opencv/3rdparty/openexr/IlmImf/ImfOutputFile.cpp
Alexander Alekhin 878af7ada8
Merge pull request #14725 from alalek:update_openexr_2.3.0
3rdparty: update OpenEXR 2.3.0 (#14725)

* openexr 2.2.1

* openexr 2.3.0

* openexr: build fixes

* openexr: build dwa tables on-demand
2019-06-10 20:04:23 +03:00

1404 lines
39 KiB
C++

//
///\todo: version needs fixing!
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
//
// class OutputFile
//
//-----------------------------------------------------------------------------
#include <ImfOutputFile.h>
#include <ImfInputFile.h>
#include <ImfChannelList.h>
#include <ImfMisc.h>
#include <ImfStdIO.h>
#include <ImfCompressor.h>
#include "ImathBox.h"
#include "ImathFun.h"
#include <ImfArray.h>
#include "ImfXdr.h"
#include <ImfPreviewImageAttribute.h>
#include <ImfPartType.h>
#include "IlmThreadPool.h"
#include "ImfOutputStreamMutex.h"
#include "IlmThreadSemaphore.h"
#include "IlmThreadMutex.h"
#include "Iex.h"
#include "ImfInputPart.h"
#include "ImfNamespace.h"
#include "ImfOutputPartData.h"
#include <string>
#include <vector>
#include <fstream>
#include <assert.h>
#include <algorithm>
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER
using IMATH_NAMESPACE::Box2i;
using IMATH_NAMESPACE::divp;
using IMATH_NAMESPACE::modp;
using std::string;
using std::vector;
using std::ofstream;
using std::min;
using std::max;
using ILMTHREAD_NAMESPACE::Mutex;
using ILMTHREAD_NAMESPACE::Lock;
using ILMTHREAD_NAMESPACE::Semaphore;
using ILMTHREAD_NAMESPACE::Task;
using ILMTHREAD_NAMESPACE::TaskGroup;
using ILMTHREAD_NAMESPACE::ThreadPool;
namespace {
struct OutSliceInfo
{
PixelType type;
const char * base;
size_t xStride;
size_t yStride;
int xSampling;
int ySampling;
bool zero;
OutSliceInfo (PixelType type = HALF,
const char *base = 0,
size_t xStride = 0,
size_t yStride = 0,
int xSampling = 1,
int ySampling = 1,
bool zero = false);
};
OutSliceInfo::OutSliceInfo (PixelType t,
const char *b,
size_t xs, size_t ys,
int xsm, int ysm,
bool z)
:
type (t),
base (b),
xStride (xs),
yStride (ys),
xSampling (xsm),
ySampling (ysm),
zero (z)
{
// empty
}
struct LineBuffer
{
Array<char> buffer;
const char * dataPtr;
int dataSize;
char * endOfLineBufferData;
int minY;
int maxY;
int scanLineMin;
int scanLineMax;
Compressor * compressor;
bool partiallyFull; // has incomplete data
bool hasException;
string exception;
LineBuffer (Compressor *comp);
~LineBuffer ();
void wait () {_sem.wait();}
void post () {_sem.post();}
private:
Semaphore _sem;
};
LineBuffer::LineBuffer (Compressor *comp) :
dataPtr (0),
dataSize (0),
compressor (comp),
partiallyFull (false),
hasException (false),
exception (),
_sem (1)
{
// empty
}
LineBuffer::~LineBuffer ()
{
delete compressor;
}
} // namespace
struct OutputFile::Data
{
Header header; // the image header
bool multiPart; // is the file multipart?
