mirror of
https://github.com/opencv/opencv.git
synced 2024-12-02 16:00:17 +08:00
356 lines
12 KiB
C++
356 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Fangfang Bai, fangfang@multicorewareinc.com
|
|
// Jin Ma, jin@multicorewareinc.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
///////////// PyrLKOpticalFlow ////////////////////////
|
|
PERFTEST(PyrLKOpticalFlow)
|
|
{
|
|
std::string images1[] = {"rubberwhale1.png", "basketball1.png"};
|
|
std::string images2[] = {"rubberwhale2.png", "basketball2.png"};
|
|
|
|
for (size_t i = 0; i < sizeof(images1) / sizeof(std::string); i++)
|
|
{
|
|
Mat frame0 = imread(abspath(images1[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE);
|
|
|
|
if (frame0.empty())
|
|
{
|
|
std::string errstr = "can't open " + images1[i];
|
|
throw runtime_error(errstr);
|
|
}
|
|
|
|
Mat frame1 = imread(abspath(images2[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE);
|
|
|
|
if (frame1.empty())
|
|
{
|
|
std::string errstr = "can't open " + images2[i];
|
|
throw runtime_error(errstr);
|
|
}
|
|
|
|
Mat gray_frame;
|
|
|
|
if (i == 0)
|
|
{
|
|
cvtColor(frame0, gray_frame, COLOR_BGR2GRAY);
|
|
}
|
|
|
|
for (int points = Min_Size; points <= Max_Size; points *= Multiple)
|
|
{
|
|
if (i == 0)
|
|
SUBTEST << frame0.cols << "x" << frame0.rows << "; color; " << points << " points";
|
|
else
|
|
SUBTEST << frame0.cols << "x" << frame0.rows << "; gray; " << points << " points";
|
|
Mat ocl_nextPts;
|
|
Mat ocl_status;
|
|
|
|
vector<Point2f> pts;
|
|
goodFeaturesToTrack(i == 0 ? gray_frame : frame0, pts, points, 0.01, 0.0);
|
|
|
|
vector<Point2f> nextPts;
|
|
vector<unsigned char> status;
|
|
|
|
vector<float> err;
|
|
|
|
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
|
|
|
|
CPU_ON;
|
|
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
|
|
CPU_OFF;
|
|
|
|
ocl::PyrLKOpticalFlow d_pyrLK;
|
|
|
|
ocl::oclMat d_frame0(frame0);
|
|
ocl::oclMat d_frame1(frame1);
|
|
|
|
ocl::oclMat d_pts;
|
|
Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void *)&pts[0]);
|
|
d_pts.upload(pts_mat);
|
|
|
|
ocl::oclMat d_nextPts;
|
|
ocl::oclMat d_status;
|
|
ocl::oclMat d_err;
|
|
|
|
WARMUP_ON;
|
|
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
|
|
WARMUP_OFF;
|
|
|
|
GPU_ON;
|
|
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
|
|
GPU_OFF;
|
|
|
|
GPU_FULL_ON;
|
|
d_frame0.upload(frame0);
|
|
d_frame1.upload(frame1);
|
|
d_pts.upload(pts_mat);
|
|
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
|
|
|
|
if (!d_nextPts.empty())
|
|
d_nextPts.download(ocl_nextPts);
|
|
|
|
if (!d_status.empty())
|
|
d_status.download(ocl_status);
|
|
GPU_FULL_OFF;
|
|
|
|
size_t mismatch = 0;
|
|
for (int i = 0; i < (int)nextPts.size(); ++i)
|
|
{
|
|
if(status[i] != ocl_status.at<unsigned char>(0, i)){
|
|
mismatch++;
|
|
continue;
|
|
}
|
|
if(status[i]){
|
|
Point2f gpu_rst = ocl_nextPts.at<Point2f>(0, i);
|
|
Point2f cpu_rst = nextPts[i];
|
|
if(fabs(gpu_rst.x - cpu_rst.x) >= 1. || fabs(gpu_rst.y - cpu_rst.y) >= 1.)
