mirror of
https://github.com/opencv/opencv.git
synced 2024-12-14 17:29:17 +08:00
1334 lines
46 KiB
C++
1334 lines
46 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include <fstream>
|
|
|
|
#include "ie_ngraph.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
#include <ie_extension.h>
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
#include <opencv2/core/utils/configuration.private.hpp>
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
#include "opencv2/core/utils/filesystem.hpp"
|
|
#include "opencv2/core/utils/filesystem.private.hpp"
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
|
|
static bool DNN_IE_SERIALIZE = utils::getConfigurationParameterBool("OPENCV_DNN_IE_SERIALIZE", false);
|
|
|
|
// For networks with input layer which has an empty name, IE generates a name id[some_number].
|
|
// OpenCV lets users use an empty input name and to prevent unexpected naming,
|
|
// we can use some predefined name.
|
|
static std::string kDefaultInpLayerName = "opencv_ngraph_empty_inp_layer_name";
|
|
static constexpr const char* kOpenCVLayersType = "opencv_ngraph_layer";
|
|
|
|
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2022_1)
|
|
static std::string shapesToStr(const std::vector<Mat>& mats)
|
|
{
|
|
std::ostringstream shapes;
|
|
shapes << mats.size() << " ";
|
|
for (const Mat& m : mats)
|
|
{
|
|
shapes << m.dims << " ";
|
|
for (int i = 0; i < m.dims; ++i)
|
|
shapes << m.size[i] << " ";
|
|
}
|
|
return shapes.str();
|
|
}
|
|
|
|
static void strToShapes(const std::string& str, std::vector<std::vector<size_t> >& shapes)
|
|
{
|
|
std::istringstream ss(str);
|
|
int num, dims;
|
|
ss >> num;
|
|
shapes.resize(num);
|
|
for (int i = 0; i < num; ++i)
|
|
{
|
|
ss >> dims;
|
|
shapes[i].resize(dims);
|
|
for (int j = 0; j < dims; ++j)
|
|
ss >> shapes[i][j];
|
|
}
|
|
}
|
|
#endif // OpenVINO < 2022.1
|
|
|
|
static std::vector<Ptr<NgraphBackendWrapper> >
|
|
ngraphWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
|
|
{
|
|
std::vector<Ptr<NgraphBackendWrapper> > wrappers(ptrs.size());
|
|
for (int i = 0; i < ptrs.size(); ++i)
|
|
{
|
|
CV_Assert(!ptrs[i].empty());
|
|
wrappers[i] = ptrs[i].dynamicCast<NgraphBackendWrapper>();
|
|
CV_Assert(!wrappers[i].empty());
|
|
}
|
|
return wrappers;
|
|
}
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
|
|
class NgraphCustomOp: public ov::op::Op {
|
|
public:
|
|
OPENVINO_OP(kOpenCVLayersType);
|
|
|
|
NgraphCustomOp(const ngraph::OutputVector& inputs, Ptr<Layer>& cvLayer, const std::vector<Mat>& outputs, const std::vector<Mat>& internals):
|
|
Op(inputs), cvLayer(cvLayer), outputs(outputs), internals(internals)
|
|
{
|
|
constructor_validate_and_infer_types();
|
|
}
|
|
|
|
void validate_and_infer_types() override
|
|
{
|
|
set_output_size(outputs.size());
|
|
for (int i = 0; i < outputs.size(); ++i)
|
|
{
|
|
ov::PartialShape shape;
|
|
for (int j = 0; j < outputs[i].dims; ++j) {
|
|
shape.push_back(outputs[i].size[j]);
|
|
}
|
|
set_output_type(i, get_input_element_type(0), shape);
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<ngraph::Node> clone_with_new_inputs(const ngraph::OutputVector& new_args) const override
|
|
{
|
|
return std::make_shared<NgraphCustomOp>(new_args, cvLayer, outputs, internals);
|
|
}
|
|
|
|
bool has_evaluate() const {
|
|
return true;
|
|
}
|
|
|
|
bool evaluate(ov::TensorVector& outputs, const ov::TensorVector& inputs) const override {
|
|
std::vector<Mat> inpMats, outMats;
|
|
infEngineBlobsToMats(inputs, inpMats);
|
|
infEngineBlobsToMats(outputs, outMats);
|
|
try
|
|
{
|
|
cvLayer->forward(inpMats, outMats, internals);
|
|
return true;
|
|
}
|
|
catch (...)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Ptr<Layer>& cvLayer;
|
|
std::vector<Mat> outputs, internals;
|
|
};
|
|
|
|
#else
|
|
|
|
class NgraphCustomOp: public ngraph::op::Op {
|
|
public:
|
|
const ngraph::NodeTypeInfo& get_type_info() const override
|
|
{
|
|
static constexpr ngraph::NodeTypeInfo type_info{kOpenCVLayersType, static_cast<uint64_t>(0)};
|
|
return type_info;
|
|
}
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_3)
|
|
NgraphCustomOp(const ngraph::OutputVector& inputs,
|
|
#else
|
|
NgraphCustomOp(const ngraph::NodeVector& inputs,
|
|
#endif
|
|
const std::map<std::string, InferenceEngine::Parameter>& params = {}):
|
|
Op(inputs), params(params)
|
|
{
|
|
constructor_validate_and_infer_types();
|
|
}
|
|
|
|
~NgraphCustomOp()
|
|
{
|
|
// nothing
|
|
}
|
|
|
|
void validate_and_infer_types() override
|
|
{
|
|
std::vector<std::vector<size_t> > shapes;
|
|
strToShapes(params["outputs"], shapes);
|
|
set_output_size(shapes.size());
|
|
for (size_t i = 0; i < shapes.size(); ++i)
|
|
{
|
|
ngraph::Shape output_shape(shapes[i]);
|
|
set_output_type(i, get_input_element_type(0), output_shape);
|
|
}
|
|
}
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_4)
|
|
std::shared_ptr<ngraph::Node> clone_with_new_inputs(const ngraph::OutputVector& new_args) const override
|
|
{
|
|
return std::make_shared<NgraphCustomOp>(new_args, params);
|
|
}
|
|
#else
|
|
std::shared_ptr<ngraph::Node> copy_with_new_args(const ngraph::NodeVector& new_args) const override
|
|
{
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_3)
|
|