int version; // version attribute \todo NOT BEING WRITTEN PROPERLY
Int64 previewPosition; // file position for preview
FrameBuffer frameBuffer; // framebuffer to write into
int currentScanLine; // next scanline to be written
int missingScanLines; // number of lines to write
LineOrder lineOrder; // the file's lineorder
int minX; // data window's min x coord
int maxX; // data window's max x coord
int minY; // data window's min y coord
int maxY; // data window's max x coord
vector<Int64> lineOffsets; // stores offsets in file for
// each scanline
vector<size_t> bytesPerLine; // combined size of a line over
// all channels
vector<size_t> offsetInLineBuffer; // offset for each scanline in
// its linebuffer
Compressor::Format format; // compressor's data format
vector<OutSliceInfo> slices; // info about channels in file
Int64 lineOffsetsPosition; // file position for line
// offset table
vector<LineBuffer*> lineBuffers; // each holds one line buffer
int linesInBuffer; // number of scanlines each
// buffer holds
size_t lineBufferSize; // size of the line buffer
int partNumber; // the output part number
OutputStreamMutex * _streamData;
bool _deleteStream;
Data (int numThreads);
~Data ();
inline LineBuffer * getLineBuffer (int number); // hash function from line
// buffer indices into our
// vector of line buffers
};
OutputFile::Data::Data (int numThreads):
lineOffsetsPosition (0),
partNumber (-1),
_streamData(0),
_deleteStream(false)
{
//
// We need at least one lineBuffer, but if threading is used,
// to keep n threads busy we need 2*n lineBuffers.
//
lineBuffers.resize (max (1, 2 * numThreads));
}
OutputFile::Data::~Data ()
{
for (size_t i = 0; i < lineBuffers.size(); i++)
delete lineBuffers[i];
}
LineBuffer*
OutputFile::Data::getLineBuffer (int number)
{
return lineBuffers[number % lineBuffers.size()];
}
namespace {
Int64
writeLineOffsets (OPENEXR_IMF_INTERNAL_NAMESPACE::OStream &os, const vector<Int64> &lineOffsets)
{
Int64 pos = os.tellp();
if (pos == -1)
IEX_NAMESPACE::throwErrnoExc ("Cannot determine current file position (%T).");
for (unsigned int i = 0; i < lineOffsets.size(); i++)
Xdr::write<StreamIO> (os, lineOffsets[i]);
return pos;
}
void
writePixelData (OutputStreamMutex *filedata,
OutputFile::Data *partdata,
int lineBufferMinY,
const char pixelData[],
int pixelDataSize)
{
//
// Store a block of pixel data in the output file, and try
// to keep track of the current writing position the file
// without calling tellp() (tellp() can be fairly expensive).
//
Int64 currentPosition = filedata->currentPosition;
filedata->currentPosition = 0;
if (currentPosition == 0)
currentPosition = filedata->os->tellp();
partdata->lineOffsets[(partdata->currentScanLine - partdata->minY) / partdata->linesInBuffer] =
currentPosition;
#ifdef DEBUG
assert (filedata->os->tellp() == currentPosition);
#endif
if (partdata->multiPart)
{
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::write <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*filedata->os, partdata->partNumber);
}
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::write <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*filedata->os, lineBufferMinY);
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::write <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*filedata->os, pixelDataSize);
filedata->os->write (pixelData, pixelDataSize);
filedata->currentPosition = currentPosition +
Xdr::size<int>() +
Xdr::size<int>() +
pixelDataSize;
if (partdata->multiPart)
{
filedata->currentPosition += Xdr::size<int>();
}
}
inline void
writePixelData (OutputStreamMutex* filedata,
OutputFile::Data *partdata,
const LineBuffer *lineBuffer)
{
writePixelData (filedata, partdata,
lineBuffer->minY,
lineBuffer->dataPtr,
lineBuffer->dataSize);
}
void
convertToXdr (OutputFile::Data *ofd,
Array<char> &lineBuffer,
int lineBufferMinY,
int lineBufferMaxY,
int inSize)
{
//
// Convert the contents of a lineBuffer from the machine's native
// representation to Xdr format. This function is called by
// CompressLineBuffer::execute(), below, if the compressor wanted
// its input pixel data in the machine's native format, but then
// failed to compress the data (most compressors will expand rather
// than compress random input data).
//
// Note that this routine assumes that the machine's native
// representation of the pixel data has the same size as the
// Xdr representation. This makes it possible to convert the
// pixel data in place, without an intermediate temporary buffer.
//
//
// Iterate over all scanlines in the lineBuffer to convert.
//
char *writePtr = &lineBuffer[0];
for (int y = lineBufferMinY; y <= lineBufferMaxY; y++)
{
//
// Set these to point to the start of line y.
// We will write to writePtr from readPtr.
//
const char *readPtr = writePtr;
//
// Iterate over all slices in the file.
