mirror of
https://github.com/opencv/opencv.git
synced 2025-01-23 18:33:16 +08:00
377 lines
16 KiB
Common Lisp
377 lines
16 KiB
Common Lisp
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Zhang Ying, zhangying913@gmail.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifdef DOUBLE_SUPPORT
|
|
#ifdef cl_amd_fp64
|
|
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
|
#elif defined (cl_khr_fp64)
|
|
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
|
#endif
|
|
#define CT double
|
|
#else
|
|
#define CT float
|
|
#endif
|
|
|
|
#define INTER_BITS 5
|
|
#define INTER_TAB_SIZE (1 << INTER_BITS)
|
|
#define INTER_SCALE 1.f/INTER_TAB_SIZE
|
|
#define AB_BITS max(10, (int)INTER_BITS)
|
|
#define AB_SCALE (1 << AB_BITS)
|
|
#define INTER_REMAP_COEF_BITS 15
|
|
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS)
|
|
#define ROUND_DELTA (1 << (AB_BITS - INTER_BITS - 1))
|
|
|
|
#define noconvert
|
|
|
|
#ifndef ST
|
|
#define ST T
|
|
#endif
|
|
|
|
#if cn != 3
|
|
#define loadpix(addr) *(__global const T*)(addr)
|
|
#define storepix(val, addr) *(__global T*)(addr) = val
|
|
#define scalar scalar_
|
|
#define pixsize (int)sizeof(T)
|
|
#else
|
|
#define loadpix(addr) vload3(0, (__global const T1*)(addr))
|
|
#define storepix(val, addr) vstore3(val, 0, (__global T1*)(addr))
|
|
#ifdef INTER_NEAREST
|
|
#define scalar (T)(scalar_.x, scalar_.y, scalar_.z)
|
|
#else
|
|
#define scalar (WT)(scalar_.x, scalar_.y, scalar_.z)
|
|
#endif
|
|
#define pixsize ((int)sizeof(T1)*3)
|
|
#endif
|
|
|
|
#ifdef INTER_NEAREST
|
|
|
|
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
|
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
|
__constant CT * M, ST scalar_)
|
|
{
|
|
int dx = get_global_id(0);
|
|
int dy0 = get_global_id(1) * rowsPerWI;
|
|
|
|
if (dx < dst_cols)
|
|
{
|
|
int round_delta = (AB_SCALE >> 1);
|
|
|
|
int X0_ = rint(M[0] * dx * AB_SCALE);
|
|
int Y0_ = rint(M[3] * dx * AB_SCALE);
|
|
int dst_index = mad24(dy0, dst_step, mad24(dx, pixsize, dst_offset));
|
|
|
|
for (int dy = dy0, dy1 = min(dst_rows, dy0 + rowsPerWI); dy < dy1; ++dy, dst_index += dst_step)
|
|
{
|
|
int X0 = X0_ + rint(fma(M[1], dy, M[2]) * AB_SCALE) + round_delta;
|
|
int Y0 = Y0_ + rint(fma(M[4], dy, M[5]) * AB_SCALE) + round_delta;
|
|
|
|
short sx = convert_short_sat(X0 >> AB_BITS);
|
|
short sy = convert_short_sat(Y0 >> AB_BITS);
|
|
|
|
if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows)
|
|
{
|
|
int src_index = mad24(sy, src_step, mad24(sx, pixsize, src_offset));
|
|
storepix(loadpix(srcptr + src_index), dstptr + dst_index);
|
|
}
|
|
else
|
|
storepix(scalar, dstptr + dst_index);
|
|
}
|
|
}
|
|
}
|
|
|
|
#elif defined INTER_LINEAR
|
|
|
|
__constant float coeffs[64] =
|
|
{ 1.000000f, 0.000000f, 0.968750f, 0.031250f, 0.937500f, 0.062500f, 0.906250f, 0.093750f, 0.875000f, 0.125000f, 0.843750f, 0.156250f,
|
|
0.812500f, 0.187500f, 0.781250f, 0.218750f, 0.750000f, 0.250000f, 0.718750f, 0.281250f, 0.687500f, 0.312500f, 0.656250f, 0.343750f,
|
|
0.625000f, 0.375000f, 0.593750f, 0.406250f, 0.562500f, 0.437500f, 0.531250f, 0.468750f, 0.500000f, 0.500000f, 0.468750f, 0.531250f,
|
|
0.437500f, 0.562500f, 0.406250f, 0.593750f, 0.375000f, 0.625000f, 0.343750f, 0.656250f, 0.312500f, 0.687500f, 0.281250f, 0.718750f,
|
|
0.250000f, 0.750000f, 0.218750f, 0.781250f, 0.187500f, 0.812500f, 0.156250f, 0.843750f, 0.125000f, 0.875000f, 0.093750f, 0.906250f,
|
|
