opencv/modules/contrib/src/logpolar_bsm.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

653 lines
19 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The names of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*******************************************************************************************
The LogPolar Blind Spot Model code has been contributed by Fabio Solari and Manuela Chessa.
More details can be found in:
M. Chessa, S. P. Sabatini, F. Solari and F. Tatti (2011)
A Quantitative Comparison of Speed and Reliability for Log-Polar Mapping Techniques,
Computer Vision Systems - 8th International Conference,
ICVS 2011, Sophia Antipolis, France, September 20-22, 2011
(http://dx.doi.org/10.1007/978-3-642-23968-7_5)
********************************************************************************************/
#include "precomp.hpp"
#include <cmath>
#include <vector>
namespace cv
{
//------------------------------------interp-------------------------------------------
LogPolar_Interp::LogPolar_Interp(int w, int h, Point2i center, int _R, double _ro0, int _interp, int full, int _s, int sp)
{
if ( (center.x!=w/2 || center.y!=h/2) && full==0) full=1;
if (center.x<0) center.x=0;
if (center.y<0) center.y=0;
if (center.x>=w) center.x=w-1;
if (center.y>=h) center.y=h-1;
if (full){
int rtmp;
if (center.x<=w/2 && center.y>=h/2)
rtmp=(int)std::sqrt((float)center.y*center.y + (float)(w-center.x)*(w-center.x));
else if (center.x>=w/2 && center.y>=h/2)
rtmp=(int)std::sqrt((float)center.y*center.y + (float)center.x*center.x);
else if (center.x>=w/2 && center.y<=h/2)
rtmp=(int)std::sqrt((float)(h-center.y)*(h-center.y) + (float)center.x*center.x);
else //if (center.x<=w/2 && center.y<=h/2)
rtmp=(int)std::sqrt((float)(h-center.y)*(h-center.y) + (float)(w-center.x)*(w-center.x));
M=2*rtmp; N=2*rtmp;
top = M/2 - center.y;
bottom = M/2 - (h-center.y);
left = M/2 - center.x;
right = M/2 - (w - center.x);
}else{
top=bottom=left=right=0;
M=w; N=h;
}
if (sp){
int jc=M/2-1, ic=N/2-1;
int _romax=std::min(ic, jc);
double _a=std::exp(std::log((double)(_romax/2-1)/(double)ro0)/(double)R);
S=(int) floor(2*CV_PI/(_a-1)+0.5);
}
interp=_interp;
create_map(M, N, _R, _s, _ro0);
}
void LogPolar_Interp::create_map(int _M, int _n, int _R, int _s, double _ro0)
{
M=_M;
N=_n;
R=_R;
S=_s;
ro0=_ro0;
int jc=N/2-1, ic=M/2-1;
romax=std::min(ic, jc);
a=std::exp(std::log((double)romax/(double)ro0)/(double)R);
q=((double)S)/(2*CV_PI);
Rsri = Mat::zeros(S,R,CV_32FC1);
Csri = Mat::zeros(S,R,CV_32FC1);
ETAyx = Mat::zeros(N,M,CV_32FC1);
CSIyx = Mat::zeros(N,M,CV_32FC1);
for(int v=0; v<S; v++)
{
for(int u=0; u<R; u++)
{
Rsri.at<float>(v,u)=(float)(ro0*std::pow(a,u)*sin(v/q)+jc);
Csri.at<float>(v,u)=(float)(ro0*std::pow(a,u)*cos(v/q)+ic);