|
|
mismatch++;
|
|
}
|
|
}
|
|
double ratio = (double)mismatch / (double)nextPts.size();
|
|
if(ratio < .02)
|
|
TestSystem::instance().setAccurate(1, ratio);
|
|
else
|
|
TestSystem::instance().setAccurate(0, ratio);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
PERFTEST(tvl1flow)
|
|
{
|
|
cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
|
assert(!frame0.empty());
|
|
|
|
cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
|
assert(!frame1.empty());
|
|
|
|
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
|
|
cv::ocl::oclMat d_flowx(frame0.size(), CV_32FC1);
|
|
cv::ocl::oclMat d_flowy(frame1.size(), CV_32FC1);
|
|
|
|
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
|
|
cv::Mat flow;
|
|
|
|
|
|
SUBTEST << frame0.cols << 'x' << frame0.rows << "; rubberwhale1.png; "<<frame1.cols<<'x'<<frame1.rows<<"; rubberwhale2.png";
|
|
|
|
alg->calc(frame0, frame1, flow);
|
|
|
|
CPU_ON;
|
|
alg->calc(frame0, frame1, flow);
|
|
CPU_OFF;
|
|
|
|
cv::Mat gold[2];
|
|
cv::split(flow, gold);
|
|
|
|
cv::ocl::oclMat d0(frame0.size(), CV_32FC1);
|
|
d0.upload(frame0);
|
|
cv::ocl::oclMat d1(frame1.size(), CV_32FC1);
|
|
d1.upload(frame1);
|
|
|
|
WARMUP_ON;
|
|
d_alg(d0, d1, d_flowx, d_flowy);
|
|
WARMUP_OFF;
|
|
/*
|
|
double diff1 = 0.0, diff2 = 0.0;
|
|
if(ExceptedMatSimilar(gold[0], cv::Mat(d_flowx), 3e-3, diff1) == 1
|
|
&&ExceptedMatSimilar(gold[1], cv::Mat(d_flowy), 3e-3, diff2) == 1)
|
|
TestSystem::instance().setAccurate(1);
|
|
else
|
|
TestSystem::instance().setAccurate(0);
|
|
|
|
TestSystem::instance().setDiff(diff1);
|
|
TestSystem::instance().setDiff(diff2);
|
|
*/
|
|
|
|
|
|
GPU_ON;
|
|
d_alg(d0, d1, d_flowx, d_flowy);
|
|
d_alg.collectGarbage();
|
|
GPU_OFF;
|
|
|
|
|
|
cv::Mat flowx, flowy;
|
|
|
|
GPU_FULL_ON;
|
|
d0.upload(frame0);
|
|
d1.upload(frame1);
|
|
d_alg(d0, d1, d_flowx, d_flowy);
|
|
d_alg.collectGarbage();
|
|
d_flowx.download(flowx);
|
|
d_flowy.download(flowy);
|
|
GPU_FULL_OFF;
|
|
|
|
TestSystem::instance().ExceptedMatSimilar(gold[0], flowx, 3e-3);
|
|
TestSystem::instance().ExceptedMatSimilar(gold[1], flowy, 3e-3);
|
|
}
|
|
|
|
///////////// FarnebackOpticalFlow ////////////////////////
|
|
PERFTEST(FarnebackOpticalFlow)
|
|
{
|
|
cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::ocl::oclMat d_frame0(frame0), d_frame1(frame1);
|
|
|
|
int polyNs[2] = { 5, 7 };
|
|
double polySigmas[2] = { 1.1, 1.5 };
|
|
int farneFlags[2] = { 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN };
|
|
bool UseInitFlows[2] = { false, true };
|
|
double pyrScale = 0.5;
|
|
|
|
string farneFlagStrs[2] = { "BoxFilter", "GaussianBlur" };
|
|
string useInitFlowStrs[2] = { "", "UseInitFlow" };
|
|
|
|
for ( int i = 0; i < 2; ++i)
|
|
{
|
|
int polyN = polyNs[i];
|
|
double polySigma = polySigmas[i];
|
|
|
|
for ( int j = 0; j < 2; ++j)
|
|
{
|
|
int flags = farneFlags[j];
|
|
|
|
for ( int k = 0; k < 2; ++k)
|
|
{
|
|
bool useInitFlow = UseInitFlows[k];
|
|
SUBTEST << "polyN(" << polyN << "); " << farneFlagStrs[j] << "; " << useInitFlowStrs[k];
|
|
|
|
cv::ocl::FarnebackOpticalFlow farn;
|
|
farn.pyrScale = pyrScale;
|
|
farn.polyN = polyN;
|
|
farn.polySigma = polySigma;
|
|
farn.flags = flags;
|
|
|
|
cv::ocl::oclMat d_flowx, d_flowy;
|
|
cv::Mat flow, flowBuf, flowxBuf, flowyBuf;
|
|
|
|
WARMUP_ON;
|
|
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
|
|
|
if (useInitFlow)
|
|
{
|
|
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
|
|
cv::merge(flowxy, 2, flow);
|
|
flow.copyTo(flowBuf);
|
|
flowxy[0].copyTo(flowxBuf);
|
|
flowxy[1].copyTo(flowyBuf);
|
|
|
|
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
|
|
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
|
}
|
|
WARMUP_OFF;
|
|
|
|
cv::calcOpticalFlowFarneback(
|
|
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
|
|
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
|
|
|
|
std::vector<cv::Mat> flowxy;
|
|
cv::split(flow, flowxy);
|
|
|
|
Mat md_flowx = cv::Mat(d_flowx);
|
|
Mat md_flowy = cv::Mat(d_flowy);
|
|
TestSystem::instance().ExceptedMatSimilar(flowxy[0], md_flowx, 0.1);
|
|
TestSystem::instance().ExceptedMatSimilar(flowxy[1], md_flowy, 0.1);
|
|
|
|
if (useInitFlow)
|
|
{
|
|
cv::Mat flowx, flowy;
|
|
farn.flags = (flags | cv::OPTFLOW_USE_INITIAL_FLOW);
|
|
|
|
CPU_ON;
|
|
cv::calcOpticalFlowFarneback(
|
|
frame0, frame1, flowBuf, farn.pyrScale, farn.numLevels, farn.winSize,
|
|
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
|
GPU_OFF;
|
|
|
|
GPU_FULL_ON;
|
|
d_frame0.upload(frame0);
|
|
d_frame1.upload(frame1);
|
|
d_flowx.upload(flowxBuf);
|
|
d_flowy.upload(flowyBuf);
|
|
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
|
d_flowx.download(flowx);
|
|
d_flowy.download(flowy);
|
|
GPU_FULL_OFF;
|
|
}
|
|
else
|
|
{
|
|
cv::Mat flow, flowx, flowy;
|
|
cv::ocl::oclMat d_flowx, d_flowy;
|
|
|
|
farn.flags = flags;
|
|
|
|
CPU_ON;
|
|
cv::calcOpticalFlowFarneback(
|
|
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
|
|
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
|
GPU_OFF;
|
|
|
|
GPU_FULL_ON;
|
|
d_frame0.upload(frame0);
|
|
d_frame1.upload(frame1);
|
|
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
|
d_flowx.download(flowx);
|
|
d_flowy.download(flowy);
|
|
GPU_FULL_OFF;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|