//
for (unsigned int i = 0; i < ofd->slices.size(); ++i)
{
//
// Test if scan line y of this channel is
// contains any data (the scan line contains
// data only if y % ySampling == 0).
//
const OutSliceInfo &slice = ofd->slices[i];
if (modp (y, slice.ySampling) != 0)
continue;
//
// Find the number of sampled pixels, dMaxX-dMinX+1, for
// slice i in scan line y (i.e. pixels within the data window
// for which x % xSampling == 0).
//
int dMinX = divp (ofd->minX, slice.xSampling);
int dMaxX = divp (ofd->maxX, slice.xSampling);
//
// Convert the samples in place.
//
convertInPlace (writePtr, readPtr, slice.type, dMaxX - dMinX + 1);
}
}
}
//
// A LineBufferTask encapsulates the task of copying a set of scanlines
// from the user's frame buffer into a LineBuffer object, compressing
// the data if necessary.
//
class LineBufferTask: public Task
{
public:
LineBufferTask (TaskGroup *group,
OutputFile::Data *ofd,
int number,
int scanLineMin,
int scanLineMax);
virtual ~LineBufferTask ();
virtual void execute ();
private:
OutputFile::Data * _ofd;
LineBuffer * _lineBuffer;
};
LineBufferTask::LineBufferTask
(TaskGroup *group,
OutputFile::Data *ofd,
int number,
int scanLineMin,
int scanLineMax)
:
Task (group),
_ofd (ofd),
_lineBuffer (_ofd->getLineBuffer(number))
{
//
// Wait for the lineBuffer to become available
//
_lineBuffer->wait ();
//
// Initialize the lineBuffer data if necessary
//
if (!_lineBuffer->partiallyFull)
{
_lineBuffer->endOfLineBufferData = _lineBuffer->buffer;
_lineBuffer->minY = _ofd->minY + number * _ofd->linesInBuffer;
_lineBuffer->maxY = min (_lineBuffer->minY + _ofd->linesInBuffer - 1,
_ofd->maxY);
_lineBuffer->partiallyFull = true;
}
_lineBuffer->scanLineMin = max (_lineBuffer->minY, scanLineMin);
_lineBuffer->scanLineMax = min (_lineBuffer->maxY, scanLineMax);
}
LineBufferTask::~LineBufferTask ()
{
//
// Signal that the line buffer is now free
//
_lineBuffer->post ();
}
void
LineBufferTask::execute ()
{
try
{
//
// First copy the pixel data from the
// frame buffer into the line buffer
//
int yStart, yStop, dy;
if (_ofd->lineOrder == INCREASING_Y)
{
yStart = _lineBuffer->scanLineMin;
yStop = _lineBuffer->scanLineMax + 1;
dy = 1;
}
else
{
yStart = _lineBuffer->scanLineMax;
yStop = _lineBuffer->scanLineMin - 1;
dy = -1;
}
int y;
for (y = yStart; y != yStop; y += dy)
{
//
// Gather one scan line's worth of pixel data and store
// them in _ofd->lineBuffer.
//
char *writePtr = _lineBuffer->buffer +
_ofd->offsetInLineBuffer[y - _ofd->minY];
//
// Iterate over all image channels.
//
for (unsigned int i = 0; i < _ofd->slices.size(); ++i)
{
//
// Test if scan line y of this channel contains any data
// (the scan line contains data only if y % ySampling == 0).
//
const OutSliceInfo &slice = _ofd->slices[i];
if (modp (y, slice.ySampling) != 0)
continue;
//
// Find the x coordinates of the leftmost and rightmost
// sampled pixels (i.e. pixels within the data window
// for which x % xSampling == 0).
//
int dMinX = divp (_ofd->minX, slice.xSampling);
int dMaxX = divp (_ofd->maxX, slice.xSampling);
//
// Fill the line buffer with with pixel data.
//
if (slice.zero)
{
//
// The frame buffer contains no data for this channel.
// Store zeroes in _lineBuffer->buffer.
//
fillChannelWithZeroes (writePtr, _ofd->format, slice.type,
dMaxX - dMinX + 1);
}
else
{
//
// If necessary, convert the pixel data to Xdr format.
// Then store the pixel data in _ofd->lineBuffer.
