mirror of
https://github.com/opencv/opencv.git
synced 2025-01-23 10:03:11 +08:00
2390 lines
68 KiB
C++
2390 lines
68 KiB
C++
//warning number '5033' not a valid compiler warning in vc12
|
|
#if defined(_MSC_VER) && (_MSC_VER > 1800)
|
|
// eliminating duplicated round() declaration
|
|
#define HAVE_ROUND 1
|
|
#pragma warning(push)
|
|
#pragma warning(disable:5033) // 'register' is no longer a supported storage class
|
|
#endif
|
|
|
|
// #define CVPY_DYNAMIC_INIT
|
|
// #define Py_DEBUG
|
|
|
|
#if defined(CVPY_DYNAMIC_INIT) && !defined(Py_DEBUG)
|
|
# define Py_LIMITED_API 0x03030000
|
|
#endif
|
|
|
|
#include <cmath>
|
|
#include <Python.h>
|
|
#include <limits>
|
|
|
|
#if PY_MAJOR_VERSION < 3
|
|
#undef CVPY_DYNAMIC_INIT
|
|
#else
|
|
#define CV_PYTHON_3 1
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) && (_MSC_VER > 1800)
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
#define MODULESTR "cv2"
|
|
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
|
|
#include <numpy/ndarrayobject.h>
|
|
|
|
#include "opencv2/opencv_modules.hpp"
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/core/utils/configuration.private.hpp"
|
|
#include "opencv2/core/utils/logger.hpp"
|
|
#include "opencv2/core/utils/tls.hpp"
|
|
|
|
#include "pyopencv_generated_include.h"
|
|
#include "opencv2/core/types_c.h"
|
|
#include "pycompat.hpp"
|
|
#include <map>
|
|
|
|
#define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred())
|
|
|
|
static PyObject* opencv_error = NULL;
|
|
|
|
class ArgInfo
|
|
{
|
|
public:
|
|
const char* name;
|
|
bool outputarg;
|
|
// more fields may be added if necessary
|
|
|
|
ArgInfo(const char* name_, bool outputarg_) : name(name_), outputarg(outputarg_) {}
|
|
|
|
private:
|
|
ArgInfo(const ArgInfo&); // = delete
|
|
ArgInfo& operator=(const ArgInfo&); // = delete
|
|
};
|
|
|
|
template<typename T, class TEnable = void> // TEnable is used for SFINAE checks
|
|
struct PyOpenCV_Converter
|
|
{
|
|
//static inline bool to(PyObject* obj, T& p, const ArgInfo& info);
|
|
//static inline PyObject* from(const T& src);
|
|
};
|
|
|
|
// exception-safe pyopencv_to
|
|
template<typename _Tp> static
|
|
bool pyopencv_to_safe(PyObject* obj, _Tp& value, const ArgInfo& info)
|
|
{
|
|
try
|
|
{
|
|
return pyopencv_to(obj, value, info);
|
|
}
|
|
catch (const std::exception &e)
|
|
{
|
|
PyErr_SetString(opencv_error, cv::format("Conversion error: %s, what: %s", info.name, e.what()).c_str());
|
|
return false;
|
|
}
|
|
catch (...)
|
|
{
|
|
PyErr_SetString(opencv_error, cv::format("Conversion error: %s", info.name).c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template<typename T> static
|
|
bool pyopencv_to(PyObject* obj, T& p, const ArgInfo& info) { return PyOpenCV_Converter<T>::to(obj, p, info); }
|
|
|
|
template<typename T> static
|
|
PyObject* pyopencv_from(const T& src) { return PyOpenCV_Converter<T>::from(src); }
|
|
|
|
static bool isPythonBindingsDebugEnabled()
|
|
{
|
|
static bool param_debug = cv::utils::getConfigurationParameterBool("OPENCV_PYTHON_DEBUG", false);
|
|
return param_debug;
|
|
}
|
|
|
|
static void emit_failmsg(PyObject * exc, const char *msg)
|
|
{
|
|
static bool param_debug = isPythonBindingsDebugEnabled();
|
|
if (param_debug)
|
|
{
|
|
CV_LOG_WARNING(NULL, "Bindings conversion failed: " << msg);
|
|
}
|
|
PyErr_SetString(exc, msg);
|
|
}
|
|
|
|
static int failmsg(const char *fmt, ...)
|
|
{
|
|
char str[1000];
|
|
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
vsnprintf(str, sizeof(str), fmt, ap);
|
|
va_end(ap);
|
|
|
|
emit_failmsg(PyExc_TypeError, str);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject* failmsgp(const char *fmt, ...)
|
|
{
|
|
char str[1000];
|
|
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
vsnprintf(str, sizeof(str), fmt, ap);
|
|
va_end(ap);
|
|
|
|
emit_failmsg(PyExc_TypeError, str);
|
|
return 0;
|
|
}
|
|
|
|
class PyAllowThreads
|
|
{
|
|
public:
|
|
PyAllowThreads() : _state(PyEval_SaveThread()) {}
|
|
~PyAllowThreads()
|
|
{
|
|
PyEval_RestoreThread(_state);
|
|
}
|
|
private:
|
|
PyThreadState* _state;
|
|
};
|
|
|
|
class PyEnsureGIL
|
|
{
|
|
public:
|
|
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
|
|
~PyEnsureGIL()
|
|
{
|
|
PyGILState_Release(_state);
|
|
}
|
|
private:
|
|
PyGILState_STATE _state;
|
|
};
|
|
|
|
/**
|
|
* Light weight RAII wrapper for `PyObject*` owning references.
|
|
* In comparisson to C++11 `std::unique_ptr` with custom deleter, it provides
|
|
* implicit conversion functions that might be useful to initialize it with
|
|
* Python functions those returns owning references through the `PyObject**`
|
|
* e.g. `PyErr_Fetch` or directly pass it to functions those want to borrow
|
|
* reference to object (doesn't extend object lifetime) e.g. `PyObject_Str`.
|
|
*/
|
|
class PySafeObject
|
|
{
|
|
public:
|
|
PySafeObject() : obj_(NULL) {}
|
|
|
|
explicit PySafeObject(PyObject* obj) : obj_(obj) {}
|
|
|
|
~PySafeObject()
|
|
{
|
|
Py_CLEAR(obj_);
|
|
}
|
|
|
|
operator PyObject*()
|
|
{
|
|
return obj_;
|
|
}
|
|
|
|
operator PyObject**()
|
|
{
|
|
return &obj_;
|
|
}
|
|
|
|
PyObject* release()
|
|
{
|
|
PyObject* obj = obj_;
|
|
obj_ = NULL;
|
|
return obj;
|
|
}
|
|
|
|
private:
|
|
PyObject* obj_;
|
|
|
|
// Explicitly disable copy operations
|
|
PySafeObject(const PySafeObject*); // = delete
|
|
PySafeObject& operator=(const PySafeObject&); // = delete
|
|
};
|
|
|
|
static void pyRaiseCVException(const cv::Exception &e)
|
|
{
|
|
PyObject_SetAttrString(opencv_error, "file", PyString_FromString(e.file.c_str()));
|
|
PyObject_SetAttrString(opencv_error, "func", PyString_FromString(e.func.c_str()));
|
|
PyObject_SetAttrString(opencv_error, "line", PyInt_FromLong(e.line));
|
|
PyObject_SetAttrString(opencv_error, "code", PyInt_FromLong(e.code));
|
|
PyObject_SetAttrString(opencv_error, "msg", PyString_FromString(e.msg.c_str()));
|
|
PyObject_SetAttrString(opencv_error, "err", PyString_FromString(e.err.c_str()));
|
|
PyErr_SetString(opencv_error, e.what());
|
|
}
|
|
|
|
#define ERRWRAP2(expr) \
|
|
try \
|
|
{ \
|
|
PyAllowThreads allowThreads; \
|
|
expr; \
|
|
} \
|
|
catch (const cv::Exception &e) \
|
|
{ \
|
|
pyRaiseCVException(e); \
|
|
return 0; \
|
|
} \
|
|
catch (const std::exception &e) \
|
|
{ \
|
|
PyErr_SetString(opencv_error, e.what()); \
|
|
return 0; \
|
|
} \
|
|
catch (...) \
|
|
{ \
|
|
PyErr_SetString(opencv_error, "Unknown C++ exception from OpenCV code"); \
|
|
return 0; \
|
|
}
|
|
|
|
using namespace cv;
|
|
|
|
|
|
namespace {
|
|
template<class T>
|
|
NPY_TYPES asNumpyType()
|
|
{
|
|
return NPY_OBJECT;
|
|
}
|
|
|
|
template<>
|
|
NPY_TYPES asNumpyType<bool>()
|
|
{
|
|
return NPY_BOOL;
|
|
}
|
|
|
|
#define CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(src, dst) \
|
|
template<> \
|
|
NPY_TYPES asNumpyType<src>() \
|
|
{ \
|
|
return NPY_##dst; \
|
|
} \
|
|
template<> \
|
|
NPY_TYPES asNumpyType<u##src>() \
|
|
{ \
|
|
return NPY_U##dst; \
|
|
}
|
|
|
|
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int8_t, INT8);
|
|
|
|
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int16_t, INT16);
|
|
|
|
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int32_t, INT32);
|
|
|
|
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int64_t, INT64);
|
|
|
|
#undef CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION
|
|
|
|
template<>
|
|
NPY_TYPES asNumpyType<float>()
|
|
{
|
|
return NPY_FLOAT;
|
|
}
|
|
|
|
template<>
|
|
NPY_TYPES asNumpyType<double>()
|
|
{
|
|
return NPY_DOUBLE;
|
|
}
|
|
|
|
template <class T>
|
|
PyArray_Descr* getNumpyTypeDescriptor()
|
|
{
|
|
return PyArray_DescrFromType(asNumpyType<T>());
|
|
}
|
|
|
|
template <>
|
|
PyArray_Descr* getNumpyTypeDescriptor<size_t>()
|
|
{
|
|
#if SIZE_MAX == ULONG_MAX
|
|
return PyArray_DescrFromType(NPY_ULONG);
|
|
#elif SIZE_MAX == ULLONG_MAX
|
|
return PyArray_DescrFromType(NPY_ULONGLONG);
|
|
#else
|
|
return PyArray_DescrFromType(NPY_UINT);
|
|
#endif
|
|
}
|
|
|
|
template <class T, class U>
|
|
bool isRepresentable(U value) {
|
|
return (std::numeric_limits<T>::min() <= value) && (value <= std::numeric_limits<T>::max());
|
|
}
|
|
|
|
template<class T>
|
|
bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to)
|
|
{
|
|
return PyArray_CanCastTo(PyArray_DescrFromScalar(obj), to) != 0;
|
|
}
|
|
|
|
|
|
template<>
|
|
bool canBeSafelyCasted<size_t>(PyObject* obj, PyArray_Descr* to)
|
|
{
|
|
PyArray_Descr* from = PyArray_DescrFromScalar(obj);
|
|
if (PyArray_CanCastTo(from, to))
|
|
{
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// False negative scenarios:
|
|
// - Signed input is positive so it can be safely cast to unsigned output
|
|
// - Input has wider limits but value is representable within output limits
|
|
// - All the above
|
|
if (PyDataType_ISSIGNED(from))
|
|
{
|
|
int64_t input = 0;
|
|
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<int64_t>());
|
|
return (input >= 0) && isRepresentable<size_t>(static_cast<uint64_t>(input));
|
|
}
|
|
else
|
|
{
|
|
uint64_t input = 0;
|
|
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<uint64_t>());
|
|
return isRepresentable<size_t>(input);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
template<class T>
|
|
bool parseNumpyScalar(PyObject* obj, T& value)
|
|
{
|
|
if (PyArray_CheckScalar(obj))
|
|
{
|
|
// According to the numpy documentation:
|
|
// There are 21 statically-defined PyArray_Descr objects for the built-in data-types
|
|
// So descriptor pointer is not owning.