}
}
for(int j=0; j<N; j++)
{
for(int i=0; i<M; i++)
{
double theta;
if(i>=ic)
theta=atan((double)(j-jc)/(double)(i-ic));
else
theta=atan((double)(j-jc)/(double)(i-ic))+CV_PI;
if(theta<0)
theta+=2*CV_PI;
ETAyx.at<float>(j,i)=(float)(q*theta);
double ro2=(j-jc)*(j-jc)+(i-ic)*(i-ic);
CSIyx.at<float>(j,i)=(float)(0.5*std::log(ro2/(ro0*ro0))/std::log(a));
}
}
}
const Mat LogPolar_Interp::to_cortical(const Mat &source)
{
Mat out(S,R,CV_8UC1,Scalar(0));
Mat source_border;
copyMakeBorder(source,source_border,top,bottom,left,right,BORDER_CONSTANT,Scalar(0));
remap(source_border,out,Csri,Rsri,interp);
return out;
}
const Mat LogPolar_Interp::to_cartesian(const Mat &source)
{
Mat out(N,M,CV_8UC1,Scalar(0));
Mat source_border;
if (interp==INTER_NEAREST || interp==INTER_LINEAR){
copyMakeBorder(source,source_border,0,1,0,0,BORDER_CONSTANT,Scalar(0));
Mat rowS0 = source_border.row(S);
source_border.row(0).copyTo(rowS0);
} else if (interp==INTER_CUBIC){
copyMakeBorder(source,source_border,0,2,0,0,BORDER_CONSTANT,Scalar(0));
Mat rowS0 = source_border.row(S);
Mat rowS1 = source_border.row(S+1);
source_border.row(0).copyTo(rowS0);
source_border.row(1).copyTo(rowS1);
} else if (interp==INTER_LANCZOS4){
copyMakeBorder(source,source_border,0,4,0,0,BORDER_CONSTANT,Scalar(0));
Mat rowS0 = source_border.row(S);
Mat rowS1 = source_border.row(S+1);
Mat rowS2 = source_border.row(S+2);
Mat rowS3 = source_border.row(S+3);
source_border.row(0).copyTo(rowS0);
source_border.row(1).copyTo(rowS1);
source_border.row(2).copyTo(rowS2);
source_border.row(3).copyTo(rowS3);
}
remap(source_border,out,CSIyx,ETAyx,interp);
Mat out_cropped=out(Range(top,N-1-bottom),Range(left,M-1-right));
return out_cropped;
}
LogPolar_Interp::~LogPolar_Interp()
{
}
//------------------------------------overlapping----------------------------------
LogPolar_Overlapping::LogPolar_Overlapping(int w, int h, Point2i center, int _R, double _ro0, int full, int _s, int sp)
{
if ( (center.x!=w/2 || center.y!=h/2) && full==0) full=1;
if (center.x<0) center.x=0;
if (center.y<0) center.y=0;
if (center.x>=w) center.x=w-1;
if (center.y>=h) center.y=h-1;
if (full){
int rtmp;
if (center.x<=w/2 && center.y>=h/2)
rtmp=(int)std::sqrt((float)center.y*center.y + (float)(w-center.x)*(w-center.x));
else if (center.x>=w/2 && center.y>=h/2)
rtmp=(int)std::sqrt((float)center.y*center.y + (float)center.x*center.x);
else if (center.x>=w/2 && center.y<=h/2)
rtmp=(int)std::sqrt((float)(h-center.y)*(h-center.y) + (float)center.x*center.x);
else //if (center.x<=w/2 && center.y<=h/2)
rtmp=(int)std::sqrt((float)(h-center.y)*(h-center.y) + (float)(w-center.x)*(w-center.x));
M=2*rtmp; N=2*rtmp;
top = M/2 - center.y;
bottom = M/2 - (h-center.y);
left = M/2 - center.x;
right = M/2 - (w - center.x);