//
const char *linePtr = slice.base +
divp (y, slice.ySampling) *
slice.yStride;
const char *readPtr = linePtr + dMinX * slice.xStride;
const char *endPtr = linePtr + dMaxX * slice.xStride;
copyFromFrameBuffer (writePtr, readPtr, endPtr,
slice.xStride, _ofd->format,
slice.type);
}
}
if (_lineBuffer->endOfLineBufferData < writePtr)
_lineBuffer->endOfLineBufferData = writePtr;
#ifdef DEBUG
assert (writePtr - (_lineBuffer->buffer +
_ofd->offsetInLineBuffer[y - _ofd->minY]) ==
(int) _ofd->bytesPerLine[y - _ofd->minY]);
#endif
}
//
// If the next scanline isn't past the bounds of the lineBuffer
// then we are done, otherwise compress the linebuffer
//
if (y >= _lineBuffer->minY && y <= _lineBuffer->maxY)
return;
_lineBuffer->dataPtr = _lineBuffer->buffer;
_lineBuffer->dataSize = _lineBuffer->endOfLineBufferData -
_lineBuffer->buffer;
//
// Compress the data
//
Compressor *compressor = _lineBuffer->compressor;
if (compressor)
{
const char *compPtr;
int compSize = compressor->compress (_lineBuffer->dataPtr,
_lineBuffer->dataSize,
_lineBuffer->minY, compPtr);
if (compSize < _lineBuffer->dataSize)
{
_lineBuffer->dataSize = compSize;
_lineBuffer->dataPtr = compPtr;
}
else if (_ofd->format == Compressor::NATIVE)
{
//
// The data did not shrink during compression, but
// we cannot write to the file using the machine's
// native format, so we need to convert the lineBuffer
// to Xdr.
//
convertToXdr (_ofd, _lineBuffer->buffer, _lineBuffer->minY,
_lineBuffer->maxY, _lineBuffer->dataSize);
}
}
_lineBuffer->partiallyFull = false;
}
catch (std::exception &e)
{
if (!_lineBuffer->hasException)
{
_lineBuffer->exception = e.what ();
_lineBuffer->hasException = true;
}
}
catch (...)
{
if (!_lineBuffer->hasException)
{
_lineBuffer->exception = "unrecognized exception";
_lineBuffer->hasException = true;
}
}
}
} // namespace
OutputFile::OutputFile
(const char fileName[],
const Header &header,
int numThreads)
:
_data (new Data (numThreads))
{
_data->_streamData=new OutputStreamMutex ();
_data->_deleteStream=true;
try
{
header.sanityCheck();
_data->_streamData->os = new StdOFStream (fileName);
_data->multiPart=false; // only one header, not multipart
initialize (header);
_data->_streamData->currentPosition = _data->_streamData->os->tellp();
// Write header and empty offset table to the file.
writeMagicNumberAndVersionField(*_data->_streamData->os, _data->header);
_data->previewPosition =
_data->header.writeTo (*_data->_streamData->os);
_data->lineOffsetsPosition =
writeLineOffsets (*_data->_streamData->os,_data->lineOffsets);
}
catch (IEX_NAMESPACE::BaseExc &e)
{
// ~OutputFile will not run, so free memory here
if (_data)
{
if (_data->_streamData)
{
delete _data->_streamData->os;
delete _data->_streamData;
}
delete _data;
}
REPLACE_EXC (e, "Cannot open image file "
"\"" << fileName << "\". " << e.what());
throw;
}
catch (...)
{
// ~OutputFile will not run, so free memory here
if (_data)
{
if (_data->_streamData)
{
delete _data->_streamData->os;
delete _data->_streamData;
}
delete _data;
}
throw;
}
}
OutputFile::OutputFile
(OPENEXR_IMF_INTERNAL_NAMESPACE::OStream &os,
const Header &header,
int numThreads)
:
_data (new Data (numThreads))
{
_data->_streamData=new OutputStreamMutex ();
_data->_deleteStream=false;
try
{
header.sanityCheck();
_data->_streamData->os = &os;
_data->multiPart=false;
initialize (header);
_data->_streamData->currentPosition = _data->_streamData->os->tellp();
// Write header and empty offset table to the file.
writeMagicNumberAndVersionField(*_data->_streamData->os, _data->header);
_data->previewPosition =
_data->header.writeTo (*_data->_streamData->os);
_data->lineOffsetsPosition =
writeLineOffsets (*_data->_streamData->os, _data->lineOffsets);
}
catch (IEX_NAMESPACE::BaseExc &e)
{
// ~OutputFile will not run, so free memory here
if (_data)
{
if (_data->_streamData)
delete _data->_streamData;
delete _data;
}
REPLACE_EXC (e, "Cannot open image file "
"\"" << os.fileName() << "\". " << e.what());
throw;
}
catch (...)