return std::make_shared<NgraphCustomOp>(ngraph::as_output_vector(new_args), params);
|
|
#else
|
|
return std::make_shared<NgraphCustomOp>(new_args, params);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
bool visit_attributes(ngraph::AttributeVisitor& visitor) override
|
|
{
|
|
for (auto& attr : params)
|
|
{
|
|
if (attr.second.is<std::string>())
|
|
visitor.on_attribute(attr.first, attr.second.as<std::string>());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::map<std::string, InferenceEngine::Parameter> params;
|
|
};
|
|
|
|
|
|
class InfEngineNgraphCustomLayer : public InferenceEngine::ILayerExecImpl
|
|
{
|
|
public:
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_2)
|
|
explicit InfEngineNgraphCustomLayer(const std::shared_ptr<ngraph::Node>& _node)
|
|
{
|
|
node = std::dynamic_pointer_cast<NgraphCustomOp>(_node);
|
|
CV_Assert(node);
|
|
std::string implStr = node->params["impl"];
|
|
std::istringstream iss(implStr);
|
|
#else
|
|
explicit InfEngineNgraphCustomLayer(const InferenceEngine::CNNLayer& layer) : cnnLayer(layer)
|
|
{
|
|
std::istringstream iss(layer.GetParamAsString("impl"));
|
|
#endif
|
|
size_t ptr;
|
|
iss >> ptr;
|
|
cvLayer = (Layer*)ptr;
|
|
|
|
std::vector<std::vector<size_t> > shapes;
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_2)
|
|
strToShapes(node->params["internals"], shapes);
|
|
#else
|
|
strToShapes(layer.GetParamAsString("internals"), shapes);
|
|
#endif
|
|
internals.resize(shapes.size());
|
|
for (int i = 0; i < shapes.size(); ++i)
|
|
internals[i].create(std::vector<int>(shapes[i].begin(), shapes[i].end()), CV_32F);
|
|
}
|
|
|
|
~InfEngineNgraphCustomLayer()
|
|
{
|
|
// nothing
|
|
}
|
|
|
|
virtual InferenceEngine::StatusCode execute(std::vector<InferenceEngine::Blob::Ptr>& inputs,
|
|
std::vector<InferenceEngine::Blob::Ptr>& outputs,
|
|
InferenceEngine::ResponseDesc *resp) noexcept
|
|
{
|
|
std::vector<Mat> inpMats, outMats;
|
|
infEngineBlobsToMats(inputs, inpMats);
|
|
infEngineBlobsToMats(outputs, outMats);
|
|
|
|
try
|
|
{
|
|
cvLayer->forward(inpMats, outMats, internals);
|
|
return InferenceEngine::StatusCode::OK;
|
|
}
|
|
catch (...)
|
|
{
|
|
return InferenceEngine::StatusCode::GENERAL_ERROR;
|
|
}
|
|
}
|
|
|
|
virtual InferenceEngine::StatusCode
|
|
getSupportedConfigurations(std::vector<InferenceEngine::LayerConfig>& conf,
|
|
InferenceEngine::ResponseDesc* resp) noexcept
|
|
{
|
|
std::vector<InferenceEngine::DataConfig> inDataConfig;
|
|
std::vector<InferenceEngine::DataConfig> outDataConfig;
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_2)
|
|
InferenceEngine::SizeVector order;
|
|
for (int i = 0; i < node->get_input_size(); ++i)
|
|
{
|
|
InferenceEngine::DataConfig conf;
|
|
auto shape = node->input_value(i).get_shape();
|
|
order.resize(shape.size());
|
|
std::iota(order.begin(), order.end(), 0);
|
|
conf.desc = InferenceEngine::TensorDesc(InferenceEngine::Precision::FP32, shape, {shape, order});
|
|
inDataConfig.push_back(conf);
|
|
}
|
|
|
|
for (int i = 0; i < node->get_output_size(); ++i)
|
|
{
|
|
InferenceEngine::DataConfig conf;
|
|
auto shape = node->output(i).get_shape();
|
|
order.resize(shape.size());
|
|
std::iota(order.begin(), order.end(), 0);
|
|
conf.desc = InferenceEngine::TensorDesc(InferenceEngine::Precision::FP32, shape, {shape, order});
|
|
outDataConfig.push_back(conf);
|
|
}
|
|
#else
|
|
for (auto& it : cnnLayer.insData)
|
|
{
|
|
InferenceEngine::DataConfig conf;
|
|
conf.desc = it.lock()->getTensorDesc();
|
|
inDataConfig.push_back(conf);
|
|
}
|
|
|
|
for (auto& it : cnnLayer.outData)
|
|
{
|
|
InferenceEngine::DataConfig conf;
|
|
conf.desc = it->getTensorDesc();
|
|
outDataConfig.push_back(conf);
|
|
}
|
|
#endif
|
|
|
|
InferenceEngine::LayerConfig layerConfig;
|
|
layerConfig.inConfs = inDataConfig;
|
|
layerConfig.outConfs = outDataConfig;
|
|
|
|
conf.push_back(layerConfig);
|
|
return InferenceEngine::StatusCode::OK;
|
|
}
|
|
|
|
InferenceEngine::StatusCode init(InferenceEngine::LayerConfig& config,
|
|
InferenceEngine::ResponseDesc *resp) noexcept
|
|
{
|
|
return InferenceEngine::StatusCode::OK;
|
|
}
|
|
|
|
private:
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_2)
|
|
std::shared_ptr<NgraphCustomOp> node;
|
|
#else
|
|
InferenceEngine::CNNLayer cnnLayer;
|
|
#endif
|
|
dnn::Layer* cvLayer;
|
|
std::vector<Mat> internals;
|
|
};
|
|
|
|
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2020_2)
|
|
class InfEngineNgraphCustomLayerFactory : public InferenceEngine::ILayerImplFactory {
|
|
public:
|
|
explicit InfEngineNgraphCustomLayerFactory(const InferenceEngine::CNNLayer* layer) : cnnLayer(*layer)
|
|
{
|
|
// nothing
|
|
}
|
|
|
|
InferenceEngine::StatusCode
|
|
getImplementations(std::vector<InferenceEngine::ILayerImpl::Ptr>& impls,
|
|
InferenceEngine::ResponseDesc* resp) noexcept override
|
|
{
|
|
impls.push_back(std::make_shared<InfEngineNgraphCustomLayer>(cnnLayer));
|
|
return InferenceEngine::StatusCode::OK;
|
|
}
|
|
|
|
private:
|
|
InferenceEngine::CNNLayer cnnLayer;
|
|
};
|
|
#endif
|
|
|
|
|
|
class InfEngineNgraphExtension : public InferenceEngine::IExtension
|
|
{
|
|
public:
|
|
void Unload() noexcept override {}
|
|
void Release() noexcept override { delete this; }
|
|
void GetVersion(const InferenceEngine::Version*&) const noexcept override {}
