEGER FUNCTION ILADLR( M, N, A, LDA )
//
// .. Scalar Arguments ..
// INTEGER M, N, LDA
// ..
// .. Array Arguments ..
// DOUBLE PRECISION A( LDA, * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> ILADLR scans A for its last non-zero row.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> The number of rows of the matrix A.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The number of columns of the matrix A.
//> \endverbatim
//>
//> \param[in] A
//> \verbatim
//> A is DOUBLE PRECISION array, dimension (LDA,N)
//> The m by n matrix A.
//> \endverbatim
//>
//> \param[in] LDA
//> \verbatim
//> LDA is INTEGER
//> The leading dimension of the array A. LDA >= max(1,M).
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup OTHERauxiliary
//
// =====================================================================
int iladlr_(int *m, int *n, double *a, int *lda)
{
// System generated locals
int a_dim1, a_offset, ret_val, i__1;
// Local variables
int i__, j;
//
// -- LAPACK auxiliary routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. Executable Statements ..
//
// Quick test for the common case where one corner is non-zero.
// Parameter adjustments
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
// Function Body
if (*m == 0) {
ret_val = *m;
} else if (a[*m + a_dim1] != 0. || a[*m + *n * a_dim1] != 0.) {
ret_val = *m;
} else {
// Scan up each column tracking the last zero row seen.
ret_val = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__ = *m;
while(a[max(i__,1) + j * a_dim1] == 0. && i__ >= 1) {
--i__;
}
ret_val = max(ret_val,i__);
}
}
return ret_val;
} // iladlr_