{
// ~OutputFile will not run, so free memory here
if (_data)
{
if (_data->_streamData)
delete _data->_streamData;
delete _data;
}
throw;
}
}
OutputFile::OutputFile(const OutputPartData* part) : _data(NULL)
{
try
{
if (part->header.type() != SCANLINEIMAGE)
throw IEX_NAMESPACE::ArgExc("Can't build a OutputFile from a type-mismatched part.");
_data = new Data (part->numThreads);
_data->_streamData = part->mutex;
_data->_deleteStream=false;
_data->multiPart=part->multipart;
initialize (part->header);
_data->partNumber = part->partNumber;
_data->lineOffsetsPosition = part->chunkOffsetTablePosition;
_data->previewPosition = part->previewPosition;
}
catch (IEX_NAMESPACE::BaseExc &e)
{
if (_data) delete _data;
REPLACE_EXC (e, "Cannot initialize output part "
"\"" << part->partNumber << "\". " << e.what());
throw;
}
catch (...)
{
if (_data) delete _data;
throw;
}
}
void
OutputFile::initialize (const Header &header)
{
_data->header = header;
// "fix" the type if it happens to be set incorrectly
// (attribute is optional, but ensure it is correct if it exists)
if(_data->header.hasType())
{
_data->header.setType(SCANLINEIMAGE);
}
const Box2i &dataWindow = header.dataWindow();
_data->currentScanLine = (header.lineOrder() == INCREASING_Y)?
dataWindow.min.y: dataWindow.max.y;
_data->missingScanLines = dataWindow.max.y - dataWindow.min.y + 1;
_data->lineOrder = header.lineOrder();
_data->minX = dataWindow.min.x;
_data->maxX = dataWindow.max.x;
_data->minY = dataWindow.min.y;
_data->maxY = dataWindow.max.y;
size_t maxBytesPerLine = bytesPerLineTable (_data->header,
_data->bytesPerLine);
for (size_t i = 0; i < _data->lineBuffers.size(); ++i)
{
_data->lineBuffers[i] =
new LineBuffer (newCompressor (_data->header.compression(),
maxBytesPerLine,
_data->header));
}
LineBuffer *lineBuffer = _data->lineBuffers[0];
_data->format = defaultFormat (lineBuffer->compressor);
_data->linesInBuffer = numLinesInBuffer (lineBuffer->compressor);
_data->lineBufferSize = maxBytesPerLine * _data->linesInBuffer;
for (size_t i = 0; i < _data->lineBuffers.size(); i++)
_data->lineBuffers[i]->buffer.resizeErase(_data->lineBufferSize);
int lineOffsetSize = (dataWindow.max.y - dataWindow.min.y +
_data->linesInBuffer) / _data->linesInBuffer;
_data->lineOffsets.resize (lineOffsetSize);
offsetInLineBufferTable (_data->bytesPerLine,
_data->linesInBuffer,
_data->offsetInLineBuffer);
}
OutputFile::~OutputFile ()
{
if (_data)
{
{
Lock lock(*_data->_streamData);
Int64 originalPosition = _data->_streamData->os->tellp();
if (_data->lineOffsetsPosition > 0)
{
try
{
_data->_streamData->os->seekp (_data->lineOffsetsPosition);
writeLineOffsets (*_data->_streamData->os, _data->lineOffsets);
//
// Restore the original position.
//
_data->_streamData->os->seekp (originalPosition);
}
catch (...)
{
//
// We cannot safely throw any exceptions from here.
// This destructor may have been called because the
// stack is currently being unwound for another
// exception.