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_2)
|
|
std::vector<std::string> getImplTypes(const std::shared_ptr<ngraph::Node>& node) override {
|
|
return {"CPU"};
|
|
}
|
|
|
|
InferenceEngine::ILayerImpl::Ptr getImplementation(const std::shared_ptr<ngraph::Node>& node, const std::string& implType) override {
|
|
if (std::dynamic_pointer_cast<NgraphCustomOp>(node) && implType == "CPU") {
|
|
return std::make_shared<InfEngineNgraphCustomLayer>(node);
|
|
}
|
|
return nullptr;
|
|
}
|
|
#else
|
|
virtual void SetLogCallback(InferenceEngine::IErrorListener&) noexcept {}
|
|
|
|
virtual InferenceEngine::StatusCode getPrimitiveTypes(char**&, unsigned int&,
|
|
InferenceEngine::ResponseDesc*) noexcept
|
|
{
|
|
return InferenceEngine::StatusCode::OK;
|
|
}
|
|
|
|
InferenceEngine::StatusCode getFactoryFor(InferenceEngine::ILayerImplFactory*& factory,
|
|
const InferenceEngine::CNNLayer* cnnLayer,
|
|
InferenceEngine::ResponseDesc* resp) noexcept
|
|
{
|
|
if (cnnLayer->type != kOpenCVLayersType)
|
|
return InferenceEngine::StatusCode::NOT_IMPLEMENTED;
|
|
factory = new InfEngineNgraphCustomLayerFactory(cnnLayer);
|
|
return InferenceEngine::StatusCode::OK;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
#endif // OpenVINO >= 2022.1
|
|
|
|
InfEngineNgraphNode::InfEngineNgraphNode(std::shared_ptr<ngraph::Node>&& _node)
|
|
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), node(std::move(_node)) {}
|
|
|
|
InfEngineNgraphNode::InfEngineNgraphNode(const std::shared_ptr<ngraph::Node>& _node)
|
|
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), node(_node) {}
|
|
|
|
InfEngineNgraphNode::InfEngineNgraphNode(const std::vector<Ptr<BackendNode> >& nodes,
|
|
Ptr<Layer>& cvLayer_, std::vector<Mat*>& inputs,
|
|
std::vector<Mat>& outputs, std::vector<Mat>& internals)
|
|
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), cvLayer(cvLayer_)
|
|
{
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_3)
|
|
ngraph::OutputVector inp_nodes;
|
|
#else
|
|
ngraph::NodeVector inp_nodes;
|
|
#endif
|
|
for (const auto& node : nodes)
|
|
inp_nodes.emplace_back(node.dynamicCast<InfEngineNgraphNode>()->node);
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
node = std::make_shared<NgraphCustomOp>(inp_nodes, cvLayer, outputs, internals);
|
|
#else
|
|
std::ostringstream oss;
|
|
oss << (size_t)cvLayer.get();
|
|
std::map<std::string, InferenceEngine::Parameter> params = {
|
|
{"impl", oss.str()},
|
|
{"outputs", shapesToStr(outputs)},
|
|
{"internals", shapesToStr(internals)}
|
|
};
|
|
node = std::make_shared<NgraphCustomOp>(inp_nodes, params);
|
|
#endif
|
|
|
|
CV_Assert(!cvLayer->name.empty());
|
|
setName(cvLayer->name);
|
|
}
|
|
|
|
void InfEngineNgraphNode::setName(const std::string& name) {
|
|
node->set_friendly_name(name);
|
|
}
|
|
|
|
InfEngineNgraphNet::InfEngineNgraphNet(detail::NetImplBase& netImpl)
|
|
: netImpl_(netImpl)
|
|
{
|
|
hasNetOwner = false;
|
|
device_name = "CPU";
|
|
}
|
|
|
|
InfEngineNgraphNet::InfEngineNgraphNet(detail::NetImplBase& netImpl, InferenceEngine::CNNNetwork& net)
|
|
: netImpl_(netImpl)
|
|
, cnn(net)
|
|
{
|
|
hasNetOwner = true;
|
|
device_name = "CPU";
|
|
}
|
|
|
|
void InfEngineNgraphNet::addOutput(const Ptr<InfEngineNgraphNode>& node)
|
|
{
|
|
CV_Assert(node);
|
|
CV_Assert(node->node);
|
|
const std::string& name = node->node->get_friendly_name();
|
|
requestedOutputs.insert({name, node.get()});
|
|
}
|
|
|
|
void InfEngineNgraphNet::setNodePtr(std::shared_ptr<ngraph::Node>* ptr) {
|
|
all_nodes.emplace((*ptr)->get_friendly_name(), ptr);
|
|
}
|
|
|
|
void InfEngineNgraphNet::release()
|
|
{
|
|
// FIXIT release should not be conditional, release ALL
|
|
for (auto& node : components.back()) {
|
|
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_4)
|
|
if (!(ngraph::op::is_parameter(node) || ngraph::op::is_output(node) || ngraph::op::is_constant(node)) ) {
|
|
#else
|
|
if (!(node->is_parameter() || node->is_output() || node->is_constant()) ) {
|
|
#endif
|
|
auto it = all_nodes.find(node->get_friendly_name());
|
|
if (it != all_nodes.end()) {
|
|
it->second->reset();
|
|
all_nodes.erase(it);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InfEngineNgraphNet::dfs(std::shared_ptr<ngraph::Node>& node,
|
|
std::vector<std::shared_ptr<ngraph::Node>>& comp,
|
|
std::unordered_map<std::string, bool>& used) {
|
|
used[node->get_friendly_name()] = true;
|
|
comp.push_back(node);
|
|
auto inputs = node->get_users();
|
|
for (size_t i = 0; i < node->get_input_size(); ++i) {
|
|
inputs.push_back(node->input_value(i).get_node()->shared_from_this());
|
|
}
|
|
|
|
for (auto& to : inputs) {
|
|
if (!used[to->get_friendly_name()]) {
|
|
dfs(to, comp, used);
|
|
}
|
|
}
|
|
}
|
|
|
|
int InfEngineNgraphNet::getNumComponents()
|
|
{
|
|
if (!components.empty()) {
|
|
return components.size();
|
|
}
|
|
std::unordered_map<std::string, bool> used;
|
|
auto inputs = ngraph_function->get_ordered_ops();
|
|
for (auto& node : inputs) {
|
|
used.emplace(node->get_friendly_name(), false);
|
|
}
|
|
|
|
for (auto& node : inputs) {
|
|
if (!used[node->get_friendly_name()]) {
|
|
std::vector<std::shared_ptr<ngraph::Node>> current_comp;
|
|
dfs(node, current_comp, used);
|
|
components.push_back(current_comp);
