mirror of
https://github.com/opencv/opencv.git
synced 2025-01-06 02:08:12 +08:00
865 lines
26 KiB
Common Lisp
865 lines
26 KiB
Common Lisp
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics:enable
|
|
#define MAX_FLOAT 1e7f
|
|
|
|
int bit1Count(float x)
|
|
{
|
|
int c = 0;
|
|
int ix = (int)x;
|
|
|
|
for (int i = 0 ; i < 32 ; i++)
|
|
{
|
|
c += ix & 0x1;
|
|
ix >>= 1;
|
|
}
|
|
|
|
return (float)c;
|
|
}
|
|
/* 2dim launch, global size: dim0 is (query rows + block_size - 1) / block_size * block_size, dim1 is block_size
|
|
local size: dim0 is block_size, dim1 is block_size.
|
|
*/
|
|
__kernel void BruteForceMatch_UnrollMatch(
|
|
__global float *query,
|
|
__global float *train,
|
|
//__global float *mask,
|
|
__global int *bestTrainIdx,
|
|
__global float *bestDistance,
|
|
__local float *sharebuffer,
|
|
int block_size,
|
|
int max_desc_len,
|
|
int query_rows,
|
|
int query_cols,
|
|
int train_rows,
|
|
int train_cols,
|
|
int step,
|
|
int distType
|
|
)
|
|
{
|
|
const int lidx = get_local_id(0);
|
|
const int lidy = get_local_id(1);
|
|
const int groupidx = get_group_id(0);
|
|
|
|
__local float *s_query = sharebuffer;
|
|
__local float *s_train = sharebuffer + block_size * max_desc_len;
|
|
|
|
int queryIdx = groupidx * block_size + lidy;
|
|
|
|
// load the query into local memory.
|
|
for (int i = 0 ; i < max_desc_len / block_size; i ++)
|
|
{
|
|
int loadx = lidx + i * block_size;
|
|
s_query[lidy * max_desc_len + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
|
}
|
|
|
|
float myBestDistance = MAX_FLOAT;
|
|
int myBestTrainIdx = -1;
|
|
|
|
// loopUnrolledCached to find the best trainIdx and best distance.
|
|
volatile int imgIdx = 0;
|
|
|
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
|
{
|
|
float result = 0;
|
|
|
|
for (int i = 0 ; i < max_desc_len / block_size ; i++)
|
|
{
|
|
//load a block_size * block_size block into local train.
|
|
const int loadx = lidx + i * block_size;
|
|
s_train[lidx * block_size + lidy] = loadx < train_cols ? train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
|
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
|
|
switch (distType)
|
|
{
|
|
case 0:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
result += fabs(s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
case 1:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
float qr = s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx];
|
|
result += qr * qr;
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
//result += popcount((uint)s_query[lidy * max_desc_len + i * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
|
result += bit1Count((uint)s_query[lidy * max_desc_len + i * block_size + j] ^(uint)s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
|
|
int trainIdx = t * block_size + lidx;
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance/* && mask(queryIdx, trainIdx)*/)
|
|
{
|
|
//bestImgIdx = imgIdx;
|
|
myBestDistance = result;
|
|
myBestTrainIdx = trainIdx;
|
|
}
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
__local float *s_distance = (__local float *)(sharebuffer);
|
|
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
|
|
|
|
//find BestMatch
|
|
s_distance += lidy * block_size;
|
|
s_trainIdx += lidy * block_size;
|
|
s_distance[lidx] = myBestDistance;
|
|
s_trainIdx[lidx] = myBestTrainIdx;
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
//reduce -- now all reduce implement in each threads.