//
}
}
}
if (_data->_deleteStream && _data->_streamData)
delete _data->_streamData->os;
if (_data->partNumber == -1 && _data->_streamData)
delete _data->_streamData;
delete _data;
}
}
const char *
OutputFile::fileName () const
{
return _data->_streamData->os->fileName();
}
const Header &
OutputFile::header () const
{
return _data->header;
}
void
OutputFile::setFrameBuffer (const FrameBuffer &frameBuffer)
{
Lock lock (*_data->_streamData);
//
// Check if the new frame buffer descriptor
// is compatible with the image file header.
//
const ChannelList &channels = _data->header.channels();
for (ChannelList::ConstIterator i = channels.begin();
i != channels.end();
++i)
{
FrameBuffer::ConstIterator j = frameBuffer.find (i.name());
if (j == frameBuffer.end())
continue;
if (i.channel().type != j.slice().type)
{
THROW (IEX_NAMESPACE::ArgExc, "Pixel type of \"" << i.name() << "\" channel "
"of output file \"" << fileName() << "\" is "
"not compatible with the frame buffer's "
"pixel type.");
}
if (i.channel().xSampling != j.slice().xSampling ||
i.channel().ySampling != j.slice().ySampling)
{
THROW (IEX_NAMESPACE::ArgExc, "X and/or y subsampling factors "
"of \"" << i.name() << "\" channel "
"of output file \"" << fileName() << "\" are "
"not compatible with the frame buffer's "
"subsampling factors.");
}
}
//
// Initialize slice table for writePixels().
//
vector<OutSliceInfo> slices;
for (ChannelList::ConstIterator i = channels.begin();
i != channels.end();
++i)
{
FrameBuffer::ConstIterator j = frameBuffer.find (i.name());
if (j == frameBuffer.end())
{
//
// Channel i is not present in the frame buffer.
// In the file, channel i will contain only zeroes.
//
slices.push_back (OutSliceInfo (i.channel().type,
0, // base
0, // xStride,
0, // yStride,
i.channel().xSampling,
i.channel().ySampling,
true)); // zero
}
else
{
//
// Channel i is present in the frame buffer.
//
slices.push_back (OutSliceInfo (j.slice().type,
j.slice().base,
j.slice().xStride,
j.slice().yStride,
j.slice().xSampling,
j.slice().ySampling,
false)); // zero
}
}
//
// Store the new frame buffer.
//
_data->frameBuffer = frameBuffer;
_data->slices = slices;
}
const FrameBuffer &
OutputFile::frameBuffer () const
{
Lock lock (*_data->_streamData);
return _data->frameBuffer;
}
void
OutputFile::writePixels (int numScanLines)
{
try
{
Lock lock (*_data->_streamData);
if (_data->slices.size() == 0)
throw IEX_NAMESPACE::ArgExc ("No frame buffer specified "
"as pixel data source.");
//
// Maintain two iterators:
// nextWriteBuffer: next linebuffer to be written to the file
// nextCompressBuffer: next linebuffer to compress
//
int first = (_data->currentScanLine - _data->minY) /
_data->linesInBuffer;
int nextWriteBuffer = first;
int nextCompressBuffer;
int stop;
int step;
int scanLineMin;
int scanLineMax;
{
//
// Create a task group for all line buffer tasks. When the
// taskgroup goes out of scope, the destructor waits until
// all tasks are complete.
//
TaskGroup taskGroup;
//
// Determine the range of lineBuffers that intersect the scan
// line range. Then add the initial compression tasks to the
// thread pool. We always add in at least one task but the
// individual task might not do anything if numScanLines == 0.