|
|
}
|
|
}
|
|
return components.size();
|
|
}
|
|
|
|
void InfEngineNgraphNet::createNet(Target targetId) {
|
|
if (!hasNetOwner)
|
|
{
|
|
CV_Assert(!requestedOutputs.empty());
|
|
ngraph::ResultVector outs;
|
|
|
|
for (auto output_node_it = requestedOutputs.begin(); output_node_it != requestedOutputs.end(); ++output_node_it)
|
|
{
|
|
CV_LOG_DEBUG(NULL, "DNN/NGRAPH: Add 'Result' output: " << output_node_it->first);
|
|
CV_Assert(output_node_it->second);
|
|
auto out = std::make_shared<ngraph::op::Result>(output_node_it->second->node);
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
out->set_friendly_name(output_node_it->first + (output_node_it->second->node->get_output_size() == 1 ? "" : ".0"));
|
|
#endif
|
|
outs.push_back(out);
|
|
}
|
|
CV_Assert_N(!inputs_vec.empty(), !outs.empty());
|
|
ngraph_function = std::make_shared<ngraph::Function>(outs, inputs_vec);
|
|
|
|
int num_comp = getNumComponents();
|
|
CV_LOG_DEBUG(NULL, "DNN/IE: number of subgraphs: " << num_comp);
|
|
if (num_comp > 1) {
|
|
for (int i = num_comp - 1; i >= 0; --i) {
|
|
ngraph::ResultVector outputs;
|
|
ngraph::ParameterVector inps;
|
|
for (auto& node : components.back()) {
|
|
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_4)
|
|
if (ngraph::op::is_parameter(node)) {
|
|
#else
|
|
if (node->is_parameter()) {
|
|
#endif
|
|
CV_LOG_DEBUG(NULL, "DNN/IE: subgraph[" << i << "]: +input[" << inps.size() << "] = '" << node->get_friendly_name() << "'");
|
|
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node);
|
|
inps.push_back(parameter);
|
|
}
|
|
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_4)
|
|
else if (ngraph::op::is_output(node)) {
|
|
#else
|
|
else if (node->is_output()) {
|
|
#endif
|
|
CV_LOG_DEBUG(NULL, "DNN/IE: subgraph[" << i << "]: +output[" << outputs.size() << "] = '" << node->get_friendly_name() << "'");
|
|
auto result = std::dynamic_pointer_cast<ngraph::op::Result>(node);
|
|
outputs.push_back(result);
|
|
}
|
|
}
|
|
CV_LOG_DEBUG(NULL, "DNN/IE: subgraph[" << i << ": nodes=" << components.back().size() << " inputs=" << inps.size() << " outputs=" << outputs.size());
|
|
isInit = false;
|
|
CV_Assert_N(!inps.empty(), !outputs.empty());
|
|
ngraph_function = std::make_shared<ngraph::Function>(outputs, inps);
|
|
release();
|
|
components.pop_back();
|
|
init(targetId);
|
|
}
|
|
} else {
|
|
release();
|
|
components.clear();
|
|
init(targetId);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2022_1)
|
|
static inline
|
|
InferenceEngine::Layout estimateLayout(size_t dims);
|
|
#endif
|
|
|
|
void InfEngineNgraphNet::init(Target targetId)
|
|
{
|
|
if (!hasNetOwner)
|
|
{
|
|
if (targetId == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
ov::pass::ConvertFP32ToFP16().run_on_model(ngraph_function);
|
|
#else
|
|
auto nodes = ngraph_function->get_ordered_ops();
|
|
for (auto& node : nodes)
|
|
{
|
|
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node);
|
|
if (parameter && parameter->get_element_type() == ngraph::element::f32)
|
|
{
|
|
parameter->set_element_type(ngraph::element::f16);
|
|
}
|
|
auto constant = std::dynamic_pointer_cast<ngraph::op::Constant>(node);
|
|
if (constant && constant->get_element_type() == ngraph::element::f32)
|
|
{
|
|
const float* floatsData = constant->get_data_ptr<float>();
|
|
size_t total = ngraph::shape_size(constant->get_shape());
|
|
Mat floats(1, total, CV_32F, (void*)floatsData);
|
|
Mat halfs;
|
|
cv::convertFp16(floats, halfs);
|
|
|
|
auto new_const = std::make_shared<ngraph::op::Constant>(ngraph::element::f16, constant->get_shape(), halfs.data);
|
|
new_const->set_friendly_name(constant->get_friendly_name());
|
|
ngraph::replace_node(constant, new_const);
|
|
}
|
|
}
|
|
ngraph_function->validate_nodes_and_infer_types();
|
|
#endif // OpenVINO >= 2022.1
|
|
}
|
|
cnn = InferenceEngine::CNNNetwork(ngraph_function);
|
|
|
|
if (DNN_IE_SERIALIZE)
|
|
{
|
|
#ifndef OPENCV_DNN_DISABLE_NETWORK_AUTO_DUMP
|
|
std::string dumpFileNameBase = netImpl_.getDumpFileNameBase();
|
|
try
|
|
{
|
|
cnn.serialize(dumpFileNameBase + "_ngraph.xml", dumpFileNameBase + "_ngraph.bin");
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
std::ofstream out((dumpFileNameBase + "_ngraph.error").c_str(), std::ios::out);
|
|
out << "Exception: " << e.what() << std::endl;
|
|
}
|
|
catch (...)
|
|
{
|
|
std::ofstream out((dumpFileNameBase + "_ngraph.error").c_str(), std::ios::out);
|
|
out << "Can't dump: unknown exception" << std::endl;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
switch (targetId)
|
|
{
|
|
case DNN_TARGET_CPU:
|
|
device_name = "CPU";
|
|
break;
|
|
case DNN_TARGET_OPENCL:
|
|
case DNN_TARGET_OPENCL_FP16:
|
|
device_name = "GPU";
|
|
break;
|
|
case DNN_TARGET_MYRIAD:
|
|
device_name = "MYRIAD";
|
|
break;
|
|
case DNN_TARGET_HDDL:
|
|
device_name = "HDDL";
|
|
break;
|
|
case DNN_TARGET_FPGA:
|
|
device_name = "FPGA";
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsNotImplemented, "Unknown target");
|
|
};
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
auto model = cnn.getFunction();
|
|
ov::preprocess::PrePostProcessor ppp(model);
|
|
int i = 0;
|
|
for (const auto& inp : model->inputs()) { // TODO: not sure why but ngraph_function->inputs() here causes segfault.