|
|
for (int k = 0 ; k < block_size; k++)
|
|
{
|
|
if (myBestDistance > s_distance[k])
|
|
{
|
|
myBestDistance = s_distance[k];
|
|
myBestTrainIdx = s_trainIdx[k];
|
|
}
|
|
}
|
|
|
|
if (queryIdx < query_rows && lidx == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
|
bestDistance[queryIdx] = myBestDistance;
|
|
}
|
|
}
|
|
|
|
__kernel void BruteForceMatch_Match(
|
|
__global float *query,
|
|
__global float *train,
|
|
//__global float *mask,
|
|
__global int *bestTrainIdx,
|
|
__global float *bestDistance,
|
|
__local float *sharebuffer,
|
|
int block_size,
|
|
int query_rows,
|
|
int query_cols,
|
|
int train_rows,
|
|
int train_cols,
|
|
int step,
|
|
int distType
|
|
)
|
|
{
|
|
const int lidx = get_local_id(0);
|
|
const int lidy = get_local_id(1);
|
|
const int groupidx = get_group_id(0);
|
|
|
|
const int queryIdx = groupidx * block_size + lidy;
|
|
|
|
float myBestDistance = MAX_FLOAT;
|
|
int myBestTrainIdx = -1;
|
|
|
|
__local float *s_query = sharebuffer;
|
|
__local float *s_train = sharebuffer + block_size * block_size;
|
|
|
|
// loop
|
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
|
{
|
|
//Dist dist;
|
|
float result = 0;
|
|
|
|
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; i++)
|
|
{
|
|
const int loadx = lidx + i * block_size;
|
|
//load query and train into local memory
|
|
s_query[lidy * block_size + lidx] = 0;
|
|
s_train[lidx * block_size + lidy] = 0;
|
|
|
|
if (loadx < query_cols)
|
|
{
|
|
s_query[lidy * block_size + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
|
s_train[lidx * block_size + lidy] = train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
|
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
|
|
switch (distType)
|
|
{
|
|
case 0:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
case 1:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
|
result += qr * qr;
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
//result += popcount((uint)s_query[lidy * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
|
result += bit1Count((uint)s_query[lidy * block_size + j] ^(uint)s_train[(uint)j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
|
|
const int trainIdx = t * block_size + lidx;
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance /*&& mask(queryIdx, trainIdx)*/)
|
|
{
|
|
//myBestImgidx = imgIdx;
|
|
myBestDistance = result;
|
|
myBestTrainIdx = trainIdx;
|
|
}
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
__local float *s_distance = (__local float *)sharebuffer;
|
|
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
|
|
|
|
//findBestMatch
|
|
s_distance += lidy * block_size;
|
|
s_trainIdx += lidy * block_size;
|
|
s_distance[lidx] = myBestDistance;
|
|
s_trainIdx[lidx] = myBestTrainIdx;
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
//reduce -- now all reduce implement in each threads.
|
|
for (int k = 0 ; k < block_size; k++)
|
|
{
|
|
if (myBestDistance > s_distance[k])
|
|
{
|
|
myBestDistance = s_distance[k];
|
|
myBestTrainIdx = s_trainIdx[k];
|
|
}
|
|
}
|
|
|
|
if (queryIdx < query_rows && lidx == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
|
bestDistance[queryIdx] = myBestDistance;
|
|
}
|
|
}
|
|
|
|
//radius_unrollmatch
|
|
__kernel void BruteForceMatch_RadiusUnrollMatch(
|
|
__global float *query,
|
|
__global float *train,
|
|
float maxDistance,
|
|
//__global float *mask,
|
|
__global int *bestTrainIdx,
|
|
__global float *bestDistance,
|
|
__global int *nMatches,
|
|
__local float *sharebuffer,
|
|
int block_size,
|
|
int max_desc_len,
|
|
int query_rows,
|
|
int query_cols,
|
|
int train_rows,
|
|
int train_cols,
|
|
int bestTrainIdx_cols,
|
|
int step,
|
|
int ostep,
|
|
int distType
|
|
)
|
|
{
|
|
const int lidx = get_local_id(0);
|
|
const int lidy = get_local_id(1);
|
|
const int groupidx = get_group_id(0);
|
|
const int groupidy = get_group_id(1);
|
|
|
|
const int queryIdx = groupidy * block_size + lidy;
|
|
const int trainIdx = groupidx * block_size + lidx;
|
|
|
|
__local float *s_query = sharebuffer;
|
|
__local float *s_train = sharebuffer + block_size * block_size;
|
|
|
|
float result = 0;
|
|
|
|
for (int i = 0 ; i < max_desc_len / block_size ; ++i)
|
|
{
|
|
//load a block_size * block_size block into local train.
