opencv/3rdparty/openexr/IlmImf/ImfMultiPartInputFile.cpp
Alexander Alekhin 878af7ada8
Merge pull request #14725 from alalek:update_openexr_2.3.0
3rdparty: update OpenEXR 2.3.0 (#14725)

* openexr 2.2.1

* openexr 2.3.0

* openexr: build fixes

* openexr: build dwa tables on-demand
2019-06-10 20:04:23 +03:00

784 lines
24 KiB
C++

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2011, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#include "ImfMultiPartInputFile.h"
#include "ImfTimeCodeAttribute.h"
#include "ImfChromaticitiesAttribute.h"
#include "ImfBoxAttribute.h"
#include "ImfFloatAttribute.h"
#include "ImfStdIO.h"
#include "ImfTileOffsets.h"
#include "ImfMisc.h"
#include "ImfTiledMisc.h"
#include "ImfInputStreamMutex.h"
#include "ImfInputPartData.h"
#include "ImfPartType.h"
#include "ImfInputFile.h"
#include "ImfScanLineInputFile.h"
#include "ImfTiledInputFile.h"
#include "ImfDeepScanLineInputFile.h"
#include "ImfDeepTiledInputFile.h"
#include "ImfVersion.h"
#include <OpenEXRConfig.h>
#include <IlmThread.h>
#include <IlmThreadMutex.h>
#include <Iex.h>
#include <map>
#include <set>
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER
using ILMTHREAD_NAMESPACE::Mutex;
using ILMTHREAD_NAMESPACE::Lock;
using IMATH_NAMESPACE::Box2i;
using std::vector;
using std::map;
using std::set;
using std::string;
namespace
{
// Controls whether we error out in the event of shared attribute
// inconsistency in the input file
static const bool strictSharedAttribute = true;
}
struct MultiPartInputFile::Data: public InputStreamMutex
{
int version; // Version of this file.
bool deleteStream; // If we should delete the stream during destruction.
vector<InputPartData*> parts; // Data to initialize Output files.
int numThreads; // Number of threads
bool reconstructChunkOffsetTable; // If we should reconstruct
// the offset table if it's broken.
std::map<int,GenericInputFile*> _inputFiles;
std::vector<Header> _headers;
void chunkOffsetReconstruction(OPENEXR_IMF_INTERNAL_NAMESPACE::IStream& is, const std::vector<InputPartData*>& parts);
void readChunkOffsetTables(bool reconstructChunkOffsetTable);
bool checkSharedAttributesValues(const Header & src,
const Header & dst,
std::vector<std::string> & conflictingAttributes) const;
TileOffsets* createTileOffsets(const Header& header);
InputPartData* getPart(int partNumber);
Data (bool deleteStream, int numThreads, bool reconstructChunkOffsetTable):
InputStreamMutex(),
deleteStream (deleteStream),
numThreads (numThreads),
reconstructChunkOffsetTable(reconstructChunkOffsetTable)
{
}
~Data()
{
if (deleteStream) delete is;
for (size_t i = 0; i < parts.size(); i++)
delete parts[i];
}
template <class T>
T* createInputPartT(int partNumber)
{
}
};
MultiPartInputFile::MultiPartInputFile(const char fileName[],
int numThreads,
bool reconstructChunkOffsetTable):
_data(new Data(true, numThreads, reconstructChunkOffsetTable))
{
try
{
_data->is = new StdIFStream (fileName);
initialize();
}
catch (IEX_NAMESPACE::BaseExc &e)
{
delete _data;
REPLACE_EXC (e, "Cannot read image file "
"\"" << fileName << "\". " << e.what());
throw;
}
catch (...)
{
delete _data;
throw;
}
}
MultiPartInputFile::MultiPartInputFile (OPENEXR_IMF_INTERNAL_NAMESPACE::IStream& is,
int numThreads,
bool reconstructChunkOffsetTable):
_data(new Data(false, numThreads, reconstructChunkOffsetTable))
{
try
{
_data->is = &is;
initialize();
}
catch (IEX_NAMESPACE::BaseExc &e)
{
delete _data;
REPLACE_EXC (e, "Cannot read image file "
"\"" << is.fileName() << "\". " << e.what());
throw;
}
catch (...)