0.062500f, 0.937500f, 0.031250f, 0.968750f };
|
|
|
|
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
|
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
|
__constant CT * M, ST scalar_)
|
|
{
|
|
int dx = get_global_id(0);
|
|
int dy0 = get_global_id(1) * rowsPerWI;
|
|
|
|
if (dx < dst_cols)
|
|
{
|
|
int tmp = dx << AB_BITS;
|
|
int X0_ = rint(M[0] * tmp);
|
|
int Y0_ = rint(M[3] * tmp);
|
|
|
|
for (int dy = dy0, dy1 = min(dst_rows, dy0 + rowsPerWI); dy < dy1; ++dy)
|
|
{
|
|
int X0 = X0_ + rint(fma(M[1], dy, M[2]) * AB_SCALE) + ROUND_DELTA;
|
|
int Y0 = Y0_ + rint(fma(M[4], dy, M[5]) * AB_SCALE) + ROUND_DELTA;
|
|
X0 = X0 >> (AB_BITS - INTER_BITS);
|
|
Y0 = Y0 >> (AB_BITS - INTER_BITS);
|
|
|
|
short sx = convert_short_sat(X0 >> INTER_BITS), sy = convert_short_sat(Y0 >> INTER_BITS);
|
|
short ax = convert_short(X0 & (INTER_TAB_SIZE-1)), ay = convert_short(Y0 & (INTER_TAB_SIZE-1));
|
|
|
|
#if defined AMD_DEVICE || depth > 4
|
|
WT v0 = scalar, v1 = scalar, v2 = scalar, v3 = scalar;
|
|
if (sx >= 0 && sx < src_cols)
|
|
{
|
|
if (sy >= 0 && sy < src_rows)
|
|
v0 = convertToWT(loadpix(srcptr + mad24(sy, src_step, mad24(sx, pixsize, src_offset))));
|
|
if (sy+1 >= 0 && sy+1 < src_rows)
|
|
v2 = convertToWT(loadpix(srcptr + mad24(sy+1, src_step, mad24(sx, pixsize, src_offset))));
|
|
}
|
|
if (sx+1 >= 0 && sx+1 < src_cols)
|
|
{
|
|
if (sy >= 0 && sy < src_rows)
|
|
v1 = convertToWT(loadpix(srcptr + mad24(sy, src_step, mad24(sx+1, pixsize, src_offset))));
|
|
if (sy+1 >= 0 && sy+1 < src_rows)
|
|
v3 = convertToWT(loadpix(srcptr + mad24(sy+1, src_step, mad24(sx+1, pixsize, src_offset))));
|
|
}
|
|
|
|
float taby = 1.f/INTER_TAB_SIZE*ay;
|
|
float tabx = 1.f/INTER_TAB_SIZE*ax;
|
|
|
|
int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));
|
|
|
|
#if depth <= 4
|
|
int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
|
|
int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE );
|
|
int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
|
|
int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE );
|
|
|
|
WT val = mad24(v0, itab0, mad24(v1, itab1, mad24(v2, itab2, v3 * itab3)));
|
|
storepix(convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS), dstptr + dst_index);
|
|
#else
|
|
float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby;
|
|
WT val = fma(tabx2, fma(v0, taby2, v2 * taby), tabx * fma(v1, taby2, v3 * taby));
|
|
storepix(convertToT(val), dstptr + dst_index);
|
|
#endif
|
|
#else // INTEL_DEVICE
|
|
__constant float * coeffs_y = coeffs + (ay << 1), * coeffs_x = coeffs + (ax << 1);
|
|
|
|
int src_index0 = mad24(sy, src_step, mad24(sx, pixsize, src_offset)), src_index;
|
|
int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));
|
|
|
|
WT sum = (WT)(0), xsum;
|
|
#pragma unroll
|
|
for (int y = 0; y < 2; y++)
|
|
{
|
|
src_index = mad24(y, src_step, src_index0);
|
|
if (sy + y >= 0 && sy + y < src_rows)
|
|
{
|
|
xsum = (WT)(0);
|
|
if (sx >= 0 && sx + 2 < src_cols)
|
|
{
|
|
#if depth == 0 && cn == 1
|
|
uchar2 value = vload2(0, srcptr + src_index);
|
|
xsum = dot(convert_float2(value), (float2)(coeffs_x[0], coeffs_x[1]));
|
|
#else
|
|
#pragma unroll
|
|
for (int x = 0; x < 2; x++)
|
|
xsum = fma(convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))), coeffs_x[x], xsum);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#pragma unroll
|
|
for (int x = 0; x < 2; x++)
|
|
xsum = fma(sx + x >= 0 && sx + x < src_cols ?