}else{
top=bottom=left=right=0;
M=w; N=h;
}
if (sp){
int jc=M/2-1, ic=N/2-1;
int _romax=std::min(ic, jc);
double _a=std::exp(std::log((double)(_romax/2-1)/(double)ro0)/(double)R);
S=(int) floor(2*CV_PI/(_a-1)+0.5);
}
create_map(M, N, _R, _s, _ro0);
}
void LogPolar_Overlapping::create_map(int _M, int _n, int _R, int _s, double _ro0)
{
M=_M;
N=_n;
R=_R;
S=_s;
ro0=_ro0;
int jc=N/2-1, ic=M/2-1;
romax=std::min(ic, jc);
a=std::exp(std::log((double)romax/(double)ro0)/(double)R);
q=((double)S)/(2*CV_PI);
ind1=0;
Rsri=Mat::zeros(S,R,CV_32FC1);
Csri=Mat::zeros(S,R,CV_32FC1);
ETAyx=Mat::zeros(N,M,CV_32FC1);
CSIyx=Mat::zeros(N,M,CV_32FC1);
Rsr.resize(R*S);
Csr.resize(R*S);
Wsr.resize(R);
w_ker_2D.resize(R*S);
for(int v=0; v<S; v++)
{
for(int u=0; u<R; u++)
{
Rsri.at<float>(v,u)=(float)(ro0*std::pow(a,u)*sin(v/q)+jc);
Csri.at<float>(v,u)=(float)(ro0*std::pow(a,u)*cos(v/q)+ic);
Rsr[v*R+u]=(int)floor(Rsri.at<float>(v,u));
Csr[v*R+u]=(int)floor(Csri.at<float>(v,u));
}
}
bool done=false;
for(int i=0; i<R; i++)
{
Wsr[i]=ro0*(a-1)*std::pow(a,i-1);
if((Wsr[i]>1)&&(done==false))
{
ind1=i;
done =true;
}
}
for(int j=0; j<N; j++)
{
for(int i=0; i<M; i++)//mdf
{
double theta;
if(i>=ic)
theta=atan((double)(j-jc)/(double)(i-ic));
else
theta=atan((double)(j-jc)/(double)(i-ic))+CV_PI;
if(theta<0)
theta+=2*CV_PI;
ETAyx.at<float>(j,i)=(float)(q*theta);
double ro2=(j-jc)*(j-jc)+(i-ic)*(i-ic);
CSIyx.at<float>(j,i)=(float)(0.5*std::log(ro2/(ro0*ro0))/std::log(a));
}
}
for(int v=0; v<S; v++)
for(int u=ind1; u<R; u++)
{
//double sigma=Wsr[u]/2.0;
double sigma=Wsr[u]/3.0;//modf
int w=(int) floor(3*sigma+0.5);
w_ker_2D[v*R+u].w=w;
w_ker_2D[v*R+u].weights.resize((2*w+1)*(2*w+1));
double dx=Csri.at<float>(v,u)-Csr[v*R+u];
double dy=Rsri.at<float>(v,u)-Rsr[v*R+u];
double tot=0;
for(int j=0; j<2*w+1; j++)
for(int i=0; i<2*w+1; i++)
{
(w_ker_2D[v*R+u].weights)[j*(2*w+1)+i]=std::exp(-(std::pow(i-w-dx, 2)+std::pow(j-w-dy, 2))/(2*sigma*sigma));
tot+=(w_ker_2D[v*R+u].weights)[j*(2*w+1)+i];
}
for(int j=0; j<(2*w+1); j++)
for(int i=0; i<(2*w+1); i++)
(w_ker_2D[v*R+u].weights)[j*(2*w+1)+i]/=tot;
}
}
const Mat LogPolar_Overlapping::to_cortical(const Mat &source)
{
Mat out(S,R,CV_8UC1,Scalar(0));
Mat source_border;
copyMakeBorder(source,source_border,top,bottom,left,right,BORDER_CONSTANT,Scalar(0));
remap(source_border,out,Csri,Rsri,INTER_LINEAR);
int wm=w_ker_2D[R-1].w;
std::vector<int> IMG((M+2*wm+1)*(N+2*wm+1), 0);
for(int j=0; j<N; j++)
for(int i=0; i<M; i++)
IMG[(M+2*wm+1)*(j+wm)+i+wm]=source_border.at<uchar>(j,i);
for(int v=0; v<S; v++)
for(int u=ind1; u<R; u++)
{
int w=w_ker_2D[v*R+u].w;
double tmp=0;
for(int rf=0; rf<(2*w+1); rf++)
{
for(int cf=0; cf<(2*w+1); cf++)
{
double weight=(w_ker_2D[v*R+u]).weights[rf*(2*w+1)+cf];
tmp+=IMG[(M+2*wm+1)*((rf-w)+Rsr[v*R+u]+wm)+((cf-w)+Csr[v*R+u]+wm)]*weight;
}
}
out.at<uchar>(v,u)=(uchar) floor(tmp+0.5);
}
return out;
}
const Mat LogPolar_Overlapping::to_cartesian(const Mat &source)
{
Mat out(N,M,CV_8UC1,Scalar(0));
Mat source_border;
copyMakeBorder(source,source_border,0,1,0,0,BORDER_CONSTANT,Scalar(0));
Mat rowS = source_border.row(S);
source_border.row(0).copyTo(rowS);
remap(source_border,out,CSIyx,ETAyx,INTER_LINEAR);
int wm=w_ker_2D[R-1].w;
std::vector<double> IMG((N+2*wm+1)*(M+2*wm+1), 0.);
std::vector<double> NOR((N+2*wm+1)*(M+2*wm+1), 0.);
for(int v=0; v<S; v++)
for(int u=ind1; u<R; u++)
{
int w=w_ker_2D[v*R+u].w;
for(int j=0; j<(2*w+1); j++)
{
for(int i=0; i<(2*w+1); i++)
{
int ind=(M+2*wm+1)*((j-w)+Rsr[v*R+u]+wm)+(i-w)+Csr[v*R+u]+wm;
IMG[ind]+=((w_ker_2D[v*R+u]).weights[j*(2*w+1)+i])*source.at<uchar>(v, u);
NOR[ind]+=((w_ker_2D[v*R+u]).weights[j*(2*w+1)+i]);
}
}
}
for(int i=0; i<((N+2*wm+1)*(M+2*wm+1)); i++)
IMG[i]/=NOR[i];
//int xc=M/2-1, yc=N/2-1;
for(int j=wm; j<N+wm; j++)
for(int i=wm; i<M+wm; i++)
{
/*if(NOR[(M+2*wm+1)*j+i]>0)
ret[M*(j-wm)+i-wm]=(int) floor(IMG[(M+2*wm+1)*j+i]+0.5);*/
//int ro=(int)floor(std::sqrt((double)((j-wm-yc)*(j-wm-yc)+(i-wm-xc)*(i-wm-xc))));
int csi=(int) floor(CSIyx.at<float>(j-wm,i-wm));
if((csi>=(ind1-(w_ker_2D[ind1]).w))&&(csi<R))
out.at<uchar>(j-wm,i-wm)=(uchar) floor(IMG[(M+2*wm+1)*j+i]+0.5);
}
Mat out_cropped=out(Range(top,N-1-bottom),Range(left,M-1-right));
return out_cropped;
}
LogPolar_Overlapping::~LogPolar_Overlapping()
{
}
//----------------------------------------adjacent---------------------------------------
LogPolar_Adjacent::LogPolar_Adjacent(int w, int h, Point2i center, int _R, double _ro0, double smin, int full, int _s, int sp)
{
if ( (center.x!=w/2 || center.y!=h/2) && full==0) full=1;
if (center.x<0) center.x=0;
if (center.y<0) center.y=0;
if (center.x>=w) center.x=w-1;
if (center.y>=h) center.y=h-1;
if (full){
int rtmp;
if (center.x<=w/2 && center.y>=h/2)
rtmp=(int)std::sqrt((float)center.y*center.y + (float)(w-center.x)*(w-center.x));
else if (center.x>=w/2 && center.y>=h/2)
rtmp=(int)std::sqrt((float)center.y*center.y + (float)center.x*center.x);
else if (center.x>=w/2 && center.y<=h/2)
rtmp=(int)std::sqrt((float)(h-center.y)*(h-center.y) + (float)center.x*center.x);
else //if (center.x<=w/2 && center.y<=h/2)
rtmp=(int)std::sqrt((float)(h-center.y)*(h-center.y) + (float)(w-center.x)*(w-center.x));
M=2*rtmp; N=2*rtmp;
top = M/2 - center.y;
bottom = M/2 - (h-center.y);
left = M/2 - center.x;
right = M/2 - (w - center.x);
}else{
top=bottom=left=right=0;
M=w; N=h;
}
if (sp){
int jc=M/2-1, ic=N/2-1;
int _romax=std::min(ic, jc);
double _a=std::exp(std::log((double)(_romax/2-1)/(double)ro0)/(double)R);
S=(int) floor(2*CV_PI/(_a-1)+0.5);
}