{
delete _data;
throw;
}
}
template<class T>
T*
MultiPartInputFile::getInputPart(int partNumber)
{
Lock lock(*_data);
if (_data->_inputFiles.find(partNumber) == _data->_inputFiles.end())
{
T* file = new T(_data->getPart(partNumber));
_data->_inputFiles.insert(std::make_pair(partNumber, (GenericInputFile*) file));
return file;
}
else return (T*) _data->_inputFiles[partNumber];
}
template InputFile* MultiPartInputFile::getInputPart<InputFile>(int);
template TiledInputFile* MultiPartInputFile::getInputPart<TiledInputFile>(int);
template DeepScanLineInputFile* MultiPartInputFile::getInputPart<DeepScanLineInputFile>(int);
template DeepTiledInputFile* MultiPartInputFile::getInputPart<DeepTiledInputFile>(int);
InputPartData*
MultiPartInputFile::getPart(int partNumber)
{
return _data->getPart(partNumber);
}
const Header &
MultiPartInputFile::header(int n) const
{
return _data->_headers[n];
}
MultiPartInputFile::~MultiPartInputFile()
{
for (map<int, GenericInputFile*>::iterator it = _data->_inputFiles.begin();
it != _data->_inputFiles.end(); it++)
{
delete it->second;
}
delete _data;
}
bool
MultiPartInputFile::Data::checkSharedAttributesValues(const Header & src,
const Header & dst,
vector<string> & conflictingAttributes) const
{
conflictingAttributes.clear();
bool conflict = false;
//
// Display Window
//
if (src.displayWindow() != dst.displayWindow())
{
conflict = true;
conflictingAttributes.push_back ("displayWindow");
}
//
// Pixel Aspect Ratio
//
if (src.pixelAspectRatio() != dst.pixelAspectRatio())
{
conflict = true;
conflictingAttributes.push_back ("pixelAspectRatio");
}
//
// Timecode
//
const TimeCodeAttribute * srcTimeCode = src.findTypedAttribute<
TimeCodeAttribute> (TimeCodeAttribute::staticTypeName());
const TimeCodeAttribute * dstTimeCode = dst.findTypedAttribute<
TimeCodeAttribute> (TimeCodeAttribute::staticTypeName());
if (dstTimeCode)
{
if ( (srcTimeCode && (srcTimeCode->value() != dstTimeCode->value())) ||
(!srcTimeCode))
{
conflict = true;
conflictingAttributes.push_back (TimeCodeAttribute::staticTypeName());
}
}
//
// Chromaticities
//
const ChromaticitiesAttribute * srcChrom = src.findTypedAttribute<
ChromaticitiesAttribute> (ChromaticitiesAttribute::staticTypeName());
const ChromaticitiesAttribute * dstChrom = dst.findTypedAttribute<
ChromaticitiesAttribute> (ChromaticitiesAttribute::staticTypeName());
if (dstChrom)
{
if ( (srcChrom && (srcChrom->value() != dstChrom->value())) ||
(!srcChrom))
{
conflict = true;
conflictingAttributes.push_back (ChromaticitiesAttribute::staticTypeName());
}
}
return conflict;
}
void
MultiPartInputFile::initialize()
{
readMagicNumberAndVersionField(*_data->is, _data->version);
bool multipart = isMultiPart(_data->version);
bool tiled = isTiled(_data->version);
//
// Multipart files don't have and shouldn't have the tiled bit set.
//
if (tiled && multipart)
throw IEX_NAMESPACE::InputExc ("Multipart files cannot have the tiled bit set");
int pos = 0;
while (true)
{
Header header;
header.readFrom(*_data->is, _data->version);
//
// If we read nothing then we stop reading.
//
if (header.readsNothing())
{
pos++;
break;
}
_data->_headers.push_back(header);
if(multipart == false)
break;
}
//
// Perform usual check on headers.
//
for (size_t i = 0; i < _data->_headers.size(); i++)
{
//
// Silently invent a type if the file is a single part regular image.
//
if( _data->_headers[i].hasType() == false )
{
if(multipart)
throw IEX_NAMESPACE::ArgExc ("Every header in a multipart file should have a type");
_data->_headers[i].setType(tiled ? TILEDIMAGE : SCANLINEIMAGE);
}
else
{
//
// Silently fix the header type if it's wrong
// (happens when a regular Image file written by EXR_2.0 is rewritten by an older library,
// so doesn't effect deep image types)
//
if(!multipart && !isNonImage(_data->version))
{
_data->_headers[i].setType(tiled ? TILEDIMAGE : SCANLINEIMAGE);
}
}
if( _data->_headers[i].hasName() == false )
{
if(multipart)
throw IEX_NAMESPACE::ArgExc ("Every header in a multipart file should have a name");
}
if (isTiled(_data->_headers[i].type()))
_data->_headers[i].sanityCheck(true, multipart);
else
_data->_headers[i].sanityCheck(false, multipart);
}
//
// Check name uniqueness.
//
if (multipart)
{
set<string> names;
for (size_t i = 0; i < _data->_headers.size(); i++)
{
if (names.find(_data->_headers[i].name()) != names.end())
{
throw IEX_NAMESPACE::InputExc ("Header name " + _data->_headers[i].name() +
" is not a unique name.");
}
names.insert(_data->_headers[i].name());
}
}
//
// Check shared attributes compliance.