|
|
PyArray_Descr* to = getNumpyTypeDescriptor<T>();
|
|
if (canBeSafelyCasted<T>(obj, to))
|
|
{
|
|
PyArray_CastScalarToCtype(obj, &value, to);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
TLSData<std::vector<std::string> > conversionErrorsTLS;
|
|
|
|
inline void pyPrepareArgumentConversionErrorsStorage(std::size_t size)
|
|
{
|
|
std::vector<std::string>& conversionErrors = conversionErrorsTLS.getRef();
|
|
conversionErrors.clear();
|
|
conversionErrors.reserve(size);
|
|
}
|
|
|
|
void pyRaiseCVOverloadException(const std::string& functionName)
|
|
{
|
|
const std::vector<std::string>& conversionErrors = conversionErrorsTLS.getRef();
|
|
const std::size_t conversionErrorsCount = conversionErrors.size();
|
|
if (conversionErrorsCount > 0)
|
|
{
|
|
// In modern std libraries small string optimization is used = no dynamic memory allocations,
|
|
// but it can be applied only for string with length < 18 symbols (in GCC)
|
|
const std::string bullet = "\n - ";
|
|
|
|
// Estimate required buffer size - save dynamic memory allocations = faster
|
|
std::size_t requiredBufferSize = bullet.size() * conversionErrorsCount;
|
|
for (std::size_t i = 0; i < conversionErrorsCount; ++i)
|
|
{
|
|
requiredBufferSize += conversionErrors[i].size();
|
|
}
|
|
|
|
// Only string concatenation is required so std::string is way faster than
|
|
// std::ostringstream
|
|
std::string errorMessage("Overload resolution failed:");
|
|
errorMessage.reserve(errorMessage.size() + requiredBufferSize);
|
|
for (std::size_t i = 0; i < conversionErrorsCount; ++i)
|
|
{
|
|
errorMessage += bullet;
|
|
errorMessage += conversionErrors[i];
|
|
}
|
|
cv::Exception exception(CV_StsBadArg, errorMessage, functionName, "", -1);
|
|
pyRaiseCVException(exception);
|
|
}
|
|
else
|
|
{
|
|
cv::Exception exception(CV_StsInternal, "Overload resolution failed, but no errors reported",
|
|
functionName, "", -1);
|
|
pyRaiseCVException(exception);
|
|
}
|
|
}
|
|
|
|
void pyPopulateArgumentConversionErrors()
|
|
{
|
|
if (PyErr_Occurred())
|
|
{
|
|
PySafeObject exception_type;
|
|
PySafeObject exception_value;
|
|
PySafeObject exception_traceback;
|
|
PyErr_Fetch(exception_type, exception_value, exception_traceback);
|
|
PyErr_NormalizeException(exception_type, exception_value,
|
|
exception_traceback);
|
|
|
|
PySafeObject exception_message(PyObject_Str(exception_value));
|
|
std::string message;
|
|
getUnicodeString(exception_message, message);
|
|
#ifdef CV_CXX11
|
|
conversionErrorsTLS.getRef().push_back(std::move(message));
|
|
#else
|
|
conversionErrorsTLS.getRef().push_back(message);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
struct SafeSeqItem
|
|
{
|
|
PyObject * item;
|
|
SafeSeqItem(PyObject *obj, size_t idx) { item = PySequence_GetItem(obj, idx); }
|
|
~SafeSeqItem() { Py_XDECREF(item); }
|
|
|
|
private:
|
|
SafeSeqItem(const SafeSeqItem&); // = delete
|
|
SafeSeqItem& operator=(const SafeSeqItem&); // = delete
|
|
};
|
|
|
|
template <class T>
|
|
class RefWrapper
|
|
{
|
|
public:
|
|
RefWrapper(T& item) : item_(item) {}
|
|
|
|
T& get() CV_NOEXCEPT { return item_; }
|
|
|
|
private:
|
|
T& item_;
|
|
};
|
|
|
|
// In order to support this conversion on 3.x branch - use custom reference_wrapper
|
|
// and C-style array instead of std::array<T, N>
|
|
template <class T, std::size_t N>
|
|
bool parseSequence(PyObject* obj, RefWrapper<T> (&value)[N], const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (!PySequence_Check(obj))
|
|
{
|
|
failmsg("Can't parse '%s'. Input argument doesn't provide sequence "
|
|
"protocol", info.name);
|
|
return false;
|
|
}
|
|
const std::size_t sequenceSize = PySequence_Size(obj);
|
|
if (sequenceSize != N)
|
|
{
|
|
failmsg("Can't parse '%s'. Expected sequence length %lu, got %lu",
|
|
info.name, N, sequenceSize);
|
|
return false;
|
|
}
|
|
for (std::size_t i = 0; i < N; ++i)
|
|
{
|
|
SafeSeqItem seqItem(obj, i);
|
|
if (!pyopencv_to(seqItem.item, value[i].get(), info))
|
|
{
|
|
failmsg("Can't parse '%s'. Sequence item with index %lu has a "
|
|
"wrong type", info.name, i);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
} // namespace
|
|
|
|
namespace traits {
|
|
template <bool Value>
|
|
struct BooleanConstant
|
|
{
|
|
static const bool value = Value;
|
|
typedef BooleanConstant<Value> type;
|
|
};
|
|
|
|
typedef BooleanConstant<true> TrueType;
|
|
typedef BooleanConstant<false> FalseType;
|
|
|
|
template <class T>
|
|
struct VoidType {
|
|
typedef void type;
|
|
};
|
|
|
|
template <class T, class DType = void>
|
|
struct IsRepresentableAsMatDataType : FalseType
|
|
{
|
|
};
|
|
|
|
template <class T>
|
|
struct IsRepresentableAsMatDataType<T, typename VoidType<typename DataType<T>::channel_type>::type> : TrueType
|
|
{
|
|
};
|
|
|
|
// https://github.com/opencv/opencv/issues/20930
|
|
template <> struct IsRepresentableAsMatDataType<RotatedRect, void> : FalseType {};
|
|
|
|
} // namespace traits
|
|
|
|
typedef std::vector<uchar> vector_uchar;
|
|
typedef std::vector<char> vector_char;
|
|
typedef std::vector<int> vector_int;
|
|
typedef std::vector<float> vector_float;
|
|
typedef std::vector<double> vector_double;
|
|
typedef std::vector<size_t> vector_size_t;
|
|
typedef std::vector<Point> vector_Point;
|
|
typedef std::vector<Point2f> vector_Point2f;
|
|
typedef std::vector<Point3f> vector_Point3f;
|
|
typedef std::vector<Size> vector_Size;
|
|
typedef std::vector<Vec2f> vector_Vec2f;
|
|
typedef std::vector<Vec3f> vector_Vec3f;
|
|
typedef std::vector<Vec4f> vector_Vec4f;
|
|
typedef std::vector<Vec6f> vector_Vec6f;
|
|
typedef std::vector<Vec4i> vector_Vec4i;
|
|
typedef std::vector<Rect> vector_Rect;
|
|
typedef std::vector<Rect2d> vector_Rect2d;
|
|
typedef std::vector<RotatedRect> vector_RotatedRect;
|
|
typedef std::vector<KeyPoint> vector_KeyPoint;
|
|
typedef std::vector<Mat> vector_Mat;
|
|
typedef std::vector<std::vector<Mat> > vector_vector_Mat;
|
|
typedef std::vector<UMat> vector_UMat;
|
|
typedef std::vector<DMatch> vector_DMatch;
|
|
typedef std::vector<String> vector_String;
|
|
typedef std::vector<Scalar> vector_Scalar;
|
|
|
|
typedef std::vector<std::vector<char> > vector_vector_char;
|
|
typedef std::vector<std::vector<Point> > vector_vector_Point;
|
|
typedef std::vector<std::vector<Point2f> > vector_vector_Point2f;
|
|
typedef std::vector<std::vector<Point3f> > vector_vector_Point3f;
|
|
typedef std::vector<std::vector<DMatch> > vector_vector_DMatch;
|
|
typedef std::vector<std::vector<KeyPoint> > vector_vector_KeyPoint;
|
|
|
|
class NumpyAllocator : public MatAllocator
|
|
{
|
|
public:
|
|
NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); }
|
|
~NumpyAllocator() {}
|
|
|
|
UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const
|
|
{
|
|
UMatData* u = new UMatData(this);
|
|
u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o);
|
|
npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
|
|
for( int i = 0; i < dims - 1; i++ )
|
|
step[i] = (size_t)_strides[i];
|
|
step[dims-1] = CV_ELEM_SIZE(type);
|
|
u->size = sizes[0]*step[0];
|
|
u->userdata = o;
|
|
return u;
|
|
}
|
|
|
|
UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const CV_OVERRIDE
|
|
{
|
|
if( data != 0 )
|
|
{
|
|
// issue #6969: CV_Error(Error::StsAssert, "The data should normally be NULL!");
|
|
// probably this is safe to do in such extreme case
|
|
return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags);
|
|
}
|
|
PyEnsureGIL gil;
|
|
|
|
int depth = CV_MAT_DEPTH(type);
|
|
int cn = CV_MAT_CN(type);
|
|
const int f = (int)(sizeof(size_t)/8);
|
|
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
|
|
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
|
|
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
|
|
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
|
|
int i, dims = dims0;
|
|
cv::AutoBuffer<npy_intp> _sizes(dims + 1);
|
|
for( i = 0; i < dims; i++ )
|
|
_sizes[i] = sizes[i];
|
|
if( cn > 1 )
|
|
_sizes[dims++] = cn;
|
|
PyObject* o = PyArray_SimpleNew(dims, _sizes.data(), typenum);
|
|
if(!o)
|
|
CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
|
|
return allocate(o, dims0, sizes, type, step);
|
|
}
|
|
|
|
bool allocate(UMatData* u, int accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE
|
|
{
|
|
return stdAllocator->allocate(u, accessFlags, usageFlags);
|
|
}
|
|
|
|
void deallocate(UMatData* u) const CV_OVERRIDE
|
|
{
|
|
if(!u)
|
|
return;
|
|
PyEnsureGIL gil;
|
|
CV_Assert(u->urefcount >= 0);
|
|
CV_Assert(u->refcount >= 0);
|
|
if(u->refcount == 0)
|
|
{
|
|
PyObject* o = (PyObject*)u->userdata;
|
|
Py_XDECREF(o);
|
|
delete u;
|
|
}
|
|
}
|
|
|
|
const MatAllocator* stdAllocator;
|
|
};
|
|
|
|
NumpyAllocator g_numpyAllocator;
|
|
|
|
|
|
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
|
|
|
|
static bool isBool(PyObject* obj) CV_NOEXCEPT
|
|
{
|
|
return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj);
|
|
}
|
|
|
|
// special case, when the converter needs full ArgInfo structure
|
|
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
|
|
{
|
|
bool allowND = true;
|
|
if(!o || o == Py_None)
|
|
{
|
|
if( !m.data )
|
|
m.allocator = &g_numpyAllocator;
|
|
return true;
|
|
}
|
|
|
|
if( PyInt_Check(o) )
|
|
{
|
|
double v[] = {static_cast<double>(PyInt_AsLong((PyObject*)o)), 0., 0., 0.};
|
|
m = Mat(4, 1, CV_64F, v).clone();
|
|
return true;
|
|
}
|
|
if( PyFloat_Check(o) )
|
|
{
|
|
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.};
|
|
m = Mat(4, 1, CV_64F, v).clone();
|
|
return true;
|
|
}
|
|
if( PyTuple_Check(o) )
|
|
{
|
|
int i, sz = (int)PyTuple_Size((PyObject*)o);
|
|
m = Mat(sz, 1, CV_64F);
|
|
for( i = 0; i < sz; i++ )
|
|
{
|
|
PyObject* oi = PyTuple_GetItem(o, i);
|
|
if( PyInt_Check(oi) )
|
|
m.at<double>(i) = (double)PyInt_AsLong(oi);
|
|
else if( PyFloat_Check(oi) )
|
|
m.at<double>(i) = (double)PyFloat_AsDouble(oi);
|
|
else
|
|
{
|
|
failmsg("%s is not a numerical tuple", info.name);
|
|
m.release();
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if( !PyArray_Check(o) )
|
|
{
|
|
failmsg("%s is not a numpy array, neither a scalar", info.name);
|
|
return false;
|
|
}
|
|
|
|
PyArrayObject* oarr = (PyArrayObject*) o;
|
|
|
|
bool needcopy = false, needcast = false;
|
|
int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
|
|
int type = typenum == NPY_UBYTE ? CV_8U :
|
|
typenum == NPY_BYTE ? CV_8S :
|
|
typenum == NPY_USHORT ? CV_16U :
|
|
typenum == NPY_SHORT ? CV_16S :
|
|
typenum == NPY_INT ? CV_32S :
|
|
typenum == NPY_INT32 ? CV_32S :
|
|
typenum == NPY_FLOAT ? CV_32F :
|
|
typenum == NPY_DOUBLE ? CV_64F : -1;
|
|
|
|
if( type < 0 )
|
|
{
|
|
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || typenum == NPY_LONG )
|
|
{
|
|
needcopy = needcast = true;
|
|
new_typenum = NPY_INT;
|
|
type = CV_32S;
|
|
}
|
|
else
|
|
{
|
|
failmsg("%s data type = %d is not supported", info.name, typenum);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#ifndef CV_MAX_DIM
|
|
const int CV_MAX_DIM = 32;
|
|
#endif
|
|
|
|
int ndims = PyArray_NDIM(oarr);
|
|
if(ndims >= CV_MAX_DIM)
|
|
{
|
|
failmsg("%s dimensionality (=%d) is too high", info.name, ndims);
|
|
return false;
|
|
}
|
|
|
|
int size[CV_MAX_DIM+1];
|
|
size_t step[CV_MAX_DIM+1];
|
|
size_t elemsize = CV_ELEM_SIZE1(type);
|
|
const npy_intp* _sizes = PyArray_DIMS(oarr);
|
|
const npy_intp* _strides = PyArray_STRIDES(oarr);
|
|
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
|
|
|
|
for( int i = ndims-1; i >= 0 && !needcopy; i-- )
|
|
{
|
|
// these checks handle cases of
|
|
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
|
|
// b) transposed arrays, where _strides[] elements go in non-descending order
|
|
// c) flipped arrays, where some of _strides[] elements are negative
|
|
// the _sizes[i] > 1 is needed to avoid spurious copies when NPY_RELAXED_STRIDES is set
|
|
if( (i == ndims-1 && _sizes[i] > 1 && (size_t)_strides[i] != elemsize) ||
|
|
(i < ndims-1 && _sizes[i] > 1 && _strides[i] < _strides[i+1]) )
|
|
needcopy = true;
|
|
}
|
|
|
|
if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] )
|
|
needcopy = true;
|
|
|
|
if (needcopy)
|
|
{
|
|
if (info.outputarg)
|
|
{
|
|
failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name);
|
|
return false;
|
|
}
|
|
|
|
if( needcast ) {
|
|
o = PyArray_Cast(oarr, new_typenum);
|
|
oarr = (PyArrayObject*) o;
|
|
}
|
|
else {
|
|
oarr = PyArray_GETCONTIGUOUS(oarr);
|
|
o = (PyObject*) oarr;
|
|
}
|
|
|
|
_strides = PyArray_STRIDES(oarr);
|
|
}
|
|
|
|
// Normalize strides in case NPY_RELAXED_STRIDES is set
|
|
size_t default_step = elemsize;
|
|
for ( int i = ndims - 1; i >= 0; --i )
|
|
{
|
|
size[i] = (int)_sizes[i];
|
|
if ( size[i] > 1 )
|
|
{
|
|
step[i] = (size_t)_strides[i];
|
|
default_step = step[i] * size[i];
|
|
}
|
|
else
|
|
{
|
|
step[i] = default_step;
|
|
default_step *= size[i];
|
|
}
|
|
}
|
|
|
|
// handle degenerate case
|
|
if( ndims == 0) {
|
|
size[ndims] = 1;
|
|
step[ndims] = elemsize;
|
|
ndims++;
|
|
}
|
|
|
|
if( ismultichannel )
|
|
{
|
|
ndims--;
|
|
type |= CV_MAKETYPE(0, size[2]);
|
|
}
|
|
|
|
if( ndims > 2 && !allowND )
|
|
{
|
|
failmsg("%s has more than 2 dimensions", info.name);
|
|
return false;
|
|
}
|
|
|
|
m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
|
|
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
|
|
m.addref();
|
|
|
|
if( !needcopy )
|
|
{
|
|
Py_INCREF(o);
|
|
}
|
|
m.allocator = &g_numpyAllocator;
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename _Tp, int m, int n>
|
|
bool pyopencv_to(PyObject* o, Matx<_Tp, m, n>& mx, const ArgInfo& info)
|
|
{
|
|
Mat tmp;
|
|
if (!pyopencv_to(o, tmp, info)) {
|
|
return false;
|
|
}
|
|
|
|
tmp.copyTo(mx);
|
|
return true;
|
|
}
|
|
|
|
template<typename _Tp, int cn>
|
|
bool pyopencv_to(PyObject* o, Vec<_Tp, cn>& vec, const ArgInfo& info)
|
|
{
|
|
return pyopencv_to(o, (Matx<_Tp, cn, 1>&)vec, info);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Mat& m)
|
|
{
|
|
if( !m.data )
|
|
Py_RETURN_NONE;
|
|
Mat temp, *p = (Mat*)&m;
|
|
if(!p->u || p->allocator != &g_numpyAllocator)
|
|
{
|
|
temp.allocator = &g_numpyAllocator;
|
|
ERRWRAP2(m.copyTo(temp));
|
|
p = &temp;
|
|
}
|
|
PyObject* o = (PyObject*)p->u->userdata;
|
|
Py_INCREF(o);
|
|
return o;
|
|
}
|
|
|
|
template<typename _Tp, int m, int n>
|
|
PyObject* pyopencv_from(const Matx<_Tp, m, n>& matx)
|
|
{
|
|
return pyopencv_from(Mat(matx));
|
|
}
|
|
|
|
template<typename T>
|
|
struct PyOpenCV_Converter< cv::Ptr<T> >
|
|
{
|
|
static PyObject* from(const cv::Ptr<T>& p)
|
|
{
|
|
if (!p)
|
|
Py_RETURN_NONE;
|
|
return pyopencv_from(*p);
|
|
}
|
|
static bool to(PyObject *o, Ptr<T>& p, const ArgInfo& info)
|
|
{
|
|
if (!o || o == Py_None)
|
|
return true;
|
|
p = makePtr<T>();
|
|
return pyopencv_to(o, *p, info);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info)
|
|
{
|
|
CV_UNUSED(info);
|
|
if (!obj || obj == Py_None)
|
|
return true;
|
|
|
|
if (!PyLong_Check(obj))
|
|
return false;
|
|
ptr = PyLong_AsVoidPtr(obj);
|
|
return ptr != NULL && !PyErr_Occurred();
|
|
}
|
|
|
|
static PyObject* pyopencv_from(void*& ptr)
|
|
{
|
|
return PyLong_FromVoidPtr(ptr);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject *o, Scalar& s, const ArgInfo& info)
|
|
{
|
|
if(!o || o == Py_None)
|
|
return true;
|
|
if (PySequence_Check(o)) {
|
|
if (4 < PySequence_Size(o))
|
|
{
|
|
failmsg("Scalar value for argument '%s' is longer than 4", info.name);
|
|
return false;
|
|
}
|
|
for (Py_ssize_t i = 0; i < PySequence_Size(o); i++) {
|
|
SafeSeqItem item_wrap(o, i);
|
|
PyObject *item = item_wrap.item;
|
|
if (PyFloat_Check(item) || PyInt_Check(item)) {
|
|
s[(int)i] = PyFloat_AsDouble(item);
|
|
} else {
|
|
failmsg("Scalar value for argument '%s' is not numeric", info.name);
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
if (PyFloat_Check(o) || PyInt_Check(o)) {
|
|
s[0] = PyFloat_AsDouble(o);
|
|
} else {
|
|
failmsg("Scalar value for argument '%s' is not numeric", info.name);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Scalar& src)
|
|
{
|
|
return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const bool& value)
|
|
{
|
|
return PyBool_FromLong(value);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (isBool(obj) || PyArray_IsIntegerScalar(obj))
|
|
{
|
|
npy_bool npy_value = NPY_FALSE;
|
|
const int ret_code = PyArray_BoolConverter(obj, &npy_value);
|
|
if (ret_code >= 0)
|
|
{
|
|
value = (npy_value == NPY_TRUE);
|
|
return true;
|
|
}
|
|
}
|
|
failmsg("Argument '%s' is not convertable to bool", info.name);
|
|
return false;
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const size_t& value)
|
|
{
|
|
return PyLong_FromSize_t(value);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (isBool(obj))
|
|
{
|
|
failmsg("Argument '%s' must be integer type, not bool", info.name);
|
|
return false;
|
|
}
|
|
if (PyArray_IsIntegerScalar(obj))
|
|
{
|
|
if (PyLong_Check(obj))
|
|
{
|
|
#if defined(CV_PYTHON_3)
|
|
value = PyLong_AsSize_t(obj);
|
|
#else
|
|
#if ULONG_MAX == SIZE_MAX
|
|
value = PyLong_AsUnsignedLong(obj);
|
|
#else
|
|
value = PyLong_AsUnsignedLongLong(obj);
|
|
#endif
|
|
#endif
|
|
}
|
|
#if !defined(CV_PYTHON_3)
|
|
// Python 2.x has PyIntObject which is not a subtype of PyLongObject
|
|
// Overflow check here is unnecessary because object will be converted to long on the
|
|
// interpreter side
|
|
else if (PyInt_Check(obj))
|
|
{
|
|
const long res = PyInt_AsLong(obj);
|
|
if (res < 0) {
|
|
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
|
|
return false;
|
|
}
|
|
#if ULONG_MAX == SIZE_MAX
|
|
value = PyInt_AsUnsignedLongMask(obj);
|
|
#else
|
|
value = PyInt_AsUnsignedLongLongMask(obj);
|
|
#endif
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
const bool isParsed = parseNumpyScalar<size_t>(obj, value);
|
|
if (!isParsed) {
|
|
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
failmsg("Argument '%s' is required to be an integer", info.name);
|
|
return false;
|
|
}
|
|
return !PyErr_Occurred();
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const int& value)
|
|
{
|
|
return PyInt_FromLong(value);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (isBool(obj))
|
|
{
|
|
failmsg("Argument '%s' must be integer, not bool", info.name);
|
|
return false;
|
|
}
|
|
if (PyArray_IsIntegerScalar(obj))
|
|
{
|
|
value = PyArray_PyIntAsInt(obj);
|
|
}
|
|
else
|
|
{
|
|
failmsg("Argument '%s' is required to be an integer", info.name);
|
|
return false;
|
|
}
|
|
return !CV_HAS_CONVERSION_ERROR(value);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const uchar& value)
|
|
{
|
|
return PyInt_FromLong(value);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info)
|
|
{
|
|
CV_UNUSED(info);
|
|
if(!obj || obj == Py_None)
|
|
return true;
|
|
int ivalue = (int)PyInt_AsLong(obj);
|
|
value = cv::saturate_cast<uchar>(ivalue);
|
|
return ivalue != -1 || !PyErr_Occurred();
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (isBool(obj))
|
|
{
|
|
failmsg("Argument '%s' must be an integer, not bool", info.name);
|
|
return false;
|
|
}
|
|
if (PyArray_IsIntegerScalar(obj))
|
|
{
|
|
value = saturate_cast<char>(PyArray_PyIntAsInt(obj));
|
|
}
|
|
else
|
|
{
|
|
failmsg("Argument '%s' is required to be an integer", info.name);
|
|
return false;
|
|
}
|
|
return !CV_HAS_CONVERSION_ERROR(value);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const double& value)
|
|
{
|
|
return PyFloat_FromDouble(value);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (isBool(obj))
|
|
{
|
|
failmsg("Argument '%s' must be double, not bool", info.name);
|
|
return false;
|
|
}
|
|
if (PyArray_IsPythonNumber(obj))
|
|
{
|
|
if (PyLong_Check(obj))
|
|
{
|
|
value = PyLong_AsDouble(obj);
|
|
}
|
|
else
|
|
{
|
|
value = PyFloat_AsDouble(obj);
|
|
}
|
|
}
|
|
else if (PyArray_CheckScalar(obj))
|
|
{
|
|
const bool isParsed = parseNumpyScalar<double>(obj, value);
|
|
if (!isParsed) {
|
|
failmsg("Argument '%s' can not be safely parsed to 'double'", info.name);
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
failmsg("Argument '%s' can not be treated as a double", info.name);
|
|
return false;
|
|
}
|
|
return !PyErr_Occurred();
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const float& value)
|
|
{
|
|
return PyFloat_FromDouble(value);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (isBool(obj))
|
|
{
|
|
failmsg("Argument '%s' must be float, not bool", info.name);
|
|
return false;
|
|
}
|
|
if (PyArray_IsPythonNumber(obj))
|
|
{
|
|
if (PyLong_Check(obj))
|
|
{
|
|
double res = PyLong_AsDouble(obj);
|
|
value = static_cast<float>(res);
|
|
}
|
|
else
|
|
{
|
|
double res = PyFloat_AsDouble(obj);
|
|
value = static_cast<float>(res);
|
|
}
|
|
}
|
|
else if (PyArray_CheckScalar(obj))
|
|
{
|
|
const bool isParsed = parseNumpyScalar<float>(obj, value);
|
|
if (!isParsed) {
|
|
failmsg("Argument '%s' can not be safely parsed to 'float'", info.name);
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
failmsg("Argument '%s' can't be treated as a float", info.name);
|
|
return false;
|
|
}
|
|
return !PyErr_Occurred();
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const int64& value)
|
|
{
|
|
return PyLong_FromLongLong(value);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const String& value)
|
|
{
|
|
return PyString_FromString(value.empty() ? "" : value.c_str());
|
|
}
|
|
|
|
#if CV_VERSION_MAJOR == 3
|
|
template<>
|
|
PyObject* pyopencv_from(const std::string& value)
|
|
{
|
|
return PyString_FromString(value.empty() ? "" : value.c_str());
|
|
}
|
|
#endif
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, String &value, const ArgInfo& info)
|
|
{
|
|
if(!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
std::string str;
|
|
if (getUnicodeString(obj, str))
|
|
{
|
|
value = str;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// If error hasn't been already set by Python conversion functions
|
|
if (!PyErr_Occurred())
|
|
{
|
|
// Direct access to underlying slots of PyObjectType is not allowed
|
|
// when limited API is enabled
|
|
#ifdef Py_LIMITED_API
|
|
failmsg("Can't convert object to 'str' for '%s'", info.name);
|
|
#else
|
|
failmsg("Can't convert object of type '%s' to 'str' for '%s'",
|
|
obj->ob_type->tp_name, info.name);
|
|
#endif
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Size& sz, const ArgInfo& info)
|
|
{
|
|
RefWrapper<int> values[] = {RefWrapper<int>(sz.width),
|
|
RefWrapper<int>(sz.height)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Size& sz)
|
|
{
|
|
return Py_BuildValue("(ii)", sz.width, sz.height);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Size_<float>& sz, const ArgInfo& info)
|
|
{
|
|
RefWrapper<float> values[] = {RefWrapper<float>(sz.width),
|
|
RefWrapper<float>(sz.height)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Size_<float>& sz)
|
|
{
|
|
return Py_BuildValue("(ff)", sz.width, sz.height);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Rect& r, const ArgInfo& info)
|
|
{
|
|
RefWrapper<int> values[] = {RefWrapper<int>(r.x), RefWrapper<int>(r.y),
|
|
RefWrapper<int>(r.width),
|
|
RefWrapper<int>(r.height)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Rect& r)
|
|
{
|
|
return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Rect2d& r, const ArgInfo& info)
|
|
{
|
|
RefWrapper<double> values[] = {
|
|
RefWrapper<double>(r.x), RefWrapper<double>(r.y),
|
|
RefWrapper<double>(r.width), RefWrapper<double>(r.height)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Rect2d& r)
|
|
{
|
|
return Py_BuildValue("(dddd)", r.x, r.y, r.width, r.height);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Range& r, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (PyObject_Size(obj) == 0)
|
|
{
|
|
r = Range::all();
|
|
return true;
|
|
}
|
|
RefWrapper<int> values[] = {RefWrapper<int>(r.start), RefWrapper<int>(r.end)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Range& r)
|
|
{
|
|
return Py_BuildValue("(ii)", r.start, r.end);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Point& p, const ArgInfo& info)
|
|
{
|
|
RefWrapper<int> values[] = {RefWrapper<int>(p.x), RefWrapper<int>(p.y)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template <>
|
|
bool pyopencv_to(PyObject* obj, Point2f& p, const ArgInfo& info)
|
|
{
|
|
RefWrapper<float> values[] = {RefWrapper<float>(p.x),
|
|
RefWrapper<float>(p.y)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Point2d& p, const ArgInfo& info)
|
|
{
|
|
RefWrapper<double> values[] = {RefWrapper<double>(p.x),
|
|
RefWrapper<double>(p.y)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Point3f& p, const ArgInfo& info)
|
|
{
|
|
RefWrapper<float> values[] = {RefWrapper<float>(p.x),
|
|
RefWrapper<float>(p.y),
|
|
RefWrapper<float>(p.z)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, Point3d& p, const ArgInfo& info)
|
|
{
|
|
RefWrapper<double> values[] = {RefWrapper<double>(p.x),
|
|
RefWrapper<double>(p.y),
|
|
RefWrapper<double>(p.z)};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Point& p)
|
|
{
|
|
return Py_BuildValue("(ii)", p.x, p.y);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Point2f& p)
|
|
{
|
|
return Py_BuildValue("(dd)", p.x, p.y);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Point3f& p)
|
|
{
|
|
return Py_BuildValue("(ddd)", p.x, p.y, p.z);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec4d& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<double> values[] = {RefWrapper<double>(v[0]), RefWrapper<double>(v[1]),
|
|
RefWrapper<double>(v[2]), RefWrapper<double>(v[3])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec4f& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<float> values[] = {RefWrapper<float>(v[0]), RefWrapper<float>(v[1]),
|
|
RefWrapper<float>(v[2]), RefWrapper<float>(v[3])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec4i& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<int> values[] = {RefWrapper<int>(v[0]), RefWrapper<int>(v[1]),
|
|
RefWrapper<int>(v[2]), RefWrapper<int>(v[3])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec3d& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<double> values[] = {RefWrapper<double>(v[0]),
|
|
RefWrapper<double>(v[1]),
|
|
RefWrapper<double>(v[2])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec3f& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<float> values[] = {RefWrapper<float>(v[0]),
|
|
RefWrapper<float>(v[1]),
|
|
RefWrapper<float>(v[2])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec3i& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<int> values[] = {RefWrapper<int>(v[0]), RefWrapper<int>(v[1]),
|
|
RefWrapper<int>(v[2])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec2d& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<double> values[] = {RefWrapper<double>(v[0]),
|
|
RefWrapper<double>(v[1])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec2f& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<float> values[] = {RefWrapper<float>(v[0]),
|
|
RefWrapper<float>(v[1])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
static bool pyopencv_to(PyObject* obj, Vec2i& v, ArgInfo& info)
|
|
{
|
|
RefWrapper<int> values[] = {RefWrapper<int>(v[0]), RefWrapper<int>(v[1])};
|
|
return parseSequence(obj, values, info);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec4d& v)
|
|
{
|
|
return Py_BuildValue("(dddd)", v[0], v[1], v[2], v[3]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec4f& v)
|
|
{
|
|
return Py_BuildValue("(ffff)", v[0], v[1], v[2], v[3]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec4i& v)
|
|
{
|
|
return Py_BuildValue("(iiii)", v[0], v[1], v[2], v[3]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec3d& v)
|
|
{
|
|
return Py_BuildValue("(ddd)", v[0], v[1], v[2]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec3f& v)
|
|
{
|
|
return Py_BuildValue("(fff)", v[0], v[1], v[2]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec3i& v)
|
|
{
|
|
return Py_BuildValue("(iii)", v[0], v[1], v[2]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec2d& v)
|
|
{
|
|
return Py_BuildValue("(dd)", v[0], v[1]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec2f& v)
|
|
{
|
|
return Py_BuildValue("(ff)", v[0], v[1]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Vec2i& v)
|
|
{
|
|
return Py_BuildValue("(ii)", v[0], v[1]);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Point2d& p)
|
|
{
|
|
return Py_BuildValue("(dd)", p.x, p.y);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Point3d& p)
|
|
{
|
|
return Py_BuildValue("(ddd)", p.x, p.y, p.z);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const std::pair<int, double>& src)
|
|
{
|
|
return Py_BuildValue("(id)", src.first, src.second);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, TermCriteria& dst, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (!PySequence_Check(obj))
|
|
{
|
|
failmsg("Can't parse '%s' as TermCriteria."
|
|
"Input argument doesn't provide sequence protocol",
|
|
info.name);
|
|
return false;
|
|
}
|
|
const std::size_t sequenceSize = PySequence_Size(obj);
|
|
if (sequenceSize != 3) {
|
|
failmsg("Can't parse '%s' as TermCriteria. Expected sequence length 3, "
|
|
"got %lu",
|
|
info.name, sequenceSize);
|
|
return false;
|
|
}
|
|
{
|
|
const String typeItemName = format("'%s' criteria type", info.name);
|
|
const ArgInfo typeItemInfo(typeItemName.c_str(), false);
|
|
SafeSeqItem typeItem(obj, 0);
|
|
if (!pyopencv_to(typeItem.item, dst.type, typeItemInfo))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
{
|
|
const String maxCountItemName = format("'%s' max count", info.name);
|
|
const ArgInfo maxCountItemInfo(maxCountItemName.c_str(), false);
|
|
SafeSeqItem maxCountItem(obj, 1);
|
|
if (!pyopencv_to(maxCountItem.item, dst.maxCount, maxCountItemInfo))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
{
|
|
const String epsilonItemName = format("'%s' epsilon", info.name);
|
|
const ArgInfo epsilonItemInfo(epsilonItemName.c_str(), false);
|
|
SafeSeqItem epsilonItem(obj, 2);
|
|
if (!pyopencv_to(epsilonItem.item, dst.epsilon, epsilonItemInfo))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const TermCriteria& src)
|
|
{
|
|
return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon);
|
|
}
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject* obj, RotatedRect& dst, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (!PySequence_Check(obj))
|
|
{
|
|
failmsg("Can't parse '%s' as RotatedRect."
|
|
"Input argument doesn't provide sequence protocol",
|
|
info.name);
|
|
return false;
|
|
}
|
|
const std::size_t sequenceSize = PySequence_Size(obj);
|
|
if (sequenceSize != 3)
|
|
{
|
|
failmsg("Can't parse '%s' as RotatedRect. Expected sequence length 3, got %lu",
|
|
info.name, sequenceSize);
|
|
return false;
|
|
}
|
|
{
|
|
const String centerItemName = format("'%s' center point", info.name);
|
|
const ArgInfo centerItemInfo(centerItemName.c_str(), false);
|
|
SafeSeqItem centerItem(obj, 0);
|
|
if (!pyopencv_to(centerItem.item, dst.center, centerItemInfo))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
{
|
|
const String sizeItemName = format("'%s' size", info.name);
|
|
const ArgInfo sizeItemInfo(sizeItemName.c_str(), false);
|
|
SafeSeqItem sizeItem(obj, 1);
|
|
if (!pyopencv_to(sizeItem.item, dst.size, sizeItemInfo))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
{
|
|
const String angleItemName = format("'%s' angle", info.name);
|
|
const ArgInfo angleItemInfo(angleItemName.c_str(), false);
|
|
SafeSeqItem angleItem(obj, 2);
|
|
if (!pyopencv_to(angleItem.item, dst.angle, angleItemInfo))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const RotatedRect& src)
|
|
{
|
|
return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle);
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const Moments& m)
|
|
{
|
|
return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
|
|
"m00", m.m00, "m10", m.m10, "m01", m.m01,
|
|
"m20", m.m20, "m11", m.m11, "m02", m.m02,
|
|
"m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03,
|
|
"mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02,
|
|
"mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03,
|
|
"nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02,
|
|
"nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "nu03", m.nu03);
|
|
}
|
|
|
|
template <typename Tp>
|
|
struct pyopencvVecConverter;
|
|
|
|
template <typename Tp>
|
|
bool pyopencv_to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
return pyopencvVecConverter<Tp>::to(obj, value, info);
|
|
}
|
|
|
|
template <typename Tp>
|
|
PyObject* pyopencv_from(const std::vector<Tp>& value)
|
|
{
|
|
return pyopencvVecConverter<Tp>::from(value);
|
|
}
|
|
|
|
template <typename Tp>
|
|
static bool pyopencv_to_generic_vec(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (!PySequence_Check(obj))
|
|
{
|
|
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name);
|
|
return false;
|
|
}
|
|
const size_t n = static_cast<size_t>(PySequence_Size(obj));
|
|
value.resize(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
SafeSeqItem item_wrap(obj, i);
|
|
if (!pyopencv_to(item_wrap.item, value[i], info))
|
|
{
|
|
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename Tp>
|
|
static PyObject* pyopencv_from_generic_vec(const std::vector<Tp>& value)
|
|
{
|
|
Py_ssize_t n = static_cast<Py_ssize_t>(value.size());
|
|
PySafeObject seq(PyTuple_New(n));
|
|
for (Py_ssize_t i = 0; i < n; i++)
|
|
{
|
|
PyObject* item = pyopencv_from(value[i]);
|
|
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1.
|
|
if (!item || PyTuple_SetItem(seq, i, item) == -1)
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
return seq.release();
|
|
}
|
|
|
|
template <typename Tp>
|
|
struct pyopencvVecConverter
|
|
{
|
|
typedef typename std::vector<Tp>::iterator VecIt;
|
|
|
|
static bool to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
|
{
|
|
if (!PyArray_Check(obj))
|
|
{
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
}
|
|
// If user passed an array it is possible to make faster conversions in several cases
|
|
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(obj);
|
|
const NPY_TYPES target_type = asNumpyType<Tp>();
|
|
const NPY_TYPES source_type = static_cast<NPY_TYPES>(PyArray_TYPE(array_obj));
|
|
if (target_type == NPY_OBJECT)
|
|
{
|
|
// Non-planar arrays representing objects (e.g. array of N Rect is an array of shape Nx4) have NPY_OBJECT
|
|
// as their target type.
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
}
|
|
if (PyArray_NDIM(array_obj) > 1)
|
|
{
|
|
failmsg("Can't parse %dD array as '%s' vector argument", PyArray_NDIM(array_obj), info.name);
|
|
return false;
|
|
}
|
|
if (target_type != source_type)
|
|
{
|
|
// Source type requires conversion
|
|
// Allowed conversions for target type is handled in the corresponding pyopencv_to function
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
}
|
|
// For all other cases, all array data can be directly copied to std::vector data
|
|
// Simple `memcpy` is not possible because NumPy array can reference a slice of the bigger array:
|
|
// ```
|
|
// arr = np.ones((8, 4, 5), dtype=np.int32)
|
|
// convertible_to_vector_of_int = arr[:, 0, 1]
|
|
// ```
|
|
value.resize(static_cast<size_t>(PyArray_SIZE(array_obj)));
|
|
const npy_intp item_step = PyArray_STRIDE(array_obj, 0) / PyArray_ITEMSIZE(array_obj);
|
|
const Tp* data_ptr = static_cast<Tp*>(PyArray_DATA(array_obj));
|
|
for (VecIt it = value.begin(); it != value.end(); ++it, data_ptr += item_step) {
|
|
*it = *data_ptr;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static PyObject* from(const std::vector<Tp>& value)
|
|
{
|
|
if (value.empty())
|
|
{
|
|
return PyTuple_New(0);
|
|
}
|
|
return from(value, ::traits::IsRepresentableAsMatDataType<Tp>());
|
|
}
|
|
|
|
private:
|
|
static PyObject* from(const std::vector<Tp>& value, ::traits::FalseType)
|
|
{
|
|
// Underlying type is not representable as Mat Data Type
|
|
return pyopencv_from_generic_vec(value);
|
|
}
|
|
|
|
static PyObject* from(const std::vector<Tp>& value, ::traits::TrueType)
|
|
{
|
|
// Underlying type is representable as Mat Data Type, so faster return type is available
|
|
typedef DataType<Tp> DType;
|
|
typedef typename DType::channel_type UnderlyingArrayType;
|
|
|
|
// If Mat is always exposed as NumPy array this code path can be reduced to the following snipped:
|
|
// Mat src(value);
|
|
// PyObject* array = pyopencv_from(src);
|
|
// return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(array));
|
|
// This puts unnecessary restrictions on Mat object those might be avoided without losing the performance.
|
|
// Moreover, this version is a bit faster, because it doesn't create temporary objects with reference counting.
|
|
|
|
const NPY_TYPES target_type = asNumpyType<UnderlyingArrayType>();
|
|
const int cols = DType::channels;
|
|
PyObject* array = NULL;
|
|
if (cols == 1)
|
|
{
|
|
npy_intp dims = static_cast<npy_intp>(value.size());
|
|
array = PyArray_SimpleNew(1, &dims, target_type);
|
|
}
|
|
else
|
|
{
|
|
npy_intp dims[2] = {static_cast<npy_intp>(value.size()), cols};
|
|
array = PyArray_SimpleNew(2, dims, target_type);
|
|
}
|
|
if(!array)
|
|
{
|
|
// NumPy arrays with shape (N, 1) and (N) are not equal, so correct error message should distinguish
|
|
// them too.
|
|
String shape;
|
|
if (cols > 1)
|
|
{
|
|
shape = format("(%d x %d)", static_cast<int>(value.size()), cols);
|
|
}
|
|
else
|
|
{
|
|
shape = format("(%d)", static_cast<int>(value.size()));
|
|
}
|
|
const String error_message = format("Can't allocate NumPy array for vector with dtype=%d and shape=%s",
|
|
static_cast<int>(target_type), shape.c_str());
|
|
emit_failmsg(PyExc_MemoryError, error_message.c_str());
|
|
return array;
|
|
}
|
|
// Fill the array
|
|
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(array);
|
|
UnderlyingArrayType* array_data = static_cast<UnderlyingArrayType*>(PyArray_DATA(array_obj));
|
|
// if Tp is representable as Mat DataType, so the following cast is pretty safe...
|
|
const UnderlyingArrayType* value_data = reinterpret_cast<const UnderlyingArrayType*>(value.data());
|
|
memcpy(array_data, value_data, sizeof(UnderlyingArrayType) * value.size() * static_cast<size_t>(cols));
|
|
return array;
|
|
}
|
|
};
|
|
|
|
static int OnError(int status, const char *func_name, const char *err_msg, const char *file_name, int line, void *userdata)
|
|
{
|
|
PyGILState_STATE gstate;
|
|
gstate = PyGILState_Ensure();
|
|
|
|
PyObject *on_error = (PyObject*)userdata;
|
|
PyObject *args = Py_BuildValue("isssi", status, func_name, err_msg, file_name, line);
|
|
|
|
PyObject *r = PyObject_Call(on_error, args, NULL);
|
|
if (r == NULL) {
|
|
PyErr_Print();
|
|
} else {
|
|
Py_DECREF(r);
|
|
}
|
|
|
|
Py_DECREF(args);
|
|
PyGILState_Release(gstate);
|
|
|
|
return 0; // The return value isn't used
|
|
}
|
|
|
|
static PyObject *pycvRedirectError(PyObject*, PyObject *args, PyObject *kw)
|
|
{
|
|
const char *keywords[] = { "on_error", NULL };
|
|
PyObject *on_error;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "O", (char**)keywords, &on_error))
|
|
return NULL;
|
|
|
|
if ((on_error != Py_None) && !PyCallable_Check(on_error)) {
|
|
PyErr_SetString(PyExc_TypeError, "on_error must be callable");
|
|
return NULL;
|
|
}
|
|
|
|
// Keep track of the previous handler parameter, so we can decref it when no longer used
|
|
static PyObject* last_on_error = NULL;
|
|
if (last_on_error) {
|
|
Py_DECREF(last_on_error);
|
|
last_on_error = NULL;
|
|
}
|
|
|
|
if (on_error == Py_None) {
|
|
ERRWRAP2(redirectError(NULL));
|
|
} else {
|
|
last_on_error = on_error;
|
|
Py_INCREF(last_on_error);
|
|
ERRWRAP2(redirectError(OnError, last_on_error));
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static void OnMouse(int event, int x, int y, int flags, void* param)
|
|
{
|
|
PyGILState_STATE gstate;
|
|
gstate = PyGILState_Ensure();
|
|
|
|
PyObject *o = (PyObject*)param;
|
|
PyObject *args = Py_BuildValue("iiiiO", event, x, y, flags, PyTuple_GetItem(o, 1));
|
|
|
|
PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL);
|
|
if (r == NULL)
|
|
PyErr_Print();
|
|
else
|
|
Py_DECREF(r);
|
|
Py_DECREF(args);
|
|
PyGILState_Release(gstate);
|
|
}
|
|
|
|
#ifdef HAVE_OPENCV_HIGHGUI
|
|
static PyObject *pycvSetMouseCallback(PyObject*, PyObject *args, PyObject *kw)
|
|
{
|
|
const char *keywords[] = { "window_name", "on_mouse", "param", NULL };
|
|
char* name;
|
|
PyObject *on_mouse;
|
|
PyObject *param = NULL;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|O", (char**)keywords, &name, &on_mouse, ¶m))
|
|
return NULL;
|
|
if (!PyCallable_Check(on_mouse)) {
|
|
PyErr_SetString(PyExc_TypeError, "on_mouse must be callable");
|
|
return NULL;
|
|
}
|
|
if (param == NULL) {
|
|
param = Py_None;
|
|
}
|
|
PyObject* py_callback_info = Py_BuildValue("OO", on_mouse, param);
|
|
static std::map<std::string, PyObject*> registered_callbacks;
|
|
std::map<std::string, PyObject*>::iterator i = registered_callbacks.find(name);
|
|
if (i != registered_callbacks.end())
|
|
{
|
|
Py_DECREF(i->second);
|
|
i->second = py_callback_info;
|
|
}
|
|
else
|
|
{
|
|
registered_callbacks.insert(std::pair<std::string, PyObject*>(std::string(name), py_callback_info));
|
|
}
|
|
ERRWRAP2(setMouseCallback(name, OnMouse, py_callback_info));
|
|
Py_RETURN_NONE;
|
|
}
|
|
#endif
|
|
|
|
static void OnChange(int pos, void *param)
|
|
{
|
|
PyGILState_STATE gstate;
|
|
gstate = PyGILState_Ensure();
|
|
|
|
PyObject *o = (PyObject*)param;
|
|
PyObject *args = Py_BuildValue("(i)", pos);
|
|
PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL);
|
|
if (r == NULL)
|
|
PyErr_Print();
|
|
else
|
|
Py_DECREF(r);
|
|
Py_DECREF(args);
|
|
PyGILState_Release(gstate);
|
|
}
|
|
|
|
#ifdef HAVE_OPENCV_HIGHGUI
|
|
// workaround for #20408, use nullptr, set value later
|
|
static int _createTrackbar(const String &trackbar_name, const String &window_name, int value, int count,
|
|
TrackbarCallback onChange, PyObject* py_callback_info)
|
|
{
|
|
int n = createTrackbar(trackbar_name, window_name, NULL, count, onChange, py_callback_info);
|
|
setTrackbarPos(trackbar_name, window_name, value);
|
|
return n;
|
|
}
|
|
static PyObject *pycvCreateTrackbar(PyObject*, PyObject *args)
|
|
{
|
|
PyObject *on_change;
|
|
char* trackbar_name;
|
|
char* window_name;
|
|
int value;
|
|
int count;
|
|
|
|
if (!PyArg_ParseTuple(args, "ssiiO", &trackbar_name, &window_name, &value, &count, &on_change))
|
|
return NULL;
|
|
if (!PyCallable_Check(on_change)) {
|
|
PyErr_SetString(PyExc_TypeError, "on_change must be callable");
|
|
return NULL;
|
|
}
|
|
PyObject* py_callback_info = Py_BuildValue("OO", on_change, Py_None);
|
|
std::string name = std::string(window_name) + ":" + std::string(trackbar_name);
|
|
static std::map<std::string, PyObject*> registered_callbacks;
|
|
std::map<std::string, PyObject*>::iterator i = registered_callbacks.find(name);
|
|
if (i != registered_callbacks.end())
|
|
{
|
|
Py_DECREF(i->second);
|
|
i->second = py_callback_info;
|
|
}
|
|
else
|
|
{
|
|
registered_callbacks.insert(std::pair<std::string, PyObject*>(name, py_callback_info));
|
|
}
|
|
ERRWRAP2(_createTrackbar(trackbar_name, window_name, value, count, OnChange, py_callback_info));
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static void OnButtonChange(int state, void *param)
|
|
{
|
|
PyGILState_STATE gstate;
|
|
gstate = PyGILState_Ensure();
|
|
|
|
PyObject *o = (PyObject*)param;
|
|
PyObject *args;
|
|
if(PyTuple_GetItem(o, 1) != NULL)
|
|
{
|
|
args = Py_BuildValue("(iO)", state, PyTuple_GetItem(o,1));
|
|
}
|
|
else
|
|
{
|
|
args = Py_BuildValue("(i)", state);
|
|
}
|
|
|
|
PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL);
|
|
if (r == NULL)
|
|
PyErr_Print();
|
|
else
|
|
Py_DECREF(r);
|
|
Py_DECREF(args);
|
|
PyGILState_Release(gstate);
|
|
}
|
|
|
|
static PyObject *pycvCreateButton(PyObject*, PyObject *args, PyObject *kw)
|
|
{
|
|
const char* keywords[] = {"buttonName", "onChange", "userData", "buttonType", "initialButtonState", NULL};
|
|
PyObject *on_change;
|
|
PyObject *userdata = NULL;
|
|
char* button_name;
|
|
int button_type = 0;
|
|
int initial_button_state = 0;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|Oii", (char**)keywords, &button_name, &on_change, &userdata, &button_type, &initial_button_state))
|
|
return NULL;
|
|
if (!PyCallable_Check(on_change)) {
|
|
PyErr_SetString(PyExc_TypeError, "onChange must be callable");
|
|
return NULL;
|
|
}
|
|
if (userdata == NULL) {
|
|
userdata = Py_None;
|
|
}
|
|
|
|
PyObject* py_callback_info = Py_BuildValue("OO", on_change, userdata);
|
|
std::string name(button_name);
|
|
|
|
static std::map<std::string, PyObject*> registered_callbacks;
|
|
std::map<std::string, PyObject*>::iterator i = registered_callbacks.find(name);
|
|
if (i != registered_callbacks.end())
|
|
{
|
|
Py_DECREF(i->second);
|
|
i->second = py_callback_info;
|
|
}
|
|
else
|
|
{
|
|
registered_callbacks.insert(std::pair<std::string, PyObject*>(name, py_callback_info));
|
|
}
|
|
ERRWRAP2(createButton(button_name, OnButtonChange, py_callback_info, button_type, initial_button_state != 0));
|
|
Py_RETURN_NONE;
|
|
}
|
|
#endif
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static int convert_to_char(PyObject *o, char *dst, const ArgInfo& info)
|
|
{
|
|
std::string str;
|
|
if (getUnicodeString(o, str))
|
|
{
|
|
*dst = str[0];
|
|
return 1;
|
|
}
|
|
(*dst) = 0;
|
|
return failmsg("Expected single character string for argument '%s'", info.name);
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
# pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
# pragma GCC diagnostic ignored "-Wmissing-field-initializers"
|
|
#endif
|
|
|
|
|
|
#include "pyopencv_generated_enums.h"
|
|
#include "pyopencv_custom_headers.h"
|
|
|
|
#ifdef CVPY_DYNAMIC_INIT
|
|
#define CVPY_TYPE(WNAME, NAME, STORAGE, SNAME, _1, _2) CVPY_TYPE_DECLARE_DYNAMIC(WNAME, NAME, STORAGE, SNAME)
|
|
#else
|
|
#define CVPY_TYPE(WNAME, NAME, STORAGE, SNAME, _1, _2) CVPY_TYPE_DECLARE(WNAME, NAME, STORAGE, SNAME)
|
|
#endif
|
|
#include "pyopencv_generated_types.h"
|
|
#undef CVPY_TYPE
|
|
|
|
#include "pyopencv_generated_types_content.h"
|
|
#include "pyopencv_generated_funcs.h"
|
|
|
|
|
|
static PyMethodDef special_methods[] = {
|
|
{"redirectError", CV_PY_FN_WITH_KW(pycvRedirectError), "redirectError(onError) -> None"},
|
|
#ifdef HAVE_OPENCV_HIGHGUI
|
|
{"createTrackbar", (PyCFunction)pycvCreateTrackbar, METH_VARARGS, "createTrackbar(trackbarName, windowName, value, count, onChange) -> None"},
|
|
{"createButton", CV_PY_FN_WITH_KW(pycvCreateButton), "createButton(buttonName, onChange [, userData, buttonType, initialButtonState]) -> None"},
|
|
{"setMouseCallback", CV_PY_FN_WITH_KW(pycvSetMouseCallback), "setMouseCallback(windowName, onMouse [, param]) -> None"},
|
|
#endif
|
|
#ifdef HAVE_OPENCV_DNN
|
|
{"dnn_registerLayer", CV_PY_FN_WITH_KW(pyopencv_cv_dnn_registerLayer), "registerLayer(type, class) -> None"},
|
|
{"dnn_unregisterLayer", CV_PY_FN_WITH_KW(pyopencv_cv_dnn_unregisterLayer), "unregisterLayer(type) -> None"},
|
|
#endif
|
|
{NULL, NULL},
|
|
};
|
|
|
|
/************************************************************************/
|
|
/* Module init */
|
|
|
|
struct ConstDef
|
|
{
|
|
const char * name;
|
|
long long val;
|
|
};
|
|
|
|
static inline bool strStartsWith(const std::string& str, const std::string& prefix) {
|
|
return prefix.empty() || \
|
|
(str.size() >= prefix.size() && std::memcmp(str.data(), prefix.data(), prefix.size()) == 0);
|
|
}
|
|
|
|
static inline bool strEndsWith(const std::string& str, char symbol) {
|
|
return !str.empty() && str[str.size() - 1] == symbol;
|
|
}
|
|
|
|
/**
|
|
* \brief Creates a submodule of the `root`. Missing parents submodules
|
|
* are created as needed. If name equals to parent module name than
|
|
* borrowed reference to parent module is returned (no reference counting
|
|
* are done).
|
|
* Submodule lifetime is managed by the parent module.
|
|
* If nested submodules are created than the lifetime is managed by the
|
|
* predecessor submodule in a list.
|
|
*
|
|
* \param parent_module Parent module object.
|
|
* \param name Submodule name.
|
|
* \return borrowed reference to the created submodule.
|
|
* If any of submodules can't be created than NULL is returned.
|
|
*/
|
|
static PyObject* createSubmodule(PyObject* parent_module, const std::string& name)
|
|
{
|
|
if (!parent_module)
|
|
{
|
|
return PyErr_Format(PyExc_ImportError,
|
|
"Bindings generation error. "
|
|
"Parent module is NULL during the submodule '%s' creation",
|
|
name.c_str()
|
|
);
|
|
}
|
|
if (strEndsWith(name, '.'))
|
|
{
|
|
return PyErr_Format(PyExc_ImportError,
|
|
"Bindings generation error. "
|
|
"Submodule can't end with a dot. Got: %s", name.c_str()
|
|
);
|
|
}
|
|
|
|
const std::string parent_name = PyModule_GetName(parent_module);
|
|
|
|
/// Special case handling when caller tries to register a submodule of the parent module with
|
|
/// the same name
|
|
if (name == parent_name) {
|
|
return parent_module;
|
|
}
|
|
|
|
if (!strStartsWith(name, parent_name))
|
|
{
|
|
return PyErr_Format(PyExc_ImportError,
|
|
"Bindings generation error. "
|
|
"Submodule name should always start with a parent module name. "
|
|
"Parent name: %s. Submodule name: %s", parent_name.c_str(),
|
|
name.c_str()
|
|
);
|
|
}
|
|
|
|
size_t submodule_name_end = name.find('.', parent_name.size() + 1);
|
|
/// There is no intermediate submodules in the provided name
|
|
if (submodule_name_end == std::string::npos)
|
|
{
|
|
submodule_name_end = name.size();
|
|
}
|
|
|
|
PyObject* submodule = parent_module;
|
|
|
|
for (size_t submodule_name_start = parent_name.size() + 1;
|
|
submodule_name_start < name.size(); )
|
|
{
|
|
const std::string submodule_name = name.substr(submodule_name_start,
|
|
submodule_name_end - submodule_name_start);
|
|
|
|
const std::string full_submodule_name = name.substr(0, submodule_name_end);
|
|
|
|
|
|
PyObject* parent_module_dict = PyModule_GetDict(submodule);
|
|
/// If submodule already exists it can be found in the parent module dictionary,
|
|
/// otherwise it should be added to it.