|
|
const std::string& name = inp.get_node()->get_friendly_name();
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
|
|
auto srcT = blobIt->second.get_element_type();
|
|
if (srcT != inp.get_node()->get_element_type()) {
|
|
ppp.input(i++).tensor().set_element_type(srcT);
|
|
}
|
|
}
|
|
|
|
i = 0;
|
|
for (const auto& it : model->outputs())
|
|
{
|
|
const std::string& name = it.get_node()->get_friendly_name();
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
const auto& src = blobIt->second;
|
|
|
|
// A workaround for single dimension output for which OpenCV allocates 2d Mat.
|
|
// For example, face-detection-0105 with Result of shape {200} while output blob is {200, 1}
|
|
auto outShape = it.get_partial_shape().get_max_shape();
|
|
if (outShape != src.get_shape()) {
|
|
size_t sz = std::accumulate(outShape.begin(), outShape.end(), 1, std::multiplies<size_t>());
|
|
CV_Assert(sz == src.get_size());
|
|
allBlobs[name] = ov::Tensor(src.get_element_type(), outShape, src.data());
|
|
}
|
|
|
|
ppp.output(i++).tensor().set_element_type(ov::element::f32); // Should be always FP32
|
|
}
|
|
|
|
ppp.build();
|
|
|
|
#else
|
|
|
|
for (const auto& it : cnn.getInputsInfo())
|
|
{
|
|
const std::string& name = it.first;
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision());
|
|
}
|
|
|
|
for (const auto& it : cnn.getOutputsInfo())
|
|
{
|
|
const std::string& name = it.first;
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
InferenceEngine::TensorDesc& desc = blobIt->second->getTensorDesc();
|
|
|
|
auto outShape = it.second->getDims();
|
|
if (outShape != desc.getDims()) {
|
|
desc.reshape(outShape, estimateLayout(outShape.size()));
|
|
}
|
|
|
|
it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision()); // Should be always FP32
|
|
}
|
|
#endif // OpenVINO >= 2022.1
|
|
|
|
initPlugin(cnn);
|
|
}
|
|
|
|
ngraph::ParameterVector InfEngineNgraphNet::setInputs(const std::vector<cv::Mat>& inputs,
|
|
const std::vector<std::string>& names) {
|
|
CV_Assert_N(inputs.size() == names.size());
|
|
ngraph::ParameterVector current_inp;
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
std::vector<size_t> shape = getShape<size_t>(inputs[i]);
|
|
auto inp = std::make_shared<ngraph::op::Parameter>(ngraph::element::f32, ngraph::Shape(shape));
|
|
inp->set_friendly_name(names[i]);
|
|
|
|
auto it = std::find_if(inputs_vec.begin(), inputs_vec.end(),
|
|
[&inp](const std::shared_ptr<ngraph::op::Parameter>& a) {
|
|
return a->get_friendly_name() == inp->get_friendly_name();
|
|
});
|
|
if (it == inputs_vec.end()) {
|
|
inputs_vec.push_back(inp);
|
|
current_inp.push_back(inp);
|
|
} else {
|
|
current_inp.push_back(*it);
|
|
}
|
|
}
|
|
return current_inp;
|
|
}
|
|
|
|
|
|
void InfEngineNgraphNet::initPlugin(InferenceEngine::CNNNetwork& net)
|
|
{
|
|
CV_Assert(!isInitialized());
|
|
|
|
try
|
|
{
|
|
AutoLock lock(getInitializationMutex());
|
|
InferenceEngine::Core& ie = getCore(device_name);
|
|
{
|
|
isInit = true;
|
|
std::vector<std::string> candidates;
|
|
std::string param_pluginPath = utils::getConfigurationParameterString("OPENCV_DNN_IE_EXTRA_PLUGIN_PATH", "");
|
|
if (!param_pluginPath.empty())
|
|
{
|
|
candidates.push_back(param_pluginPath);
|
|
}
|
|
bool found = false;
|
|
for (size_t i = 0; i != candidates.size(); ++i)
|
|
{
|
|
const std::string& libName = candidates[i];
|
|
try
|
|
{
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
ie.add_extension(libName);
|
|
#else
|
|
InferenceEngine::IExtensionPtr extension =
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_4)
|
|
std::make_shared<InferenceEngine::Extension>(libName);
|
|
#else
|
|
InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName);
|
|
#endif
|
|
|
|
ie.AddExtension(extension, "CPU");
|
|
#endif
|
|
CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName);
|
|
found = true;
|
|
break;
|
|
}
|
|
catch(...) {}
|
|
}
|
|
if (!found && !candidates.empty())
|
|
{
|
|
CV_LOG_WARNING(NULL, "DNN-IE: Can't load extension plugin (extra layers for some networks). Specify path via OPENCV_DNN_IE_EXTRA_PLUGIN_PATH parameter");
|
|
}
|
|
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2022_1)
|
|
// Some of networks can work without a library of extra layers.
|
|
// OpenCV fallbacks as extensions.
|
|
try
|
|
{
|
|
ie.AddExtension(std::make_shared<InfEngineNgraphExtension>(), "CPU");
|
|
}
|
|
catch(const std::exception& e)
|
|
{
|
|
CV_LOG_INFO(NULL, "DNN-IE: Can't register OpenCV custom layers nGraph extension: " << e.what());
|
|
}
|
|
#endif // OpenVINO < 2022.1
|
|
#ifndef _WIN32
|
|
// Limit the number of CPU threads.
