mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 08:08:10 +08:00
185 lines
8.0 KiB
C++
185 lines
8.0 KiB
C++
/* This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten.
|
|
Below is the original copyright and the references */
|
|
|
|
/*
|
|
Copyright (c) 2006, 2008 Edward Rosten
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
*Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
*Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
*Neither the name of the University of Cambridge nor the names of
|
|
its contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
The references are:
|
|
* Machine learning for high-speed corner detection,
|
|
E. Rosten and T. Drummond, ECCV 2006
|
|
* Faster and better: A machine learning approach to corner detection
|
|
E. Rosten, R. Porter and T. Drummond, PAMI, 2009
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "fast.hpp"
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
namespace opt_AVX2
|
|
{
|
|
|
|
class FAST_t_patternSize16_AVX2_Impl CV_FINAL: public FAST_t_patternSize16_AVX2
|
|
{
|
|
public:
|
|
FAST_t_patternSize16_AVX2_Impl(int _cols, int _threshold, bool _nonmax_suppression, const int* _pixel):
|
|
cols(_cols), nonmax_suppression(_nonmax_suppression), pixel(_pixel)
|
|
{
|
|
//patternSize = 16
|
|
t256c = (char)_threshold;
|
|
threshold = std::min(std::max(_threshold, 0), 255);
|
|
}
|
|
|
|
virtual void process(int &j, const uchar* &ptr, uchar* curr, int* cornerpos, int &ncorners) CV_OVERRIDE
|
|
{
|
|
static const __m256i delta256 = _mm256_broadcastsi128_si256(_mm_set1_epi8((char)(-128))), K16_256 = _mm256_broadcastsi128_si256(_mm_set1_epi8((char)8));
|
|
const __m256i t256 = _mm256_broadcastsi128_si256(_mm_set1_epi8(t256c));
|
|
for (; j < cols - 32 - 3; j += 32, ptr += 32)
|
|
{
|
|
__m256i m0, m1;
|
|
__m256i v0 = _mm256_loadu_si256((const __m256i*)ptr);
|
|
|
|
__m256i v1 = _mm256_xor_si256(_mm256_subs_epu8(v0, t256), delta256);
|
|
v0 = _mm256_xor_si256(_mm256_adds_epu8(v0, t256), delta256);
|
|
|
|
__m256i x0 = _mm256_sub_epi8(_mm256_loadu_si256((const __m256i*)(ptr + pixel[0])), delta256);
|
|
__m256i x1 = _mm256_sub_epi8(_mm256_loadu_si256((const __m256i*)(ptr + pixel[4])), delta256);
|
|
__m256i x2 = _mm256_sub_epi8(_mm256_loadu_si256((const __m256i*)(ptr + pixel[8])), delta256);
|
|
__m256i x3 = _mm256_sub_epi8(_mm256_loadu_si256((const __m256i*)(ptr + pixel[12])), delta256);
|
|
|
|
m0 = _mm256_and_si256(_mm256_cmpgt_epi8(x0, v0), _mm256_cmpgt_epi8(x1, v0));
|
|
m1 = _mm256_and_si256(_mm256_cmpgt_epi8(v1, x0), _mm256_cmpgt_epi8(v1, x1));
|
|
m0 = _mm256_or_si256(m0, _mm256_and_si256(_mm256_cmpgt_epi8(x1, v0), _mm256_cmpgt_epi8(x2, v0)));
|
|
m1 = _mm256_or_si256(m1, _mm256_and_si256(_mm256_cmpgt_epi8(v1, x1), _mm256_cmpgt_epi8(v1, x2)));
|
|
m0 = _mm256_or_si256(m0, _mm256_and_si256(_mm256_cmpgt_epi8(x2, v0), _mm256_cmpgt_epi8(x3, v0)));
|
|
m1 = _mm256_or_si256(m1, _mm256_and_si256(_mm256_cmpgt_epi8(v1, x2), _mm256_cmpgt_epi8(v1, x3)));
|
|
m0 = _mm256_or_si256(m0, _mm256_and_si256(_mm256_cmpgt_epi8(x3, v0), _mm256_cmpgt_epi8(x0, v0)));
|
|
m1 = _mm256_or_si256(m1, _mm256_and_si256(_mm256_cmpgt_epi8(v1, x3), _mm256_cmpgt_epi8(v1, x0)));
|
|
m0 = _mm256_or_si256(m0, m1);
|
|
|
|
unsigned int mask = _mm256_movemask_epi8(m0); //unsigned is important!
