opencv/modules/core/src/merge.simd.hpp
2019-02-23 15:42:26 +00:00

220 lines
6.2 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
namespace cv { namespace hal {
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
void merge8u(const uchar** src, uchar* dst, int len, int cn);
void merge16u(const ushort** src, ushort* dst, int len, int cn);
void merge32s(const int** src, int* dst, int len, int cn);
void merge64s(const int64** src, int64* dst, int len, int cn);
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
#if CV_SIMD
/*
The trick with STORE_UNALIGNED/STORE_ALIGNED_NOCACHE is the following:
on IA there are instructions movntps and such to which
v_store_interleave(...., STORE_ALIGNED_NOCACHE) is mapped.
Those instructions write directly into memory w/o touching cache
that results in dramatic speed improvements, especially on
large arrays (FullHD, 4K etc.).
Those intrinsics require the destination address to be aligned
by 16/32 bits (with SSE2 and AVX2, respectively).
So we potentially split the processing into 3 stages:
1) the optional prefix part [0:i0), where we use simple unaligned stores.
2) the optional main part [i0:len - VECSZ], where we use "nocache" mode.
But in some cases we have to use unaligned stores in this part.
3) the optional suffix part (the tail) (len - VECSZ:len) where we switch back to "unaligned" mode
to process the remaining len - VECSZ elements.
In principle there can be very poorly aligned data where there is no main part.
For that we set i0=0 and use unaligned stores for the whole array.
*/
template<typename T, typename VecT> static void
vecmerge_( const T** src, T* dst, int len, int cn )
{
const int VECSZ = VecT::nlanes;
int i, i0 = 0;
const T* src0 = src[0];
const T* src1 = src[1];
const int dstElemSize = cn * sizeof(T);
int r = (int)((size_t)(void*)dst % (VECSZ*sizeof(T)));
hal::StoreMode mode = hal::STORE_ALIGNED_NOCACHE;
if( r != 0 )
{
mode = hal::STORE_UNALIGNED;
if (r % dstElemSize == 0 && len > VECSZ*2)
i0 = VECSZ - (r / dstElemSize);
}
if( cn == 2 )
{
for( i = 0; i < len; i += VECSZ )
{
if( i > len - VECSZ )
{
i = len - VECSZ;
mode = hal::STORE_UNALIGNED;
}
VecT a = vx_load(src0 + i), b = vx_load(src1 + i);
v_store_interleave(dst + i*cn, a, b, mode);
if( i < i0 )
{
i = i0 - VECSZ;
mode = hal::STORE_ALIGNED_NOCACHE;
}
}
}
else if( cn == 3 )
{
const T* src2 = src[2];
for( i = 0; i < len; i += VECSZ )
{
if( i > len - VECSZ )
{
i = len - VECSZ;
mode = hal::STORE_UNALIGNED;
}
VecT a = vx_load(src0 + i), b = vx_load(src1 + i), c = vx_load(src2 + i);
v_store_interleave(dst + i*cn, a, b, c, mode);
if( i < i0 )
{
i = i0 - VECSZ;
mode = hal::STORE_ALIGNED_NOCACHE;
}
}
}
else
{
CV_Assert( cn == 4 );
const T* src2 = src[2];
const T* src3 = src[3];
for( i = 0; i < len; i += VECSZ )
{
if( i > len - VECSZ )
{
i = len - VECSZ;
mode = hal::STORE_UNALIGNED;
}
VecT a = vx_load(src0 + i), b = vx_load(src1 + i);
VecT c = vx_load(src2 + i), d = vx_load(src3 + i);
v_store_interleave(dst + i*cn, a, b, c, d, mode);
if( i < i0 )
{
i = i0 - VECSZ;
mode = hal::STORE_ALIGNED_NOCACHE;
}
}
}
vx_cleanup();
}
#endif
template<typename T> static void
merge_( const T** src, T* dst, int len, int cn )
{
int k = cn % 4 ? cn % 4 : 4;
int i, j;
if( k == 1 )
{
const T* src0 = src[0];
for( i = j = 0; i < len; i++, j += cn )
dst[j] = src0[i];
}
else if( k == 2 )
{
const T *src0 = src[0], *src1 = src[1];
i = j = 0;
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i];
dst[j+1] = src1[i];
}
}
else if( k == 3 )
{
const T *src0 = src[0], *src1 = src[1], *src2 = src[2];
i = j = 0;
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i];
dst[j+1] = src1[i];
dst[j+2] = src2[i];
}
}
else
{
const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3];
i = j = 0;
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i]; dst[j+1] = src1[i];
dst[j+2] = src2[i]; dst[j+3] = src3[i];
}
}
for( ; k < cn; k += 4 )
{
const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3];
for( i = 0, j = k; i < len; i++, j += cn )
{
dst[j] = src0[i]; dst[j+1] = src1[i];
dst[j+2] = src2[i]; dst[j+3] = src3[i];
}
}
}
void merge8u(const uchar** src, uchar* dst, int len, int cn )
{
CV_INSTRUMENT_REGION();
#if CV_SIMD
if( len >= v_uint8::nlanes && 2 <= cn && cn <= 4 )
vecmerge_<uchar, v_uint8>(src, dst, len, cn);
else
#endif
merge_(src, dst, len, cn);
}
void merge16u(const ushort** src, ushort* dst, int len, int cn )
{
CV_INSTRUMENT_REGION();
#if CV_SIMD
if( len >= v_uint16::nlanes && 2 <= cn && cn <= 4 )
vecmerge_<ushort, v_uint16>(src, dst, len, cn);
else
#endif
merge_(src, dst, len, cn);
}
void merge32s(const int** src, int* dst, int len, int cn )
{
CV_INSTRUMENT_REGION();
#if CV_SIMD
if( len >= v_int32::nlanes && 2 <= cn && cn <= 4 )
vecmerge_<int, v_int32>(src, dst, len, cn);
else
#endif
merge_(src, dst, len, cn);
}
void merge64s(const int64** src, int64* dst, int len, int cn )
{
CV_INSTRUMENT_REGION();
#if CV_SIMD
if( len >= v_int64::nlanes && 2 <= cn && cn <= 4 )
vecmerge_<int64, v_int64>(src, dst, len, cn);
else
#endif
merge_(src, dst, len, cn);
}
#endif
CV_CPU_OPTIMIZATION_NAMESPACE_END
}} // namespace