//
if (multipart && strictSharedAttribute)
{
for (size_t i = 1; i < _data->_headers.size(); i++)
{
vector <string> attrs;
if (_data->checkSharedAttributesValues (_data->_headers[0], _data->_headers[i], attrs))
{
string attrNames;
for (size_t j=0; j<attrs.size(); j++)
attrNames += " " + attrs[j];
throw IEX_NAMESPACE::InputExc ("Header name " + _data->_headers[i].name() +
" has non-conforming shared attributes: "+
attrNames);
}
}
}
//
// Create InputParts and read chunk offset tables.
//
for (size_t i = 0; i < _data->_headers.size(); i++)
_data->parts.push_back(
new InputPartData(_data, _data->_headers[i], i, _data->numThreads, _data->version));
_data->readChunkOffsetTables(_data->reconstructChunkOffsetTable);
}
TileOffsets*
MultiPartInputFile::Data::createTileOffsets(const Header& header)
{
//
// Get the dataWindow information
//
const Box2i &dataWindow = header.dataWindow();
int minX = dataWindow.min.x;
int maxX = dataWindow.max.x;
int minY = dataWindow.min.y;
int maxY = dataWindow.max.y;
//
// Precompute level and tile information
//
int* numXTiles;
int* numYTiles;
int numXLevels, numYLevels;
TileDescription tileDesc = header.tileDescription();
precalculateTileInfo (tileDesc,
minX, maxX,
minY, maxY,
numXTiles, numYTiles,
numXLevels, numYLevels);
TileOffsets* tileOffsets = new TileOffsets (tileDesc.mode,
numXLevels,
numYLevels,
numXTiles,
numYTiles);
delete [] numXTiles;
delete [] numYTiles;
return tileOffsets;
}
void
MultiPartInputFile::Data::chunkOffsetReconstruction(OPENEXR_IMF_INTERNAL_NAMESPACE::IStream& is, const vector<InputPartData*>& parts)
{
//
// Reconstruct broken chunk offset tables. Stop once we received any exception.
//
Int64 position = is.tellg();
//
// check we understand all the parts available: if not, we cannot continue
// exceptions thrown here should trickle back up to the constructor
//
for (size_t i = 0; i < parts.size(); i++)
{
Header& header=parts[i]->header;
//
// do we have a valid type entry?
// we only need them for true multipart files or single part non-image (deep) files
//
if(!header.hasType() && (isMultiPart(version) || isNonImage(version)))
{
throw IEX_NAMESPACE::ArgExc("cannot reconstruct incomplete file: part with missing type");
}
if(!isSupportedType(header.type()))
{
throw IEX_NAMESPACE::ArgExc("cannot reconstruct incomplete file: part with unknown type "+header.type());
}
}
// how many chunks should we read? We should stop when we reach the end
size_t total_chunks = 0;
// for tiled-based parts, array of (pointers to) tileOffsets objects
// to create mapping between tile coordinates and chunk table indices
vector<TileOffsets*> tileOffsets(parts.size());
// for scanline-based parts, number of scanlines in each part
vector<int> rowsizes(parts.size());
for(size_t i = 0 ; i < parts.size() ; i++)
{
total_chunks += parts[i]->chunkOffsets.size();
if (isTiled(parts[i]->header.type()))
{
tileOffsets[i] = createTileOffsets(parts[i]->header);
}else{
tileOffsets[i] = NULL;
// (TODO) fix this so that it doesn't need to be revised for future compression types.
switch(parts[i]->header.compression())
{
case DWAB_COMPRESSION :
rowsizes[i] = 256;
break;
case PIZ_COMPRESSION :
case B44_COMPRESSION :
case B44A_COMPRESSION :
case DWAA_COMPRESSION :
rowsizes[i]=32;
break;
case ZIP_COMPRESSION :
case PXR24_COMPRESSION :
rowsizes[i]=16;
break;
case ZIPS_COMPRESSION :
case RLE_COMPRESSION :
case NO_COMPRESSION :
rowsizes[i]=1;
break;
default :
throw(IEX_NAMESPACE::ArgExc("Unknown compression method in chunk offset reconstruction"));
}
}
}
try
{
//
//
//
Int64 chunk_start = position;
for (size_t i = 0; i < total_chunks ; i++)
{
//
// do we have a part number?