|
|
const int loadx = lidx + i * block_size;
|
|
|
|
s_query[lidy * block_size + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
|
s_train[lidx * block_size + lidy] = loadx < query_cols ? train[min(groupidx * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
/* there are three types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
|
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
|
|
switch (distType)
|
|
{
|
|
case 0:
|
|
|
|
for (int j = 0 ; j < block_size ; ++j)
|
|
{
|
|
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
case 1:
|
|
|
|
for (int j = 0 ; j < block_size ; ++j)
|
|
{
|
|
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
|
result += qr * qr;
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
|
|
for (int j = 0 ; j < block_size ; ++j)
|
|
{
|
|
result += bit1Count((uint)s_query[lidy * block_size + j] ^(uint)s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows && result < maxDistance/* && mask(queryIdx, trainIdx)*/)
|
|
{
|
|
unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
|
|
|
|
if (ind < bestTrainIdx_cols)
|
|
{
|
|
//bestImgIdx = imgIdx;
|
|
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
|
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
|
|
}
|
|
}
|
|
}
|
|
|
|
//radius_match
|
|
__kernel void BruteForceMatch_RadiusMatch(
|
|
__global float *query,
|
|
__global float *train,
|
|
float maxDistance,
|
|
//__global float *mask,
|
|
__global int *bestTrainIdx,
|
|
__global float *bestDistance,
|
|
__global int *nMatches,
|
|
__local float *sharebuffer,
|
|
int block_size,
|
|
int query_rows,
|
|
int query_cols,
|
|
int train_rows,
|
|
int train_cols,
|
|
int bestTrainIdx_cols,
|
|
int step,
|
|
int ostep,
|
|
int distType
|
|
)
|
|
{
|
|
const int lidx = get_local_id(0);
|
|
const int lidy = get_local_id(1);
|
|
const int groupidx = get_group_id(0);
|
|
const int groupidy = get_group_id(1);
|
|
|
|
const int queryIdx = groupidy * block_size + lidy;
|
|
const int trainIdx = groupidx * block_size + lidx;
|
|
|
|
__local float *s_query = sharebuffer;
|
|
__local float *s_train = sharebuffer + block_size * block_size;
|
|
|
|
float result = 0;
|
|
|
|
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; ++i)
|
|
{
|
|
//load a block_size * block_size block into local train.
|
|
const int loadx = lidx + i * block_size;
|
|
|
|
s_query[lidy * block_size + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
|
s_train[lidx * block_size + lidy] = loadx < query_cols ? train[min(groupidx * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
/* there are three types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
|
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
|
|
switch (distType)
|
|
{
|
|
case 0:
|
|
|
|
for (int j = 0 ; j < block_size ; ++j)
|
|
{
|
|
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
case 1:
|
|
|
|
for (int j = 0 ; j < block_size ; ++j)
|
|
{
|
|
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
|
result += qr * qr;
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
|
|
for (int j = 0 ; j < block_size ; ++j)
|
|
{
|
|
result += bit1Count((uint)s_query[lidy * block_size + j] ^(uint)s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows && result < maxDistance/* && mask(queryIdx, trainIdx)*/)
|
|
{
|
|
unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
|
|
|
|
if (ind < bestTrainIdx_cols)
|
|
{
|
|
//bestImgIdx = imgIdx;
|
|
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
|
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
__kernel void BruteForceMatch_knnUnrollMatch(
|
|
__global float *query,
|
|
__global float *train,
|
|
//__global float *mask,
|
|
__global int2 *bestTrainIdx,
|
|
__global float2 *bestDistance,
|
|
__local float *sharebuffer,
|
|
int block_size,
|
|
int max_desc_len,
|
|
int query_rows,
|
|
int query_cols,
|
|
int train_rows,
|
|
int train_cols,
|
|
int step,
|
|
int distType
|
|
)
|
|
{
|
|
const int lidx = get_local_id(0);
|
|
const int lidy = get_local_id(1);
|
|
const int groupidx = get_group_id(0);
|
|
|
|
const int queryIdx = groupidx * block_size + lidy;
|
|
local float *s_query = sharebuffer;
|
|
local float *s_train = sharebuffer + block_size * max_desc_len;
|
|
|
|
// load the query into local memory.
|
|
for (int i = 0 ; i < max_desc_len / block_size; i ++)
|
|
{
|
|
int loadx = lidx + i * block_size;
|
|
s_query[lidy * max_desc_len + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
|
}
|
|
|
|
float myBestDistance1 = MAX_FLOAT;
|
|
float myBestDistance2 = MAX_FLOAT;
|
|
int myBestTrainIdx1 = -1;
|
|
int myBestTrainIdx2 = -1;
|
|
|
|
//loopUnrolledCached
|
|
volatile int imgIdx = 0;
|
|
|
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
|
{
|
|
float result = 0;
|
|
|
|
for (int i = 0 ; i < max_desc_len / block_size ; i++)
|
|
{
|
|
const int loadX = lidx + i * block_size;
|
|
//load a block_size * block_size block into local train.