//
if (_data->lineOrder == INCREASING_Y)
{
int last = (_data->currentScanLine + (numScanLines - 1) -
_data->minY) / _data->linesInBuffer;
scanLineMin = _data->currentScanLine;
scanLineMax = _data->currentScanLine + numScanLines - 1;
int numTasks = max (min ((int)_data->lineBuffers.size(),
last - first + 1),
1);
for (int i = 0; i < numTasks; i++)
{
ThreadPool::addGlobalTask
(new LineBufferTask (&taskGroup, _data, first + i,
scanLineMin, scanLineMax));
}
nextCompressBuffer = first + numTasks;
stop = last + 1;
step = 1;
}
else
{
int last = (_data->currentScanLine - (numScanLines - 1) -
_data->minY) / _data->linesInBuffer;
scanLineMax = _data->currentScanLine;
scanLineMin = _data->currentScanLine - numScanLines + 1;
int numTasks = max (min ((int)_data->lineBuffers.size(),
first - last + 1),
1);
for (int i = 0; i < numTasks; i++)
{
ThreadPool::addGlobalTask
(new LineBufferTask (&taskGroup, _data, first - i,
scanLineMin, scanLineMax));
}
nextCompressBuffer = first - numTasks;
stop = last - 1;
step = -1;
}
while (true)
{
if (_data->missingScanLines <= 0)
{
throw IEX_NAMESPACE::ArgExc ("Tried to write more scan lines "
"than specified by the data window.");
}
//
// Wait until the next line buffer is ready to be written
//
LineBuffer *writeBuffer =
_data->getLineBuffer (nextWriteBuffer);
writeBuffer->wait();
int numLines = writeBuffer->scanLineMax -
writeBuffer->scanLineMin + 1;
_data->missingScanLines -= numLines;
//
// If the line buffer is only partially full, then it is
// not complete and we cannot write it to disk yet.
//
if (writeBuffer->partiallyFull)
{
_data->currentScanLine = _data->currentScanLine +
step * numLines;
writeBuffer->post();
return;
}
//
// Write the line buffer
//
writePixelData (_data->_streamData, _data, writeBuffer);
nextWriteBuffer += step;
_data->currentScanLine = _data->currentScanLine +
step * numLines;
#ifdef DEBUG
assert (_data->currentScanLine ==
((_data->lineOrder == INCREASING_Y) ?
writeBuffer->scanLineMax + 1:
writeBuffer->scanLineMin - 1));
#endif
//
// Release the lock on the line buffer
//
writeBuffer->post();
//
// If this was the last line buffer in the scanline range
//
if (nextWriteBuffer == stop)
break;
//
// If there are no more line buffers to compress,
// then only continue to write out remaining lineBuffers
//
if (nextCompressBuffer == stop)
continue;
//
// Add nextCompressBuffer as a compression task
//
ThreadPool::addGlobalTask
(new LineBufferTask (&taskGroup, _data, nextCompressBuffer,
scanLineMin, scanLineMax));
//
// Update the next line buffer we need to compress
//
nextCompressBuffer += step;
}
//
// Finish all tasks
//
}
//
// Exeption handling:
//
// LineBufferTask::execute() may have encountered exceptions, but
// those exceptions occurred in another thread, not in the thread
// that is executing this call to OutputFile::writePixels().
// LineBufferTask::execute() has caught all exceptions and stored
// the exceptions' what() strings in the line buffers.
// Now we check if any line buffer contains a stored exception; if
// this is the case then we re-throw the exception in this thread.
// (It is possible that multiple line buffers contain stored
// exceptions. We re-throw the first exception we find and
// ignore all others.)
//
const string *exception = 0;
for (size_t i = 0; i < _data->lineBuffers.size(); ++i)
{
LineBuffer *lineBuffer = _data->lineBuffers[i];
if (lineBuffer->hasException && !exception)
exception = &lineBuffer->exception;
lineBuffer->hasException = false;
}
if (exception)
throw IEX_NAMESPACE::IoExc (*exception);
}
catch (IEX_NAMESPACE::BaseExc &e)
{
REPLACE_EXC (e, "Failed to write pixel data to image "
"file \"" << fileName() << "\". " << e.what());
throw;
}
}
int
OutputFile::currentScanLine () const
{
Lock lock (*_data->_streamData);
return _data->currentScanLine;
}
void
OutputFile::copyPixels (InputFile &in)
{
Lock lock (*_data->_streamData);
//
// Check if this file's and and the InputFile's
// headers are compatible.