|
|
convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))) : scalar, coeffs_x[x], xsum);
|
|
}
|
|
sum = fma(xsum, coeffs_y[y], sum);
|
|
}
|
|
else
|
|
sum = fma(scalar, coeffs_y[y], sum);
|
|
}
|
|
|
|
storepix(convertToT(sum), dstptr + dst_index);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#elif defined INTER_CUBIC
|
|
|
|
#ifdef AMD_DEVICE
|
|
|
|
inline void interpolateCubic( float x, float* coeffs )
|
|
{
|
|
const float A = -0.75f;
|
|
|
|
coeffs[0] = fma(fma(fma(A, (x + 1.f), - 5.0f*A), (x + 1.f), 8.0f*A), x + 1.f, - 4.0f*A);
|
|
coeffs[1] = fma(fma(A + 2.f, x, - (A + 3.f)), x*x, 1.f);
|
|
coeffs[2] = fma(fma(A + 2.f, 1.f - x, - (A + 3.f)), (1.f - x)*(1.f - x), 1.f);
|
|
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
|
|
}
|
|
|
|
#else
|
|
|
|
__constant float coeffs[128] =
|
|
{ 0.000000f, 1.000000f, 0.000000f, 0.000000f, -0.021996f, 0.997841f, 0.024864f, -0.000710f, -0.041199f, 0.991516f, 0.052429f, -0.002747f,
|
|
-0.057747f, 0.981255f, 0.082466f, -0.005974f, -0.071777f, 0.967285f, 0.114746f, -0.010254f, -0.083427f, 0.949837f, 0.149040f, -0.015450f,
|
|
-0.092834f, 0.929138f, 0.185120f, -0.021423f, -0.100136f, 0.905418f, 0.222755f, -0.028038f, -0.105469f, 0.878906f, 0.261719f, -0.035156f,
|
|
-0.108971f, 0.849831f, 0.301781f, -0.042641f, -0.110779f, 0.818420f, 0.342712f, -0.050354f, -0.111031f, 0.784904f, 0.384285f, -0.058159f,
|
|
-0.109863f, 0.749512f, 0.426270f, -0.065918f, -0.107414f, 0.712471f, 0.468437f, -0.073494f, -0.103821f, 0.674011f, 0.510559f, -0.080750f,
|
|
-0.099220f, 0.634361f, 0.552406f, -0.087547f, -0.093750f, 0.593750f, 0.593750f, -0.093750f, -0.087547f, 0.552406f, 0.634361f, -0.099220f,
|
|
-0.080750f, 0.510559f, 0.674011f, -0.103821f, -0.073494f, 0.468437f, 0.712471f, -0.107414f, -0.065918f, 0.426270f, 0.749512f, -0.109863f,
|
|
-0.058159f, 0.384285f, 0.784904f, -0.111031f, -0.050354f, 0.342712f, 0.818420f, -0.110779f, -0.042641f, 0.301781f, 0.849831f, -0.108971f,
|
|
-0.035156f, 0.261719f, 0.878906f, -0.105469f, -0.028038f, 0.222755f, 0.905418f, -0.100136f, -0.021423f, 0.185120f, 0.929138f, -0.092834f,
|
|
-0.015450f, 0.149040f, 0.949837f, -0.083427f, -0.010254f, 0.114746f, 0.967285f, -0.071777f, -0.005974f, 0.082466f, 0.981255f, -0.057747f,
|
|
-0.002747f, 0.052429f, 0.991516f, -0.041199f, -0.000710f, 0.024864f, 0.997841f, -0.021996f };
|
|
|
|
#endif
|
|
|
|
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
|
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
|
__constant CT * M, ST scalar_)
|
|
{
|
|
int dx = get_global_id(0);
|
|
int dy = get_global_id(1);
|
|
|
|
if (dx < dst_cols && dy < dst_rows)
|
|
{
|
|
int tmp = (dx << AB_BITS);
|
|
int X0 = rint(M[0] * tmp) + rint(fma(M[1], dy, M[2]) * AB_SCALE) + ROUND_DELTA;
|
|
int Y0 = rint(M[3] * tmp) + rint(fma(M[4], dy, M[5]) * AB_SCALE) + ROUND_DELTA;
|
|
|
|
