mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 22:59:16 +08:00
197 lines
6.4 KiB
Python
197 lines
6.4 KiB
Python
#!/usr/bin/env python
|
|
|
|
'''
|
|
SVM and KNearest digit recognition.
|
|
|
|
Sample loads a dataset of handwritten digits from '../data/digits.png'.
|
|
Then it trains a SVM and KNearest classifiers on it and evaluates
|
|
their accuracy.
|
|
|
|
Following preprocessing is applied to the dataset:
|
|
- Moment-based image deskew (see deskew())
|
|
- Digit images are split into 4 10x10 cells and 16-bin
|
|
histogram of oriented gradients is computed for each
|
|
cell
|
|
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
|
|
|
|
|
|
[1] R. Arandjelovic, A. Zisserman
|
|
"Three things everyone should know to improve object retrieval"
|
|
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
|
|
|
|
'''
|
|
|
|
|
|
# Python 2/3 compatibility
|
|
from __future__ import print_function
|
|
|
|
# built-in modules
|
|
from multiprocessing.pool import ThreadPool
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
from numpy.linalg import norm
|
|
|
|
|
|
SZ = 20 # size of each digit is SZ x SZ
|
|
CLASS_N = 10
|
|
DIGITS_FN = 'samples/data/digits.png'
|
|
|
|
def split2d(img, cell_size, flatten=True):
|
|
h, w = img.shape[:2]
|
|
sx, sy = cell_size
|
|
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
|
|
cells = np.array(cells)
|
|
if flatten:
|
|
cells = cells.reshape(-1, sy, sx)
|
|
return cells
|
|
|
|
def deskew(img):
|
|
m = cv2.moments(img)
|
|
if abs(m['mu02']) < 1e-2:
|
|
return img.copy()
|
|
skew = m['mu11']/m['mu02']
|
|
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
|
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
|
return img
|
|
|
|
class StatModel(object):
|
|
def load(self, fn):
|
|
self.model.load(fn) # Known bug: https://github.com/opencv/opencv/issues/4969
|
|
def save(self, fn):
|
|
self.model.save(fn)
|
|
|
|
class KNearest(StatModel):
|
|
def __init__(self, k = 3):
|
|
self.k = k
|
|
self.model = cv2.ml.KNearest_create()
|
|
|
|
def train(self, samples, responses):
|
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
|
|
|
def predict(self, samples):
|
|
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, self.k)
|
|
return results.ravel()
|
|
|
|
class SVM(StatModel):
|
|
def __init__(self, C = 1, gamma = 0.5):
|
|
self.model = cv2.ml.SVM_create()
|
|
self.model.setGamma(gamma)
|
|
self.model.setC(C)
|
|
self.model.setKernel(cv2.ml.SVM_RBF)
|
|
self.model.setType(cv2.ml.SVM_C_SVC)
|
|
|
|
def train(self, samples, responses):
|
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
|
|
|
def predict(self, samples):
|
|
return self.model.predict(samples)[1].ravel()
|
|
|
|
|
|
def evaluate_model(model, digits, samples, labels):
|
|
resp = model.predict(samples)
|
|
err = (labels != resp).mean()
|
|
|
|
confusion = np.zeros((10, 10), np.int32)
|
|
for i, j in zip(labels, resp):
|
|
confusion[int(i), int(j)] += 1
|
|
|
|
return err, confusion
|
|
|
|
def preprocess_simple(digits):
|
|
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
|
|
|
|
def preprocess_hog(digits):
|
|
samples = []
|
|
for img in digits:
|
|
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
|
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
|
mag, ang = cv2.cartToPolar(gx, gy)
|
|
bin_n = 16
|
|
bin = np.int32(bin_n*ang/(2*np.pi))
|
|
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
|
|
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
|
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
|
hist = np.hstack(hists)
|
|
|
|
# transform to Hellinger kernel
|
|
eps = 1e-7
|
|
hist /= hist.sum() + eps
|
|
hist = np.sqrt(hist)
|
|
hist /= norm(hist) + eps
|
|
|
|
samples.append(hist)
|
|
return np.float32(samples)
|
|
|
|
from tests_common import NewOpenCVTests
|
|
|
|
class digits_test(NewOpenCVTests):
|
|
|
|
def load_digits(self, fn):
|
|
digits_img = self.get_sample(fn, 0)
|
|
digits = split2d(digits_img, (SZ, SZ))
|
|
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
|
return digits, labels
|
|
|
|
def test_digits(self):
|
|
|
|
digits, labels = self.load_digits(DIGITS_FN)
|
|
|
|
# shuffle digits
|
|
rand = np.random.RandomState(321)
|
|
shuffle = rand.permutation(len(digits))
|
|
digits, labels = digits[shuffle], labels[shuffle]
|
|
|
|
digits2 = list(map(deskew, digits))
|
|
samples = preprocess_hog(digits2)
|
|
|
|
train_n = int(0.9*len(samples))
|
|
_digits_train, digits_test = np.split(digits2, [train_n])
|
|
samples_train, samples_test = np.split(samples, [train_n])
|
|
labels_train, labels_test = np.split(labels, [train_n])
|
|
errors = list()
|
|
confusionMatrixes = list()
|
|
|
|
model = KNearest(k=4)
|
|
model.train(samples_train, labels_train)
|
|
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test)
|
|
errors.append(error)
|
|
confusionMatrixes.append(confusion)
|
|
|
|
model = SVM(C=2.67, gamma=5.383)
|
|
model.train(samples_train, labels_train)
|
|
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test)
|
|
errors.append(error)
|
|
confusionMatrixes.append(confusion)
|
|
|
|
eps = 0.001
|
|
normEps = len(samples_test) * 0.02
|
|
|
|
confusionKNN = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[ 0, 0, 59, 1, 0, 0, 0, 0, 1, 0],
|
|
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0],
|
|
[ 0, 0, 0, 0, 38, 0, 2, 0, 0, 0],
|
|
[ 0, 0, 0, 2, 0, 48, 0, 0, 1, 0],
|
|
[ 0, 1, 0, 0, 0, 0, 51, 0, 0, 0],
|
|
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0],
|
|
[ 0, 0, 0, 0, 0, 1, 0, 0, 46, 0],
|
|
[ 1, 1, 0, 1, 1, 0, 0, 0, 2, 42]]
|
|
|
|
confusionSVM = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[ 0, 0, 59, 2, 0, 0, 0, 0, 0, 0],
|
|
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0],
|
|
[ 0, 0, 0, 0, 40, 0, 0, 0, 0, 0],
|
|
[ 0, 0, 0, 1, 0, 50, 0, 0, 0, 0],
|
|
[ 0, 0, 0, 0, 1, 0, 51, 0, 0, 0],
|
|
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0],
|
|
[ 0, 0, 0, 0, 0, 0, 0, 0, 47, 0],
|
|
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 45]]
|
|
|
|
self.assertLess(cv2.norm(confusionMatrixes[0] - confusionKNN, cv2.NORM_L1), normEps)
|
|
self.assertLess(cv2.norm(confusionMatrixes[1] - confusionSVM, cv2.NORM_L1), normEps)
|
|
|
|
self.assertLess(errors[0] - 0.034, eps)
|
|
self.assertLess(errors[1] - 0.018, eps) |