//
const Header &hdr = _data->header;
const Header &inHdr = in.header();
if (inHdr.find("tiles") != inHdr.end())
THROW (IEX_NAMESPACE::ArgExc, "Cannot copy pixels from image "
"file \"" << in.fileName() << "\" to image "
"file \"" << fileName() << "\". "
"The input file is tiled, but the output file is "
"not. Try using TiledOutputFile::copyPixels "
"instead.");
if (!(hdr.dataWindow() == inHdr.dataWindow()))
THROW (IEX_NAMESPACE::ArgExc, "Cannot copy pixels from image "
"file \"" << in.fileName() << "\" to image "
"file \"" << fileName() << "\". "
"The files have different data windows.");
if (!(hdr.lineOrder() == inHdr.lineOrder()))
THROW (IEX_NAMESPACE::ArgExc, "Quick pixel copy from image "
"file \"" << in.fileName() << "\" to image "
"file \"" << fileName() << "\" failed. "
"The files have different line orders.");
if (!(hdr.compression() == inHdr.compression()))
THROW (IEX_NAMESPACE::ArgExc, "Quick pixel copy from image "
"file \"" << in.fileName() << "\" to image "
"file \"" << fileName() << "\" failed. "
"The files use different compression methods.");
if (!(hdr.channels() == inHdr.channels()))
THROW (IEX_NAMESPACE::ArgExc, "Quick pixel copy from image "
"file \"" << in.fileName() << "\" to image "
"file \"" << fileName() << "\" failed. "
"The files have different channel lists.");
//
// Verify that no pixel data have been written to this file yet.
//
const Box2i &dataWindow = hdr.dataWindow();
if (_data->missingScanLines != dataWindow.max.y - dataWindow.min.y + 1)
THROW (IEX_NAMESPACE::LogicExc, "Quick pixel copy from image "
"file \"" << in.fileName() << "\" to image "
"file \"" << fileName() << "\" failed. "
"\"" << fileName() << "\" already contains "
"pixel data.");
//
// Copy the pixel data.
//
while (_data->missingScanLines > 0)
{
const char *pixelData;
int pixelDataSize;
in.rawPixelData (_data->currentScanLine, pixelData, pixelDataSize);
writePixelData (_data->_streamData, _data, lineBufferMinY (_data->currentScanLine,
_data->minY,
_data->linesInBuffer),
pixelData, pixelDataSize);
_data->currentScanLine += (_data->lineOrder == INCREASING_Y)?
_data->linesInBuffer: -_data->linesInBuffer;
_data->missingScanLines -= _data->linesInBuffer;
}
}
void
OutputFile::copyPixels( InputPart & in)
{
copyPixels(*in.file);
}
void
OutputFile::updatePreviewImage (const PreviewRgba newPixels[])
{
Lock lock (*_data->_streamData);
if (_data->previewPosition <= 0)
THROW (IEX_NAMESPACE::LogicExc, "Cannot update preview image pixels. "
"File \"" << fileName() << "\" does not "
"contain a preview image.");
//
// Store the new pixels in the header's preview image attribute.
//
PreviewImageAttribute &pia =
_data->header.typedAttribute <PreviewImageAttribute> ("preview");
PreviewImage &pi = pia.value();
PreviewRgba *pixels = pi.pixels();
int numPixels = pi.width() * pi.height();
for (int i = 0; i < numPixels; ++i)
pixels[i] = newPixels[i];
//
// Save the current file position, jump to the position in
// the file where the preview image starts, store the new
// preview image, and jump back to the saved file position.
//
Int64 savedPosition = _data->_streamData->os->tellp();
try
{
_data->_streamData->os->seekp (_data->previewPosition);
pia.writeValueTo (*_data->_streamData->os, _data->version);
_data->_streamData->os->seekp (savedPosition);
}
catch (IEX_NAMESPACE::BaseExc &e)
{
REPLACE_EXC (e, "Cannot update preview image pixels for "
"file \"" << fileName() << "\". " << e.what());
throw;
}
}
void
OutputFile::breakScanLine (int y, int offset, int length, char c)
{
Lock lock (*_data->_streamData);
Int64 position =
_data->lineOffsets[(y - _data->minY) / _data->linesInBuffer];
if (!position)
THROW (IEX_NAMESPACE::ArgExc, "Cannot overwrite scan line " << y << ". "
"The scan line has not yet been stored in "
"file \"" << fileName() << "\".");
_data->_streamData->currentPosition = 0;
_data->_streamData->os->seekp (position + offset);
for (int i = 0; i < length; ++i)
_data->_streamData->os->write (&c, 1);
}
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT