opencv/doc/gpu_object_detection.tex
2011-01-21 14:42:21 +00:00

267 lines
11 KiB
TeX

\section{Object Detection}
\cvclass{gpu::HOGDescriptor}
Histogram of Oriented Gradients descriptor and detector.
\begin{lstlisting}
struct CV_EXPORTS HOGDescriptor
{
enum { DEFAULT_WIN_SIGMA = -1 };
enum { DEFAULT_NLEVELS = 64 };
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
double threshold_L2hys=0.2, bool gamma_correction=true,
int nlevels=DEFAULT_NLEVELS);
size_t getDescriptorSize() const;
size_t getBlockHistogramSize() const;
void setSVMDetector(const vector<float>& detector);
static vector<float> getDefaultPeopleDetector();
static vector<float> getPeopleDetector48x96();
static vector<float> getPeopleDetector64x128();
void detect(const GpuMat& img, vector<Point>& found_locations,
double hit_threshold=0, Size win_stride=Size(),
Size padding=Size());
void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
double hit_threshold=0, Size win_stride=Size(),
Size padding=Size(), double scale0=1.05,
int group_threshold=2);
void getDescriptors(const GpuMat& img, Size win_stride,
GpuMat& descriptors,
int descr_format=DESCR_FORMAT_COL_BY_COL);
Size win_size;
Size block_size;
Size block_stride;
Size cell_size;
int nbins;
double win_sigma;
double threshold_L2hys;
bool gamma_correction;
int nlevels;
private:
// Hidden
}
\end{lstlisting}
Interfaces of all methods are kept similar to CPU HOG descriptor and detector analogues as much as possible.
\cvCppFunc{gpu::HOGDescriptor::HOGDescriptor}
Creates HOG descriptor and detector.
\cvdefCpp{HOGDescriptor::HOGDescriptor(Size win\_size=Size(64, 128),\par
Size block\_size=Size(16, 16), Size block\_stride=Size(8, 8),\par
Size cell\_size=Size(8, 8), int nbins=9,\par
double win\_sigma=DEFAULT\_WIN\_SIGMA,\par
double threshold\_L2hys=0.2, bool gamma\_correction=true,\par
int nlevels=DEFAULT\_NLEVELS);}
\begin{description}
\cvarg{win\_size}{Detection window size. Must be aligned to block size and block stride.}
\cvarg{block\_size}{Block size in pixels. Must be aligned to cell size. Only (16,16) is supported for now.}
\cvarg{block\_stride}{Block stride. Must be a multiple of cell size.}
\cvarg{cell\_size}{Cell size. Only (8, 8) is supported for now.}
\cvarg{nbins}{Number of bins. Only 9 bins per cell is supported for now.}
\cvarg{win\_sigma}{Gaussian smoothing window parameter.}
\cvarg{threshold\_L2Hys}{L2-Hys normalization method shrinkage.}
\cvarg{gamma\_correction}{Do gamma correction preprocessing or not.}
\cvarg{nlevels}{Maximum number of detection window increases.}
\end{description}
\cvCppFunc{gpu::HOGDescriptor::getDescriptorSize}
Returns number of coefficients required for the classification.
\cvdefCpp{size\_t HOGDescriptor::getDescriptorSize() const;}
\cvCppFunc{gpu::HOGDescriptor::getBlockHistogramSize}
Returns block histogram size.
\cvdefCpp{size\_t HOGDescriptor::getBlockHistogramSize() const;}
\cvCppFunc{gpu::HOGDescriptor::setSVMDetector}
Sets coefficients for the linear SVM classifier.
\cvdefCpp{void HOGDescriptor::setSVMDetector(const vector<float>\& detector);}
\cvCppFunc{gpu::HOGDescriptor::getDefaultPeopleDetector}
Returns coefficients of the classifier trained for people detection (for default window size).
\cvdefCpp{static vector<float> HOGDescriptor::getDefaultPeopleDetector();}
\cvCppFunc{gpu::HOGDescriptor::getPeopleDetector48x96}
Returns coefficients of the classifier trained for people detection (for 48x96 windows).
\cvdefCpp{static vector<float> HOGDescriptor::getPeopleDetector48x96();}
\cvCppFunc{gpu::HOGDescriptor::getPeopleDetector64x128}
Returns coefficients of the classifier trained for people detection (for 64x128 windows).
\cvdefCpp{static vector<float> HOGDescriptor::getPeopleDetector64x128();}
\cvCppFunc{gpu::HOGDescriptor::detect}
Perfroms object detection without multiscale window.
\cvdefCpp{void HOGDescriptor::detect(const GpuMat\& img,\par
vector<Point>\& found\_locations, double hit\_threshold=0,\par
Size win\_stride=Size(), Size padding=Size());}
\begin{description}
\cvarg{img}{Source image. \texttt{CV\_8UC1} and \texttt{CV\_8UC4}types are supported for now.}
\cvarg{found\_locations}{Will contain left-top corner points of detected objects boundaries.}
\cvarg{hit\_threshold}{Threshold for the distance between features and SVM classifying plane. Usually it's 0 and should be specfied in the detector coefficients (as the last free coefficient), but if the free coefficient is omitted (it's allowed) you can specify it manually here.}
\cvarg{win\_stride}{Window stride. Must be a multiple of block stride.}
\cvarg{padding}{Mock parameter to keep CPU interface compatibility. Must be (0,0).}
\end{description}
\cvCppFunc{gpu::HOGDescriptor::detectMultiScale}
Perfroms object detection with multiscale window.