//
int partNumber = 0;
if(isMultiPart(version))
{
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, partNumber);
}
if(partNumber<0 || partNumber>int(parts.size()))
{
// bail here - bad part number
throw int();
}
Header& header = parts[partNumber]->header;
// size of chunk NOT including multipart field
Int64 size_of_chunk=0;
if (isTiled(header.type()))
{
//
//
//
int tilex,tiley,levelx,levely;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, tilex);
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, tiley);
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, levelx);
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, levely);
//std::cout << "chunk_start for " << tilex <<',' << tiley << ',' << levelx << ' ' << levely << ':' << chunk_start << std::endl;
if(!tileOffsets[partNumber])
{
// this shouldn't actually happen - we should have allocated a valid
// tileOffsets for any part which isTiled
throw int();
}
if(!tileOffsets[partNumber]->isValidTile(tilex,tiley,levelx,levely))
{
//std::cout << "invalid tile : aborting\n";
throw int();
}
(*tileOffsets[partNumber])(tilex,tiley,levelx,levely)=chunk_start;
// compute chunk sizes - different procedure for deep tiles and regular
// ones
if(header.type()==DEEPTILE)
{
Int64 packed_offset;
Int64 packed_sample;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, packed_offset);
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, packed_sample);
//add 40 byte header to packed sizes (tile coordinates, packed sizes, unpacked size)
size_of_chunk=packed_offset+packed_sample+40;
}
else
{
// regular image has 20 bytes of header, 4 byte chunksize;
int chunksize;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, chunksize);
size_of_chunk=chunksize+20;
}
}
else
{
int y_coordinate;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, y_coordinate);
y_coordinate -= header.dataWindow().min.y;
y_coordinate /= rowsizes[partNumber];
if(y_coordinate < 0 || y_coordinate >= int(parts[partNumber]->chunkOffsets.size()))
{
//std::cout << "aborting reconstruction: bad data " << y_coordinate << endl;
//bail to exception catcher: broken scanline
throw int();
}
parts[partNumber]->chunkOffsets[y_coordinate]=chunk_start;
//std::cout << "chunk_start for " << y_coordinate << ':' << chunk_start << std::endl;
if(header.type()==DEEPSCANLINE)
{
Int64 packed_offset;
Int64 packed_sample;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, packed_offset);
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, packed_sample);
size_of_chunk=packed_offset+packed_sample+28;
}
else
{
int chunksize;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, chunksize);
size_of_chunk=chunksize+8;
}
}
if(isMultiPart(version))
{
chunk_start+=4;
}
chunk_start+=size_of_chunk;
//std::cout << " next chunk +"<<size_of_chunk << " = " << chunk_start << std::endl;
is.seekg(chunk_start);
}
}
catch (...)
{
//
// Suppress all exceptions. This functions is
// called only to reconstruct the line offset
// table for incomplete files, and exceptions
// are likely.
//
}
// copy tiled part data back to chunk offsets
for(size_t partNumber=0;partNumber<parts.size();partNumber++)
{
if(tileOffsets[partNumber])
{
size_t pos=0;
vector<vector<vector <Int64> > > offsets = tileOffsets[partNumber]->getOffsets();
for (size_t l = 0; l < offsets.size(); l++)
for (size_t y = 0; y < offsets[l].size(); y++)
for (size_t x = 0; x < offsets[l][y].size(); x++)
{
parts[ partNumber ]->chunkOffsets[pos] = offsets[l][y][x];
pos++;
}
delete tileOffsets[partNumber];
}
}
is.clear();
is.seekg (position);
}
InputPartData*
MultiPartInputFile::Data::getPart(int partNumber)
{
if (partNumber < 0 || partNumber >= (int) parts.size())
throw IEX_NAMESPACE::ArgExc ("Part number is not in valid range.");
return parts[partNumber];
}
void
MultiPartInputFile::Data::readChunkOffsetTables(bool reconstructChunkOffsetTable)
{
bool brokenPartsExist = false;
for (size_t i = 0; i < parts.size(); i++)
{
int chunkOffsetTableSize = getChunkOffsetTableSize(parts[i]->header,false);
parts[i]->chunkOffsets.resize(chunkOffsetTableSize);
for (int j = 0; j < chunkOffsetTableSize; j++)
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*is, parts[i]->chunkOffsets[j]);
//
// Check chunk offsets, reconstruct if broken.
// At first we assume the table is complete.
//
parts[i]->completed = true;
for (int j = 0; j < chunkOffsetTableSize; j++)
{
if (parts[i]->chunkOffsets[j] <= 0)
{
brokenPartsExist = true;
parts[i]->completed = false;
break;
}
}
}
if (brokenPartsExist && reconstructChunkOffsetTable)
chunkOffsetReconstruction(*is, parts);
}
int
MultiPartInputFile::version() const
{
return _data->version;
}
bool
MultiPartInputFile::partComplete(int part) const
{
return _data->parts[part]->completed;
}
int
MultiPartInputFile::parts() const
{
return int(_data->_headers.size());
}
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT