opencv/modules/features/test/test_mser.cpp
WU Jia 614e250fd3
Merge pull request #26405 from kaingwade:rename_features2d
Rename features2d #26405

This PR renames the module _features2d_ to _features_ as one of the Big OpenCV Cleanup #25007. 
Related PR: opencv/opencv_contrib: [#3820](https://github.com/opencv/opencv_contrib/pull/3820) opencv/ci-gha-workflow: [#192](https://github.com/opencv/ci-gha-workflow/pull/192)
2024-11-12 11:04:48 +03:00

209 lines
8.8 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
#undef RENDER_MSERS
#define RENDER_MSERS 0
#if defined RENDER_MSERS && RENDER_MSERS
static void renderMSERs(const Mat& gray, Mat& img, const vector<vector<Point> >& msers)
{
cvtColor(gray, img, COLOR_GRAY2BGR);
RNG rng((uint64)1749583);
for( int i = 0; i < (int)msers.size(); i++ )
{
uchar b = rng.uniform(0, 256);
uchar g = rng.uniform(0, 256);
uchar r = rng.uniform(0, 256);
Vec3b color(b, g, r);
const Point* pt = &msers[i][0];
size_t j, n = msers[i].size();
for( j = 0; j < n; j++ )
img.at<Vec3b>(pt[j]) = color;
}
}
#endif
TEST(Features2d_MSER, cases)
{
uchar buf[] =
{
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255
};
Mat big_image = imread(cvtest::TS::ptr()->get_data_path() + "mser/puzzle.png", 0);
Mat small_image(14, 26, CV_8U, buf);
static const int thresharr[] = { 0, 70, 120, 180, 255 };
const int kDelta = 5;
Ptr<MSER> mserExtractor = MSER::create( kDelta );
vector<vector<Point> > msers;
vector<Rect> boxes;
RNG rng((uint64)123456);
for( int i = 0; i < 100; i++ )
{
bool use_big_image = rng.uniform(0, 7) != 0;
bool invert = rng.uniform(0, 2) != 0;
bool binarize = use_big_image ? rng.uniform(0, 5) != 0 : false;
bool blur = rng.uniform(0, 2) != 0;
int thresh = thresharr[rng.uniform(0, 5)];
/*if( i == 0 )
{
use_big_image = true;
invert = binarize = blur = false;
}*/
const Mat& src0 = use_big_image ? big_image : small_image;
Mat src = src0.clone();
int kMinArea = use_big_image ? 256 : 10;
int kMaxArea = (int)src.total()/4;
mserExtractor->setMinArea(kMinArea);
mserExtractor->setMaxArea(kMaxArea);
mserExtractor->setMinDiversity(0);
if( invert )
bitwise_not(src, src);
if( binarize )
cv::threshold(src, src, thresh, 255, THRESH_BINARY);
if( blur )
GaussianBlur(src, src, Size(5, 5), 1.5, 1.5);
int minRegs = use_big_image ? 7 : 2;
int maxRegs = use_big_image ? 1000 : 20;
if( binarize && (thresh == 0 || thresh == 255) )
minRegs = maxRegs = 0;
mserExtractor->detectRegions( src, msers, boxes );
int nmsers = (int)msers.size();
ASSERT_EQ(nmsers, (int)boxes.size());
if( maxRegs < nmsers || minRegs > nmsers )
{
printf("%d. minArea=%d, maxArea=%d, nmsers=%d, minRegs=%d, maxRegs=%d, "
"image=%s, invert=%d, binarize=%d, thresh=%d, blur=%d\n",
i, kMinArea, kMaxArea, nmsers, minRegs, maxRegs, use_big_image ? "big" : "small",
(int)invert, (int)binarize, thresh, (int)blur);
#if defined RENDER_MSERS && RENDER_MSERS
Mat image;
imshow("source", src);
renderMSERs(src, image, msers);
imshow("result", image);
waitKey();
#endif
}
ASSERT_LE(minRegs, nmsers);
ASSERT_GE(maxRegs, nmsers);
}
}
TEST(Features2d_MSER, history_update_regression)
{
String dataPath = cvtest::TS::ptr()->get_data_path() + "mser/";
vector<Mat> tstImages;
tstImages.push_back(imread(dataPath + "mser_test.png", IMREAD_GRAYSCALE));
tstImages.push_back(imread(dataPath + "mser_test2.png", IMREAD_GRAYSCALE));
for(size_t j = 0; j < tstImages.size(); j++)
{
size_t previous_size = 0;
for(int minArea = 100; minArea > 10; minArea--)
{
Ptr<MSER> mser = MSER::create(1, minArea, (int)(tstImages[j].cols * tstImages[j].rows * 0.2));
mser->setPass2Only(true);
mser->setMinDiversity(0);
vector<vector<Point> > mserContours;
vector<Rect> boxRects;
mser->detectRegions(tstImages[j], mserContours, boxRects);
ASSERT_LE(previous_size, mserContours.size());
previous_size = mserContours.size();
}
}
}
TEST(Features2d_MSER, bug_5630)
{
String dataPath = cvtest::TS::ptr()->get_data_path() + "mser/";
Mat img = imread(dataPath + "mser_test.png", IMREAD_GRAYSCALE);
Ptr<MSER> mser = MSER::create(1, 1);
vector<vector<Point> > mserContours;
vector<Rect> boxRects;
// set min diversity and run detection
mser->setMinDiversity(0.1);
mser->detectRegions(img, mserContours, boxRects);
size_t originalNumberOfContours = mserContours.size();
// increase min diversity and run detection again
mser->setMinDiversity(0.2);
mser->detectRegions(img, mserContours, boxRects);
size_t newNumberOfContours = mserContours.size();
// there should be fewer regions detected with a higher min diversity
ASSERT_LT(newNumberOfContours, originalNumberOfContours);
}
}} // namespace