|
|
if (mask == 0){
|
|
continue;
|
|
}
|
|
if ((mask & 0xffff) == 0)
|
|
{
|
|
j -= 16;
|
|
ptr -= 16;
|
|
continue;
|
|
}
|
|
|
|
__m256i c0 = _mm256_setzero_si256(), c1 = c0, max0 = c0, max1 = c0;
|
|
for (int k = 0; k < 25; k++)
|
|
{
|
|
__m256i x = _mm256_xor_si256(_mm256_loadu_si256((const __m256i*)(ptr + pixel[k])), delta256);
|
|
m0 = _mm256_cmpgt_epi8(x, v0);
|
|
m1 = _mm256_cmpgt_epi8(v1, x);
|
|
|
|
c0 = _mm256_and_si256(_mm256_sub_epi8(c0, m0), m0);
|
|
c1 = _mm256_and_si256(_mm256_sub_epi8(c1, m1), m1);
|
|
|
|
max0 = _mm256_max_epu8(max0, c0);
|
|
max1 = _mm256_max_epu8(max1, c1);
|
|
}
|
|
|
|
max0 = _mm256_max_epu8(max0, max1);
|
|
unsigned int m = _mm256_movemask_epi8(_mm256_cmpgt_epi8(max0, K16_256));
|
|
|
|
for (int k = 0; m > 0 && k < 32; k++, m >>= 1)
|
|
if (m & 1)
|
|
{
|
|
cornerpos[ncorners++] = j + k;
|
|
if (nonmax_suppression)
|
|
{
|
|
short d[25];
|
|
for (int q = 0; q < 25; q++)
|
|
d[q] = (short)(ptr[k] - ptr[k + pixel[q]]);
|
|
v_int16x8 q0 = v_setall_s16(-1000), q1 = v_setall_s16(1000);
|
|
for (int q = 0; q < 16; q += 8)
|
|
{
|
|
v_int16x8 v0_ = v_load(d + q + 1);
|
|
v_int16x8 v1_ = v_load(d + q + 2);
|
|
v_int16x8 a = v_min(v0_, v1_);
|
|
v_int16x8 b = v_max(v0_, v1_);
|
|
v0_ = v_load(d + q + 3);
|
|
a = v_min(a, v0_);
|
|
b = v_max(b, v0_);
|
|
v0_ = v_load(d + q + 4);
|
|
a = v_min(a, v0_);
|
|
b = v_max(b, v0_);
|
|
v0_ = v_load(d + q + 5);
|
|
a = v_min(a, v0_);
|
|
b = v_max(b, v0_);
|
|
v0_ = v_load(d + q + 6);
|
|
a = v_min(a, v0_);
|
|
b = v_max(b, v0_);
|
|
v0_ = v_load(d + q + 7);
|
|
a = v_min(a, v0_);
|
|
b = v_max(b, v0_);
|
|
v0_ = v_load(d + q + 8);
|
|
a = v_min(a, v0_);
|
|
b = v_max(b, v0_);
|
|
v0_ = v_load(d + q);
|
|
q0 = v_max(q0, v_min(a, v0_));
|
|
q1 = v_min(q1, v_max(b, v0_));
|
|
v0_ = v_load(d + q + 9);
|
|
q0 = v_max(q0, v_min(a, v0_));
|
|
q1 = v_min(q1, v_max(b, v0_));
|
|
}
|
|
q0 = v_max(q0, v_setzero_s16() - q1);
|
|
curr[j + k] = (uchar)(v_reduce_max(q0) - 1);
|
|
}
|
|
}
|
|
}
|
|
_mm256_zeroupper();
|
|
}
|
|
|
|
virtual ~FAST_t_patternSize16_AVX2_Impl() CV_OVERRIDE {};
|
|
|
|
private:
|
|
int cols;
|
|
char t256c;
|
|
int threshold;
|
|
bool nonmax_suppression;
|
|
const int* pixel;
|
|
};
|
|
|
|
Ptr<FAST_t_patternSize16_AVX2> FAST_t_patternSize16_AVX2::getImpl(int _cols, int _threshold, bool _nonmax_suppression, const int* _pixel)
|
|
{
|
|
return Ptr<FAST_t_patternSize16_AVX2>(new FAST_t_patternSize16_AVX2_Impl(_cols, _threshold, _nonmax_suppression, _pixel));
|
|
}
|
|
|
|
}
|
|
}
|