\cvdefCpp{void HOGDescriptor::detectMultiScale(const GpuMat\& img,\par
vector<Rect>\& found\_locations, double hit\_threshold=0,\par
Size win\_stride=Size(), Size padding=Size(),\par
double scale0=1.05, int group\_threshold=2);}
\begin{description}
\cvarg{img}{Source image. See \cvCppCross{gpu::HOGDescriptor::detect} for type limitations.}
\cvarg{found\_locations}{Will contain detected objects boundaries.}
\cvarg{hit\_threshold}{The threshold for the distance between features and SVM classifying plane. See \cvCppCross{gpu::HOGDescriptor::detect} for details.}
\cvarg{win\_stride}{Window stride. Must be a multiple of block stride.}
\cvarg{padding}{Mock parameter to keep CPU interface compatibility. Must be (0,0).}
\cvarg{scale0}{Coefficient of the detection window increase.}
\cvarg{group\_threshold}{After detection some objects could be covered by many rectangles. This coefficient regulates similarity threshold. 0 means don't perform grouping.\newline
See \cvCppCross{groupRectangles}.}
\end{description}
\cvCppFunc{gpu::HOGDescriptor::getDescriptors}
Returns block descriptors computed for the whole image. It's mainly used for classifier learning purposes.
\cvdefCpp{void HOGDescriptor::getDescriptors(const GpuMat\& img,\par
Size win\_stride, GpuMat\& descriptors,\par
int descr\_format=DESCR\_FORMAT\_COL\_BY\_COL);}
\begin{description}
\cvarg{img}{Source image. See \cvCppCross{gpu::HOGDescriptor::detect} for type limitations.}
\cvarg{win\_stride}{Window stride. Must be a multiple of block stride.}
\cvarg{descriptors}{2D array of descriptors.}
\cvarg{descr\_format}{Descriptor storage format:
\begin{description}
\cvarg{DESCR\_FORMAT\_ROW\_BY\_ROW}{Row-major order.}
\cvarg{DESCR\_FORMAT\_COL\_BY\_COL}{Column-major order.}
\end{description}}
\end{description}
\cvclass{gpu::CascadeClassifier\_GPU}
The cascade classifier class for object detection.
\begin{lstlisting}
class CV_EXPORTS CascadeClassifier_GPU
{
public:
CascadeClassifier_GPU();
CascadeClassifier_GPU(const string& filename);
~CascadeClassifier_GPU();
bool empty() const;
bool load(const string& filename);
void release();
/* returns number of detected objects */
int detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size());
/* Finds only the largest object. Special mode for need to training*/
bool findLargestObject;
/* Draws rectangles in input image */
bool visualizeInPlace;
Size getClassifierSize() const;
};
\end{lstlisting}
\cvfunc{cv::gpu::CascadeClassifier\_GPU::CascadeClassifier\_GPU}\par
Loads the classifier from file.
\cvdefCpp{cv::CascadeClassifier\_GPU(const string\& filename);}
\begin{description}
\cvarg{filename}{Name of file from which classifier will be load. Only old haar classifier (trained by haartraining application) and NVidia's nvbin are supported.}
\end{description}
\cvfunc{cv::gpu::CascadeClassifier\_GPU::empty}
Checks if the classifier has been loaded or not.
\cvdefCpp{bool CascadeClassifier\_GPU::empty() const;}
\cvfunc{cv::gpu::CascadeClassifier\_GPU::load}
Loads the classifier from file. The previous content is destroyed.
\cvdefCpp{bool CascadeClassifier\_GPU::load(const string\& filename);}
\begin{description}
\cvarg{filename}{Name of file from which classifier will be load. Only old haar classifier (trained by haartraining application) and NVidia's nvbin are supported.}
\end{description}
\cvfunc{cv::gpu::CascadeClassifier\_GPU::release}
Destroys loaded classifier.
\cvdefCpp{void CascadeClassifier\_GPU::release()}
\cvfunc{cv::gpu::CascadeClassifier\_GPU::detectMultiScale}
Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
\cvdefCpp{int CascadeClassifier\_GPU::detectMultiScale(const GpuMat\& image, GpuMat\& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size());}
\begin{description}
\cvarg{image}{Matrix of type \texttt{CV\_8U} containing the image in which to detect objects.}
\cvarg{objects}{Buffer to store detected objects (rectangles). If it is empty, it will be allocated with default size. If not empty, function will search not more than N objects, where N = sizeof(objectsBufer's data)/sizeof(cv::Rect).}
\cvarg{scaleFactor}{Specifies how much the image size is reduced at each image scale.}
\cvarg{minNeighbors}{Specifies how many neighbors should each candidate rectangle have to retain it.}
\cvarg{minSize}{The minimum possible object size. Objects smaller than that are ignored.}
\end{description}
The function returns number of detected objects, so you can retrieve them as in following example:
\begin{lstlisting}
cv::gpu::CascadeClassifier_GPU cascade_gpu(...);
Mat image_cpu = imread(...)
GpuMat image_gpu(image_cpu);
GpuMat objbuf;
int detections_number = cascade_gpu.detectMultiScale( image_gpu,
objbuf, 1.2, minNeighbors);
Mat obj_host;
// download only detected number of rectangles
objbuf.colRange(0, detections_number).download(obj_host);
Rect* faces = obj_host.ptr<Rect>();
for(int i = 0; i < detections_num; ++i)
cv::rectangle(image_cpu, faces[i], Scalar(255));
imshow("Faces", image_cpu);
\end{lstlisting}
See also: \cvCppCross{CascadeClassifier::detectMultiScale}.