|
|
if (device_name == "CPU")
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
ie.set_property(device_name, ov::inference_num_threads(getNumThreads()));
|
|
#else
|
|
ie.SetConfig({{
|
|
InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()),
|
|
}}, device_name);
|
|
#endif // OpenVINO >= 2022.1
|
|
#endif
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_2)
|
|
if (device_name.find("GPU") == 0)
|
|
{
|
|
#if OPENCV_HAVE_FILESYSTEM_SUPPORT
|
|
std::string cache_path = utils::fs::getCacheDirectory((std::string("dnn_ie_cache_") + device_name).c_str(), "OPENCV_DNN_IE_GPU_CACHE_DIR");
|
|
#else
|
|
std::string cache_path = utils::getConfigurationParameterString("OPENCV_DNN_IE_GPU_CACHE_DIR", "");
|
|
#endif
|
|
if (!cache_path.empty() && cache_path != "disabled")
|
|
{
|
|
CV_LOG_INFO(NULL, "OpenCV/nGraph: using GPU kernels cache: " << cache_path);
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
ie.set_property(device_name, ov::cache_dir(cache_path));
|
|
#else
|
|
ie.SetConfig({{
|
|
InferenceEngine::PluginConfigParams::KEY_CACHE_DIR, cache_path,
|
|
}}, device_name);
|
|
#endif // OpenVINO >= 2022.1
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
std::map<std::string, std::string> config;
|
|
if (device_name == "MYRIAD" || device_name == "HDDL") {
|
|
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_4)
|
|
config.emplace("MYRIAD_DETECT_NETWORK_BATCH", "NO");
|
|
#else
|
|
config.emplace("VPU_DETECT_NETWORK_BATCH", "NO");
|
|
#endif
|
|
}
|
|
|
|
bool isHetero = device_name == "FPGA";
|
|
// It is actual only for non-CPU targets and networks built in runtime using nGraph.
|
|
// We do not check IR models because they can be with version less than IRv10
|
|
if (!isHetero && device_name != "CPU" && !hasNetOwner)
|
|
{
|
|
for (auto& node : net.getFunction()->get_ops())
|
|
{
|
|
if (node->description() == kOpenCVLayersType)
|
|
{
|
|
isHetero = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string ieDevice = isHetero ? ("HETERO:" + device_name + ",CPU") : device_name;
|
|
CV_LOG_INFO(NULL, "DNN/IE: Calling LoadNetwork(device=" << ieDevice << ")...");
|
|
netExec = ie.LoadNetwork(net, ieDevice, config);
|
|
}
|
|
catch (const std::exception& ex)
|
|
{
|
|
CV_Error(Error::StsError, format("Failed to initialize Inference Engine backend (device = %s): %s", device_name.c_str(), ex.what()));
|
|
}
|
|
}
|
|
|
|
bool InfEngineNgraphNet::isInitialized()
|
|
{
|
|
return isInit;
|
|
}
|
|
|
|
bool NgraphBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
auto ngraphFunction = t_net.getFunction();
|
|
bool equal_flag = true;
|
|
std::map<std::string, std::vector<size_t> > inShapes;
|
|
int i = 0;
|
|
for (const auto& inp : ngraphFunction->get_parameters())
|
|
{
|
|
std::vector<size_t> oldShape = inp->get_shape();
|
|
std::vector<size_t> newShape(inputs[i].begin(), inputs[i].end());
|
|
inShapes.insert({inp->get_friendly_name(), newShape});
|
|
if (oldShape != newShape)
|
|
{
|
|
equal_flag = false;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
if (!equal_flag)
|
|
{
|
|
InferenceEngine::CNNNetwork curr_t_net(t_net);
|
|
curr_t_net.reshape(inShapes);
|
|
}
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
std::vector<size_t> dims;
|
|
for (const auto& it : ngraphFunction->outputs()) {
|
|
if (it.get_node()->get_friendly_name() == name) {
|
|
dims = it.get_partial_shape().get_max_shape();
|
|
}
|
|
}
|
|
if (dims.empty())
|
|
CV_Error(Error::StsError, format("Unable find result with name %s", name.c_str()));
|
|
#else
|
|
std::vector<size_t> dims = t_net.getOutputsInfo()[name]->getDims();
|
|
#endif
|
|
outputs.push_back(MatShape(dims.begin(), dims.end()));
|
|
return false;
|
|
}
|
|
|
|
bool NgraphBackendLayer::supportBackend(int backendId)
|
|
{
|
|
CV_LOG_DEBUG(NULL, "NgraphBackendLayer::supportBackend(" << backendId << ")");
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
|
|
}
|
|
|
|
void NgraphBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
|
|
OutputArrayOfArrays internals)
|
|
{
|
|
CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend.");
|
|
}
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
|
|
ov::Tensor wrapToNgraphBlob(const Mat& m) {
|
|
std::vector<size_t> shape = getShape<size_t>(m);
|
|
if (m.type() == CV_32F)
|
|
return ov::Tensor(ov::element::f32, shape, m.data);
|
|
else if (m.type() == CV_8U)
|
|
return ov::Tensor(ov::element::u8, shape, m.data);
|
|
else if (m.type() == CV_32SC1)
|
|
return ov::Tensor(ov::element::i32, shape, m.data);
|
|
else
|
|
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str()));
|
|
}
|
|
|
|
#else
|
|
|
|
static InferenceEngine::Layout estimateLayout(int dims)
|
|
{
|
|
if (dims == 4)
|
|
return InferenceEngine::Layout::NCHW;
|
|
else if (dims == 3)
|
|
return InferenceEngine::Layout::CHW;
|
|
else if (dims == 2)
|
|
return InferenceEngine::Layout::NC;
|
|
else if (dims == 1)
|
|
return InferenceEngine::Layout::C;
|
|
else if (dims == 5)
|
|
return InferenceEngine::Layout::NCDHW;
|
|
else
|
|
return InferenceEngine::Layout::ANY;
|
|
}
|
|
static inline
|
|
InferenceEngine::Layout estimateLayout(size_t dims)
|
|
{
|
|
return estimateLayout((int)dims);
|
|
}
|
|
|
|
static inline
|
|
InferenceEngine::Layout estimateLayout(const Mat& m)
|
|
{
|
|
return estimateLayout(m.dims);
|
|
}
|
|
|
|
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m, const std::vector<size_t>& shape,
|
|
InferenceEngine::Layout layout)
|
|
{
|
|
if (m.type() == CV_32F)
|
|
return InferenceEngine::make_shared_blob<float>(
|
|
{InferenceEngine::Precision::FP32, shape, layout}, (float*)m.data);
|
|
else if (m.type() == CV_8U)
|
|
return InferenceEngine::make_shared_blob<uint8_t>(
|
|
{InferenceEngine::Precision::U8, shape, layout}, (uint8_t*)m.data);
|
|
else if (m.type() == CV_32SC1)
|
|
return InferenceEngine::make_shared_blob<int32_t>(
|
|
{InferenceEngine::Precision::I32, shape, layout}, (int32_t*)m.data);
|
|
else
|
|
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str()));
|
|
}
|
|
|
|
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m, InferenceEngine::Layout layout)
|
|
{
|
|
std::vector<size_t> shape = getShape<size_t>(m);
|
|
return wrapToNgraphBlob(m, shape, layout);
|
|
}
|
|
|
|
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m) { return wrapToNgraphBlob(m, estimateLayout(m)); }
|
|
|
|
#endif // OpenVINO >= 2022.1
|
|
|
|
NgraphBackendWrapper::NgraphBackendWrapper(int targetId, const cv::Mat& m)
|
|
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, targetId)
|
|
, host((Mat*)&m)
|
|
{
|
|
blob = wrapToNgraphBlob(m);
|
|
}
|
|
|
|
NgraphBackendWrapper::NgraphBackendWrapper(Ptr<BackendWrapper> wrapper)
|
|
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, wrapper->targetId)
|
|
{
|
|
Ptr<NgraphBackendWrapper> ieWrapper = wrapper.dynamicCast<NgraphBackendWrapper>();
|
|
CV_Assert(!ieWrapper.empty());
|
|
name = ieWrapper->name;
|
|
blob = ieWrapper->blob;
|
|
}
|
|
|
|
Ptr<BackendWrapper> NgraphBackendWrapper::create(Ptr<BackendWrapper> wrapper)
|
|
{
|
|
return Ptr<BackendWrapper>(new NgraphBackendWrapper(wrapper));
|
|
}
|
|
|
|
NgraphBackendWrapper::~NgraphBackendWrapper()
|
|
{
|
|
// nothing
|
|
}
|
|
|
|
void NgraphBackendWrapper::copyToHost()
|
|
{
|
|
CV_LOG_DEBUG(NULL, "NgraphBackendWrapper::copyToHost()");
|
|
//CV_Error(Error::StsNotImplemented, "");
|
|
}
|
|
|
|
void NgraphBackendWrapper::setHostDirty()
|
|
{
|
|
CV_LOG_DEBUG(NULL, "NgraphBackendWrapper::setHostDirty()");
|
|
//CV_Error(Error::StsNotImplemented, "");
|
|
}
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
ov::Tensor copyBlob(const ov::Tensor& blob)
|
|
{
|
|
return ov::Tensor(blob.get_element_type(), blob.get_shape());
|
|
}
|
|
#else
|
|
InferenceEngine::Blob::Ptr copyBlob(const InferenceEngine::Blob::Ptr& blob)
|
|
{
|
|
InferenceEngine::Blob::Ptr copy;
|
|
auto description = blob->getTensorDesc();
|
|
InferenceEngine::Precision precision = description.getPrecision();
|
|
if (precision == InferenceEngine::Precision::FP32)
|
|
{
|
|
copy = InferenceEngine::make_shared_blob<float>(description);
|
|
}
|
|
else if (precision == InferenceEngine::Precision::U8)
|
|
{
|
|
copy = InferenceEngine::make_shared_blob<uint8_t>(description);
|
|
}
|
|
else
|
|
{
|
|
std::ostringstream msg;
|
|
msg << precision;
|
|
CV_Error_(Error::StsNotImplemented, ("Unsupported blob precision: %s", msg.str().c_str()));
|
|
}
|
|
copy->allocate();
|
|
return copy;
|
|
}
|
|
|
|
#endif // OpenVINO < 2022.1
|
|
|
|
void InfEngineNgraphNet::reset()
|
|
{
|
|
allBlobs.clear();
|
|
infRequests.clear();
|
|
isInit = false;
|
|
}
|
|
|
|
void InfEngineNgraphNet::addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs)
|
|
{
|
|
auto wrappers = ngraphWrappers(ptrs);
|
|
for (const auto& wrapper : wrappers)
|
|
{
|
|
std::string name = wrapper->name;
|
|
name = name.empty() ? kDefaultInpLayerName : name;
|
|
allBlobs.insert({name, wrapper->blob});
|
|
}
|
|
}
|
|
|
|
void InfEngineNgraphNet::NgraphReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers)
|
|
{
|
|
auto outs = ngraphWrappers(outsWrappers);
|
|
outProms.clear();
|
|
outProms.resize(outs.size());
|
|
outsNames.resize(outs.size());
|
|
for (int i = 0; i < outs.size(); ++i)
|
|
{
|
|
outs[i]->futureMat = outProms[i].getArrayResult();
|
|
outsNames[i] = outs[i]->name;
|
|
}
|
|
}
|
|
|
|
void InfEngineNgraphNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync)
|
|
{
|
|
CV_LOG_DEBUG(NULL, "InfEngineNgraphNet::forward(" << (isAsync ? "async" : "sync") << ")");
|
|
|
|
// Look for finished requests.
|
|
Ptr<NgraphReqWrapper> reqWrapper;
|
|
for (auto& wrapper : infRequests)
|
|
{
|
|
if (wrapper->isReady)
|
|
{
|
|
reqWrapper = wrapper;
|
|
break;
|
|
}
|
|
}
|
|
if (reqWrapper.empty())
|
|
{
|
|
reqWrapper = Ptr<NgraphReqWrapper>(new NgraphReqWrapper());
|
|
try
|
|
{
|
|
reqWrapper->req = netExec.CreateInferRequest();
|
|
}
|
|
catch (const std::exception& ex)
|
|
{
|
|
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
|
|
}
|
|
infRequests.push_back(reqWrapper);
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
int i = 0;
|
|
for (const auto& it : netExec.inputs())
|
|
{
|
|
const std::string& name = it.get_node()->get_friendly_name();
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
reqWrapper->req.set_input_tensor(i++, isAsync ? copyBlob(blobIt->second) : blobIt->second);
|
|
}
|
|
|
|
i = 0;
|
|
for (const auto& it : netExec.outputs())
|
|
{
|
|
const std::string& name = it.get_node()->get_friendly_name();
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
reqWrapper->req.set_output_tensor(i++, isAsync ? copyBlob(blobIt->second) : blobIt->second);
|
|
}
|
|
#else
|
|
InferenceEngine::BlobMap inpBlobs, outBlobs;
|
|
for (const auto& it : cnn.getInputsInfo())
|
|
{
|
|
const std::string& name = it.first;
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
inpBlobs[name] = isAsync ? copyBlob(blobIt->second) : blobIt->second;
|
|
}
|
|
for (const auto& it : cnn.getOutputsInfo())
|
|
{
|
|
const std::string& name = it.first;
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
outBlobs[name] = isAsync ? copyBlob(blobIt->second) : blobIt->second;
|
|
}
|
|
reqWrapper->req.SetInput(inpBlobs);
|
|
reqWrapper->req.SetOutput(outBlobs);
|
|
#endif
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
if (isAsync) {
|
|
bool* isReady = &reqWrapper->isReady;
|
|
auto* promises = &reqWrapper->outProms;
|
|
auto* req = &reqWrapper->req;
|
|
reqWrapper->req.set_callback([isReady, promises, req](std::exception_ptr ex) {
|
|
CV_LOG_DEBUG(NULL, "DNN(nGraph): completionCallback()");
|
|
|
|
size_t processedOutputs = 0;
|
|
try
|
|
{
|
|
for (; processedOutputs < promises->size(); ++processedOutputs)
|
|
{
|
|
Mat m = infEngineBlobToMat(req->get_output_tensor(processedOutputs));
|
|
|
|
try
|
|
{
|
|
(*promises)[processedOutputs].setValue(m.clone());
|
|
}
|
|
catch (...)
|
|
{
|
|
try {
|
|
(*promises)[processedOutputs].setException(std::current_exception());
|
|
} catch(...) {
|
|
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
catch (...)
|
|
{
|
|
std::exception_ptr e = std::current_exception();
|
|
for (; processedOutputs < promises->size(); ++processedOutputs)
|
|
{
|
|
try {
|
|
(*promises)[processedOutputs].setException(e);
|
|
} catch(...) {
|
|
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
|
|
}
|
|
}
|
|
}
|
|
*isReady = true;
|
|
});
|
|
}
|
|
#else // OpenVINO >= 2022.1
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_4)
|
|
InferenceEngine::InferRequest infRequest = reqWrapper->req;
|
|
NgraphReqWrapper* wrapperPtr = reqWrapper.get();
|
|
CV_Assert(wrapperPtr && "Internal error");
|
|
#else
|
|
InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req;
|
|
CV_Assert(infRequestPtr);
|
|
InferenceEngine::IInferRequest& infRequest = *infRequestPtr.get();
|
|
infRequest.SetUserData(reqWrapper.get(), 0);
|
|
#endif
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_4)
|
|
// do NOT capture 'reqWrapper' (smart ptr) in the lambda callback
|
|
infRequest.SetCompletionCallback<std::function<void(InferenceEngine::InferRequest, InferenceEngine::StatusCode)>>(
|
|
[wrapperPtr](InferenceEngine::InferRequest /*request*/, InferenceEngine::StatusCode status)
|
|
#else
|
|
infRequest.SetCompletionCallback(
|
|
[](InferenceEngine::IInferRequest::Ptr requestPtr, InferenceEngine::StatusCode status)
|
|
#endif
|
|
{
|
|
CV_LOG_DEBUG(NULL, "DNN(nGraph): completionCallback(" << (int)status << ")");
|
|
#if !INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_4)
|
|
CV_Assert(requestPtr);
|
|
InferenceEngine::IInferRequest& request = *requestPtr.get();
|
|
|
|
NgraphReqWrapper* wrapperPtr;
|
|
request.GetUserData((void**)&wrapperPtr, 0);
|
|
CV_Assert(wrapperPtr && "Internal error");
|
|
#endif
|
|
NgraphReqWrapper& wrapper = *wrapperPtr;
|
|
|
|
size_t processedOutputs = 0;
|
|
try
|
|
{
|
|
for (; processedOutputs < wrapper.outProms.size(); ++processedOutputs)
|
|
{
|
|
const std::string& name = wrapper.outsNames[processedOutputs];
|
|
Mat m = infEngineBlobToMat(wrapper.req.GetBlob(name));
|
|
|
|
try
|
|
{
|
|
CV_Assert(status == InferenceEngine::StatusCode::OK);
|
|
wrapper.outProms[processedOutputs].setValue(m.clone());
|
|
}
|
|
catch (...)
|
|
{
|
|
try {
|
|
wrapper.outProms[processedOutputs].setException(std::current_exception());
|
|
} catch(...) {
|
|
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
catch (...)
|
|
{
|
|
std::exception_ptr e = std::current_exception();
|
|
for (; processedOutputs < wrapper.outProms.size(); ++processedOutputs)
|
|
{
|
|
try {
|
|
wrapper.outProms[processedOutputs].setException(e);
|
|
} catch(...) {
|
|
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
|
|
}
|
|
}
|
|
}
|
|
wrapper.isReady = true;
|
|
}
|
|
);
|
|
#endif // OpenVINO >= 2022.1
|
|
}
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
if (isAsync)
|
|
{
|
|
// Copy actual data to infer request's input blobs.
|
|
int i = 0;
|
|
for (const auto& it : cnn.getFunction()->get_parameters())
|
|
{
|
|
const std::string& name = it->get_friendly_name();
|
|
auto blobIt = allBlobs.find(name);
|
|
Mat srcMat = infEngineBlobToMat(blobIt->second);
|
|
Mat dstMat = infEngineBlobToMat(reqWrapper->req.get_input_tensor(i++));
|
|
srcMat.copyTo(dstMat);
|
|
}
|
|
|
|
// Set promises to output blobs wrappers.
|
|
reqWrapper->makePromises(outBlobsWrappers);
|
|
|
|
reqWrapper->isReady = false;
|
|
reqWrapper->req.start_async();
|
|
}
|
|
else
|
|
{
|
|
reqWrapper->req.infer();
|
|
}
|
|
#else
|
|
if (isAsync)
|
|
{
|
|
// Copy actual data to infer request's input blobs.
|
|
for (const auto& it : cnn.getInputsInfo())
|
|
{
|
|
const std::string& name = it.first;
|
|
auto blobIt = allBlobs.find(name);
|
|
Mat srcMat = infEngineBlobToMat(blobIt->second);
|
|
Mat dstMat = infEngineBlobToMat(reqWrapper->req.GetBlob(name));
|
|
srcMat.copyTo(dstMat);
|
|
}
|
|
|
|
// Set promises to output blobs wrappers.
|
|
reqWrapper->makePromises(outBlobsWrappers);
|
|
|
|
reqWrapper->isReady = false;
|
|
reqWrapper->req.StartAsync();
|
|
}
|
|
else
|
|
{
|
|
reqWrapper->req.Infer();
|
|
}
|
|
#endif // OpenVINO >= 2022.1
|
|
}
|
|
|
|
#endif
|
|
|
|
}}
|