X0 = X0 >> (AB_BITS - INTER_BITS);
|
|
Y0 = Y0 >> (AB_BITS - INTER_BITS);
|
|
|
|
int sx = (short)(X0 >> INTER_BITS) - 1, sy = (short)(Y0 >> INTER_BITS) - 1;
|
|
int ay = (short)(Y0 & (INTER_TAB_SIZE - 1)), ax = (short)(X0 & (INTER_TAB_SIZE - 1));
|
|
|
|
#ifdef AMD_DEVICE
|
|
WT v[16];
|
|
#pragma unroll
|
|
for (int y = 0; y < 4; y++)
|
|
{
|
|
if (sy+y >= 0 && sy+y < src_rows)
|
|
{
|
|
#pragma unroll
|
|
for (int x = 0; x < 4; x++)
|
|
v[mad24(y, 4, x)] = sx+x >= 0 && sx+x < src_cols ?
|
|
convertToWT(loadpix(srcptr + mad24(sy+y, src_step, mad24(sx+x, pixsize, src_offset)))) : scalar;
|
|
}
|
|
else
|
|
{
|
|
#pragma unroll
|
|
for (int x = 0; x < 4; x++)
|
|
v[mad24(y, 4, x)] = scalar;
|
|
}
|
|
}
|
|
|
|
float tab1y[4], tab1x[4];
|
|
|
|
float ayy = INTER_SCALE * ay;
|
|
float axx = INTER_SCALE * ax;
|
|
interpolateCubic(ayy, tab1y);
|
|
interpolateCubic(axx, tab1x);
|
|
|
|
int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));
|
|
|
|
WT sum = (WT)(0);
|
|
#if depth <= 4
|
|
int itab[16];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < 16; i++)
|
|
itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE);
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < 16; i++)
|
|
sum = mad24(v[i], itab[i], sum);
|
|
storepix(convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ), dstptr + dst_index);
|
|
#else
|
|
#pragma unroll
|
|
for (int i = 0; i < 16; i++)
|
|
sum = fma(v[i], tab1y[(i>>2)] * tab1x[(i&3)], sum);
|
|
storepix(convertToT( sum ), dstptr + dst_index);
|
|
#endif
|
|
#else // INTEL_DEVICE
|
|
__constant float * coeffs_y = coeffs + (ay << 2), * coeffs_x = coeffs + (ax << 2);
|
|
|
|
int src_index0 = mad24(sy, src_step, mad24(sx, pixsize, src_offset)), src_index;
|
|
int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));
|
|
|
|
WT sum = (WT)(0), xsum;
|
|
#pragma unroll
|
|
for (int y = 0; y < 4; y++)
|
|
{
|
|
src_index = mad24(y, src_step, src_index0);
|
|
if (sy + y >= 0 && sy + y < src_rows)
|
|
{
|
|
xsum = (WT)(0);
|
|
if (sx >= 0 && sx + 4 < src_cols)
|
|
{
|
|
#if depth == 0 && cn == 1
|
|
uchar4 value = vload4(0, srcptr + src_index);
|
|
xsum = dot(convert_float4(value), (float4)(coeffs_x[0], coeffs_x[1], coeffs_x[2], coeffs_x[3]));
|
|
#else
|
|
#pragma unroll
|
|
for (int x = 0; x < 4; x++)
|
|
xsum = fma(convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))), coeffs_x[x], xsum);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#pragma unroll
|
|
for (int x = 0; x < 4; x++)
|
|
xsum = fma(sx + x >= 0 && sx + x < src_cols ?
|
|
convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))) : scalar, coeffs_x[x], xsum);
|
|
}
|
|
sum = fma(xsum, coeffs_y[y], sum);
|
|
}
|
|
else
|
|
sum = fma(scalar, coeffs_y[y], sum);
|
|
}
|
|
|
|
storepix(convertToT(sum), dstptr + dst_index);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif
|