create_map(M, N, _R, _s, _ro0, smin);
}
void LogPolar_Adjacent::create_map(int _M, int _n, int _R, int _s, double _ro0, double smin)
{
M=_M;
N=_n;
R=_R;
S=_s;
ro0=_ro0;
romax=std::min(M/2.0, N/2.0);
a=std::exp(std::log(romax/ro0)/(double)R);
q=S/(2*CV_PI);
A.resize(R*S);
L.resize(M*N);
for(int i=0; i<R*S; i++)
A[i]=0;
double xc=M/2.0, yc=N/2.0;
for(int j=0; j<N; j++)
for(int i=0; i<M; i++)
{
double x=i+0.5-xc, y=j+0.5-yc;
subdivide_recursively(x, y, i, j, 1, smin);
}
}
void LogPolar_Adjacent::subdivide_recursively(double x, double y, int i, int j, double length, double smin)
{
if(length<=smin)
{
int u, v;
if(get_uv(x, y, u, v))
{
pixel p;
p.u=u;
p.v=v;
p.a=length*length;
L[M*j+i].push_back(p);
A[v*R+u]+=length*length;
}
}
if(length>smin)
{
double xs[4], ys[4];
int us[4], vs[4];
xs[0]=xs[3]=x+length/4.0;
xs[1]=xs[2]=x-length/4.0;
ys[1]=ys[0]=y+length/4.0;
ys[2]=ys[3]=y-length/4.0;
for(int z=0; z<4; z++)
get_uv(xs[z], ys[z], us[z], vs[z]);
bool c=true;
for(int w=1; w<4; w++)
{
if(us[w]!=us[w-1])
c=false;
if(vs[w]!=vs[w-1])
c=false;
}
if(c)
{
if(us[0]!=-1)
{
pixel p;
p.u=us[0];
p.v=vs[0];
p.a=length*length;
L[M*j+i].push_back(p);
A[vs[0]*R+us[0]]+=length*length;
}
}
else
{
for(int z=0; z<4; z++)
if(us[z]!=-1)
subdivide_recursively(xs[z], ys[z], i, j, length/2.0, smin);
}
}
}
const Mat LogPolar_Adjacent::to_cortical(const Mat &source)
{
Mat source_border;
copyMakeBorder(source,source_border,top,bottom,left,right,BORDER_CONSTANT,Scalar(0));
std::vector<double> map(R*S, 0.);
for(int j=0; j<N; j++)
for(int i=0; i<M; i++)
{
for(size_t z=0; z<(L[M*j+i]).size(); z++)
{
map[R*((L[M*j+i])[z].v)+((L[M*j+i])[z].u)]+=((L[M*j+i])[z].a)*(source_border.at<uchar>(j,i));
}
}
for(int i=0; i<R*S; i++)
map[i]/=A[i];
Mat out(S,R,CV_8UC1,Scalar(0));
for(int i=0; i<S; i++)
for(int j=0;j<R;j++)
out.at<uchar>(i,j)=(uchar) floor(map[i*R+j]+0.5);
return out;
}
const Mat LogPolar_Adjacent::to_cartesian(const Mat &source)
{
std::vector<double> map(M*N, 0.);
for(int j=0; j<N; j++)
for(int i=0; i<M; i++)
{
for(size_t z=0; z<(L[M*j+i]).size(); z++)
{
map[M*j+i]+=(L[M*j+i])[z].a*source.at<uchar>((L[M*j+i])[z].v,(L[M*j+i])[z].u);
}
}
Mat out(N,M,CV_8UC1,Scalar(0));
for(int i=0; i<N; i++)
for(int j=0; j<M; j++)
out.at<uchar>(i,j)=(uchar) floor(map[i*M+j]+0.5);
Mat out_cropped=out(Range(top,N-1-bottom),Range(left,M-1-right));
return out_cropped;
}
bool LogPolar_Adjacent::get_uv(double x, double y, int&u, int&v)
{
double ro=std::sqrt(x*x+y*y), theta;
if(x>0)
theta=atan(y/x);
else
theta=atan(y/x)+CV_PI;
if(ro<ro0||ro>romax)
{
u=-1;
v=-1;
return false;
}
else
{
u= (int) floor(std::log(ro/ro0)/std::log(a));
if(theta>=0)
v= (int) floor(q*theta);
else
v= (int) floor(q*(theta+2*CV_PI));
return true;
}
}
LogPolar_Adjacent::~LogPolar_Adjacent()
{
}
}