|
|
const int loadx = lidx + i * block_size;
|
|
s_train[lidx * block_size + lidy] = loadx < train_cols ? train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
|
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
|
|
switch (distType)
|
|
{
|
|
case 0:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
result += fabs(s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
case 1:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
float qr = s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx];
|
|
result += qr * qr;
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
//result += popcount((uint)s_query[lidy * max_desc_len + i * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
|
result += bit1Count((uint)s_query[lidy * max_desc_len + i * block_size + j] ^(uint)s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
|
|
const int trainIdx = t * block_size + lidx;
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows)
|
|
{
|
|
if (result < myBestDistance1)
|
|
{
|
|
myBestDistance2 = myBestDistance1;
|
|
myBestTrainIdx2 = myBestTrainIdx1;
|
|
myBestDistance1 = result;
|
|
myBestTrainIdx1 = trainIdx;
|
|
}
|
|
else if (result < myBestDistance2)
|
|
{
|
|
myBestDistance2 = result;
|
|
myBestTrainIdx2 = trainIdx;
|
|
}
|
|
}
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
local float *s_distance = (local float *)sharebuffer;
|
|
local int *s_trainIdx = (local int *)(sharebuffer + block_size * block_size);
|
|
|
|
// find BestMatch
|
|
s_distance += lidy * block_size;
|
|
s_trainIdx += lidy * block_size;
|
|
|
|
s_distance[lidx] = myBestDistance1;
|
|
s_trainIdx[lidx] = myBestTrainIdx1;
|
|
|
|
float bestDistance1 = MAX_FLOAT;
|
|
float bestDistance2 = MAX_FLOAT;
|
|
int bestTrainIdx1 = -1;
|
|
int bestTrainIdx2 = -1;
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
if (lidx == 0)
|
|
{
|
|
for (int i = 0 ; i < block_size ; i++)
|
|
{
|
|
float val = s_distance[i];
|
|
|
|
if (val < bestDistance1)
|
|
{
|
|
bestDistance2 = bestDistance1;
|
|
bestTrainIdx2 = bestTrainIdx1;
|
|
|
|
bestDistance1 = val;
|
|
bestTrainIdx1 = s_trainIdx[i];
|
|
}
|
|
else if (val < bestDistance2)
|
|
{
|
|
bestDistance2 = val;
|
|
bestTrainIdx2 = s_trainIdx[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
s_distance[lidx] = myBestDistance2;
|
|
s_trainIdx[lidx] = myBestTrainIdx2;
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
if (lidx == 0)
|
|
{
|
|
for (int i = 0 ; i < block_size ; i++)
|
|
{
|
|
float val = s_distance[i];
|
|
|
|
if (val < bestDistance2)
|
|
{
|
|
bestDistance2 = val;
|
|
bestTrainIdx2 = s_trainIdx[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
myBestDistance1 = bestDistance1;
|
|
myBestDistance2 = bestDistance2;
|
|
|
|
myBestTrainIdx1 = bestTrainIdx1;
|
|
myBestTrainIdx2 = bestTrainIdx2;
|
|
|
|
if (queryIdx < query_rows && lidx == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);
|
|
bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);
|
|
}
|
|
}
|
|
|
|
__kernel void BruteForceMatch_knnMatch(
|
|
__global float *query,
|
|
__global float *train,
|
|
//__global float *mask,
|
|
__global int2 *bestTrainIdx,
|
|
__global float2 *bestDistance,
|
|
__local float *sharebuffer,
|
|
int block_size,
|
|
int query_rows,
|
|
int query_cols,
|
|
int train_rows,
|
|
int train_cols,
|
|
int step,
|
|
int distType
|
|
)
|
|
{
|
|
const int lidx = get_local_id(0);
|
|
const int lidy = get_local_id(1);
|
|
const int groupidx = get_group_id(0);
|
|
|
|
const int queryIdx = groupidx * block_size + lidy;
|
|
local float *s_query = sharebuffer;
|
|
local float *s_train = sharebuffer + block_size * block_size;
|
|
|
|
float myBestDistance1 = MAX_FLOAT;
|
|
float myBestDistance2 = MAX_FLOAT;
|
|
int myBestTrainIdx1 = -1;
|
|
int myBestTrainIdx2 = -1;
|
|
|
|
//loop
|
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
|
{
|
|
float result = 0.0f;
|
|
|
|
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; i++)
|
|
{
|
|
const int loadx = lidx + i * block_size;
|
|