|
|
submodule = PyDict_GetItemString(parent_module_dict,
|
|
submodule_name.c_str());
|
|
if (!submodule)
|
|
{
|
|
/// Populates global modules dictionary and returns borrowed reference to it
|
|
submodule = PyImport_AddModule(full_submodule_name.c_str());
|
|
if (!submodule)
|
|
{
|
|
/// Return `PyImport_AddModule` NULL with an exception set on failure.
|
|
return NULL;
|
|
}
|
|
/// Populates parent module dictionary. Submodule lifetime should be managed
|
|
/// by the global modules dictionary and parent module dictionary, so Py_DECREF after
|
|
/// successfull call to the `PyDict_SetItemString` is redundant.
|
|
if (PyDict_SetItemString(parent_module_dict, submodule_name.c_str(), submodule) < 0) {
|
|
return PyErr_Format(PyExc_ImportError,
|
|
"Can't register a submodule '%s' (full name: '%s')",
|
|
submodule_name.c_str(), full_submodule_name.c_str()
|
|
);
|
|
}
|
|
}
|
|
|
|
submodule_name_start = submodule_name_end + 1;
|
|
|
|
submodule_name_end = name.find('.', submodule_name_start);
|
|
if (submodule_name_end == std::string::npos) {
|
|
submodule_name_end = name.size();
|
|
}
|
|
}
|
|
return submodule;
|
|
}
|
|
|
|
static bool init_submodule(PyObject * root, const char * name, PyMethodDef * methods, ConstDef * consts)
|
|
{
|
|
// traverse and create nested submodules
|
|
PyObject* submodule = createSubmodule(root, name);
|
|
if (!submodule)
|
|
{
|
|
return false;
|
|
}
|
|
// populate module's dict
|
|
PyObject * d = PyModule_GetDict(submodule);
|
|
for (PyMethodDef * m = methods; m->ml_name != NULL; ++m)
|
|
{
|
|
PyObject * method_obj = PyCFunction_NewEx(m, NULL, NULL);
|
|
if (PyDict_SetItemString(d, m->ml_name, method_obj) < 0)
|
|
{
|
|
PyErr_Format(PyExc_ImportError,
|
|
"Can't register function %s in module: %s", m->ml_name, name
|
|
);
|
|
Py_CLEAR(method_obj);
|
|
return false;
|
|
}
|
|
Py_DECREF(method_obj);
|
|
}
|
|
for (ConstDef * c = consts; c->name != NULL; ++c)
|
|
{
|
|
PyObject* const_obj = PyLong_FromLongLong(c->val);
|
|
if (PyDict_SetItemString(d, c->name, const_obj) < 0)
|
|
{
|
|
PyErr_Format(PyExc_ImportError,
|
|
"Can't register constant %s in module %s", c->name, name
|
|
);
|
|
Py_CLEAR(const_obj);
|
|
return false;
|
|
}
|
|
Py_DECREF(const_obj);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#include "pyopencv_generated_modules_content.h"
|
|
|
|
static bool init_body(PyObject * m)
|
|
{
|
|
#define CVPY_MODULE(NAMESTR, NAME) \
|
|
if (!init_submodule(m, MODULESTR NAMESTR, methods_##NAME, consts_##NAME)) \
|
|
{ \
|
|
return false; \
|
|
}
|
|
#include "pyopencv_generated_modules.h"
|
|
#undef CVPY_MODULE
|
|
|
|
#ifdef CVPY_DYNAMIC_INIT
|
|
#define CVPY_TYPE(WNAME, NAME, _1, _2, BASE, CONSTRUCTOR) CVPY_TYPE_INIT_DYNAMIC(WNAME, NAME, return false, BASE, CONSTRUCTOR)
|
|
PyObject * pyopencv_NoBase_TypePtr = NULL;
|
|
#else
|
|
#define CVPY_TYPE(WNAME, NAME, _1, _2, BASE, CONSTRUCTOR) CVPY_TYPE_INIT_STATIC(WNAME, NAME, return false, BASE, CONSTRUCTOR)
|
|
PyTypeObject * pyopencv_NoBase_TypePtr = NULL;
|
|
#endif
|
|
#include "pyopencv_generated_types.h"
|
|
#undef CVPY_TYPE
|
|
|
|
PyObject* d = PyModule_GetDict(m);
|
|
|
|
|
|
PyObject* version_obj = PyString_FromString(CV_VERSION);
|
|
if (PyDict_SetItemString(d, "__version__", version_obj) < 0) {
|
|
PyErr_SetString(PyExc_ImportError, "Can't update module version");
|
|
Py_CLEAR(version_obj);
|
|
return false;
|
|
}
|
|
Py_DECREF(version_obj);
|
|
|
|
PyObject *opencv_error_dict = PyDict_New();
|
|
PyDict_SetItemString(opencv_error_dict, "file", Py_None);
|
|
PyDict_SetItemString(opencv_error_dict, "func", Py_None);
|
|
PyDict_SetItemString(opencv_error_dict, "line", Py_None);
|
|
PyDict_SetItemString(opencv_error_dict, "code", Py_None);
|
|
PyDict_SetItemString(opencv_error_dict, "msg", Py_None);
|
|
PyDict_SetItemString(opencv_error_dict, "err", Py_None);
|
|
opencv_error = PyErr_NewException((char*)MODULESTR".error", NULL, opencv_error_dict);
|
|
Py_DECREF(opencv_error_dict);
|
|
PyDict_SetItemString(d, "error", opencv_error);
|
|
|
|
|
|
#define PUBLISH_(I, var_name, type_obj) \
|
|
PyObject* type_obj = PyInt_FromLong(I); \
|
|
if (PyDict_SetItemString(d, var_name, type_obj) < 0) \
|
|
{ \
|
|
PyErr_SetString(PyExc_ImportError, "Can't register " var_name " constant"); \
|
|
Py_CLEAR(type_obj); \
|
|
return false; \
|
|
} \
|
|
Py_DECREF(type_obj);
|
|
|
|
#define PUBLISH(I) PUBLISH_(I, #I, I ## _obj)
|
|
|
|
PUBLISH(CV_8U);
|
|
PUBLISH(CV_8UC1);
|
|
PUBLISH(CV_8UC2);
|
|
PUBLISH(CV_8UC3);
|
|
PUBLISH(CV_8UC4);
|
|
PUBLISH(CV_8S);
|
|
PUBLISH(CV_8SC1);
|
|
PUBLISH(CV_8SC2);
|
|
PUBLISH(CV_8SC3);
|
|
PUBLISH(CV_8SC4);
|
|
PUBLISH(CV_16U);
|
|
PUBLISH(CV_16UC1);
|
|
PUBLISH(CV_16UC2);
|
|
PUBLISH(CV_16UC3);
|
|
PUBLISH(CV_16UC4);
|
|
PUBLISH(CV_16S);
|
|
PUBLISH(CV_16SC1);
|
|
PUBLISH(CV_16SC2);
|
|
PUBLISH(CV_16SC3);
|
|
PUBLISH(CV_16SC4);
|
|
PUBLISH(CV_32S);
|
|
PUBLISH(CV_32SC1);
|
|
PUBLISH(CV_32SC2);
|
|
PUBLISH(CV_32SC3);
|
|
PUBLISH(CV_32SC4);
|
|
PUBLISH(CV_32F);
|
|
PUBLISH(CV_32FC1);
|
|
PUBLISH(CV_32FC2);
|
|
PUBLISH(CV_32FC3);
|
|
PUBLISH(CV_32FC4);
|
|
PUBLISH(CV_64F);
|
|
PUBLISH(CV_64FC1);
|
|
PUBLISH(CV_64FC2);
|
|
PUBLISH(CV_64FC3);
|
|
PUBLISH(CV_64FC4);
|
|
#undef PUBLISH_
|
|
#undef PUBLISH
|
|
|
|
return true;
|
|
}
|
|
|
|
#if defined(__GNUC__)
|
|
#pragma GCC visibility push(default)
|
|
#endif
|
|
|
|
#if defined(CV_PYTHON_3)
|
|
// === Python 3
|
|
|
|
static struct PyModuleDef cv2_moduledef =
|
|
{
|
|
PyModuleDef_HEAD_INIT,
|
|
MODULESTR,
|
|
"Python wrapper for OpenCV.",
|
|
-1, /* size of per-interpreter state of the module,
|
|
or -1 if the module keeps state in global variables. */
|
|
special_methods
|
|
};
|
|
|
|
PyMODINIT_FUNC PyInit_cv2();
|
|
PyObject* PyInit_cv2()
|
|
{
|
|
import_array(); // from numpy
|
|
PyObject* m = PyModule_Create(&cv2_moduledef);
|
|
if (!init_body(m))
|
|
return NULL;
|
|
return m;
|
|
}
|
|
|
|
#else
|
|
// === Python 2
|
|
PyMODINIT_FUNC initcv2();
|
|
void initcv2()
|
|
{
|
|
import_array(); // from numpy
|
|
PyObject* m = Py_InitModule(MODULESTR, special_methods);
|
|
init_body(m);
|
|
}
|
|
|
|
#endif
|