//load query and train into local memory
|
|
s_query[lidy * block_size + lidx] = 0;
|
|
s_train[lidx * block_size + lidy] = 0;
|
|
|
|
if (loadx < query_cols)
|
|
{
|
|
s_query[lidy * block_size + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
|
s_train[lidx * block_size + lidy] = train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
|
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
|
|
switch (distType)
|
|
{
|
|
case 0:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
case 1:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
|
result += qr * qr;
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
|
|
for (int j = 0 ; j < block_size ; j++)
|
|
{
|
|
//result += popcount((uint)s_query[lidy * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
|
result += bit1Count((uint)s_query[lidy * block_size + j] ^(uint)s_train[(uint)j * block_size + lidx]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
|
|
const int trainIdx = t * block_size + lidx;
|
|
|
|
if (queryIdx < query_rows && trainIdx < train_rows /*&& mask(queryIdx, trainIdx)*/)
|
|
{
|
|
if (result < myBestDistance1)
|
|
{
|
|
myBestDistance2 = myBestDistance1;
|
|
myBestTrainIdx2 = myBestTrainIdx1;
|
|
myBestDistance1 = result;
|
|
myBestTrainIdx1 = trainIdx;
|
|
}
|
|
else if (result < myBestDistance2)
|
|
{
|
|
myBestDistance2 = result;
|
|
myBestTrainIdx2 = trainIdx;
|
|
}
|
|
}
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
__local float *s_distance = (__local float *)sharebuffer;
|
|
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
|
|
|
|
//findBestMatch
|
|
s_distance += lidy * block_size;
|
|
s_trainIdx += lidy * block_size;
|
|
|
|
s_distance[lidx] = myBestDistance1;
|
|
s_trainIdx[lidx] = myBestTrainIdx1;
|
|
|
|
float bestDistance1 = MAX_FLOAT;
|
|
float bestDistance2 = MAX_FLOAT;
|
|
int bestTrainIdx1 = -1;
|
|
int bestTrainIdx2 = -1;
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
if (lidx == 0)
|
|
{
|
|
for (int i = 0 ; i < block_size ; i++)
|
|
{
|
|
float val = s_distance[i];
|
|
|
|
if (val < bestDistance1)
|
|
{
|
|
bestDistance2 = bestDistance1;
|
|
bestTrainIdx2 = bestTrainIdx1;
|
|
|
|
bestDistance1 = val;
|
|
bestTrainIdx1 = s_trainIdx[i];
|
|
}
|
|
else if (val < bestDistance2)
|
|
{
|
|
bestDistance2 = val;
|
|
bestTrainIdx2 = s_trainIdx[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
s_distance[lidx] = myBestDistance2;
|
|
s_trainIdx[lidx] = myBestTrainIdx2;
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
if (lidx == 0)
|
|
{
|
|
for (int i = 0 ; i < block_size ; i++)
|
|
{
|
|
float val = s_distance[i];
|
|
|
|
if (val < bestDistance2)
|
|
{
|
|
bestDistance2 = val;
|
|
bestTrainIdx2 = s_trainIdx[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
myBestDistance1 = bestDistance1;
|
|
myBestDistance2 = bestDistance2;
|
|
|
|
myBestTrainIdx1 = bestTrainIdx1;
|
|
myBestTrainIdx2 = bestTrainIdx2;
|
|
|
|
if (queryIdx < query_rows && lidx == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);
|
|
bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);
|
|
}
|
|
}
|
|
|
|
kernel void BruteForceMatch_calcDistanceUnrolled(
|
|
__global float *query,
|
|
__global float *train,
|
|
//__global float *mask,
|
|
__global float *allDist,
|
|
__local float *sharebuffer,
|
|
int block_size,
|
|
int max_desc_len,
|
|
int query_rows,
|
|
int query_cols,
|
|
int train_rows,
|
|
int train_cols,
|
|
int step,
|
|
int distType)
|
|
{
|
|
/* Todo */
|
|
}
|
|
|
|
kernel void BruteForceMatch_calcDistance(
|
|
__global float *query,
|
|
__global float *train,
|
|
//__global float *mask,
|
|
__global float *allDist,
|
|
__local float *sharebuffer,
|
|
int block_size,
|
|
int query_rows,
|
|
int query_cols,
|
|
int train_rows,
|
|
int train_cols,
|
|
int step,
|
|
int distType)
|
|
{
|
|
/* Todo */
|
|
}
|
|
|
|
kernel void BruteForceMatch_findBestMatch(
|
|
__global float *allDist,
|
|
__global int *bestTrainIdx,
|
|
__global float *bestDistance,
|
|
int k,
|
|
int block_size
|
|
)
|
|
{
|
|
/* Todo */
|
|
} |