opencv/3rdparty/openexr/IlmImf/ImfScanLineInputFile.cpp
Alexander Alekhin 878af7ada8
Merge pull request #14725 from alalek:update_openexr_2.3.0
3rdparty: update OpenEXR 2.3.0 (#14725)

* openexr 2.2.1

* openexr 2.3.0

* openexr: build fixes

* openexr: build dwa tables on-demand
2019-06-10 20:04:23 +03:00

1739 lines
50 KiB
C++

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
//
// class ScanLineInputFile
//
//-----------------------------------------------------------------------------
#include "ImfScanLineInputFile.h"
#include "ImfChannelList.h"
#include "ImfMisc.h"
#include "ImfStdIO.h"
#include "ImfCompressor.h"
#include "ImathBox.h"
#include "ImathFun.h"
#include <ImfXdr.h>
#include <ImfConvert.h>
#include <ImfThreading.h>
#include <ImfPartType.h>
#include "IlmThreadPool.h"
#include "IlmThreadSemaphore.h"
#include "IlmThreadMutex.h"
#include "Iex.h"
#include "ImfVersion.h"
#include "ImfOptimizedPixelReading.h"
#include "ImfNamespace.h"
#include "ImfStandardAttributes.h"
#include <algorithm>
#include <string>
#include <vector>
#include <assert.h>
#include <cstring>
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER
using IMATH_NAMESPACE::Box2i;
using IMATH_NAMESPACE::divp;
using IMATH_NAMESPACE::modp;
using std::string;
using std::vector;
using std::ifstream;
using std::min;
using std::max;
using std::sort;
using ILMTHREAD_NAMESPACE::Mutex;
using ILMTHREAD_NAMESPACE::Lock;
using ILMTHREAD_NAMESPACE::Semaphore;
using ILMTHREAD_NAMESPACE::Task;
using ILMTHREAD_NAMESPACE::TaskGroup;
using ILMTHREAD_NAMESPACE::ThreadPool;
namespace {
struct InSliceInfo
{
PixelType typeInFrameBuffer;
PixelType typeInFile;
char * base;
size_t xStride;
size_t yStride;
int xSampling;
int ySampling;
bool fill;
bool skip;
double fillValue;
InSliceInfo (PixelType typeInFrameBuffer = HALF,
PixelType typeInFile = HALF,
char *base = 0,
size_t xStride = 0,
size_t yStride = 0,
int xSampling = 1,
int ySampling = 1,
bool fill = false,
bool skip = false,
double fillValue = 0.0);
};
InSliceInfo::InSliceInfo (PixelType tifb,
PixelType tifl,
char *b,
size_t xs, size_t ys,
int xsm, int ysm,
bool f, bool s,
double fv)
:
typeInFrameBuffer (tifb),
typeInFile (tifl),
base (b),
xStride (xs),
yStride (ys),
xSampling (xsm),
ySampling (ysm),
fill (f),
skip (s),
fillValue (fv)
{
// empty
}
struct LineBuffer
{
const char * uncompressedData;
char * buffer;
int dataSize;
int minY;
int maxY;
Compressor * compressor;
Compressor::Format format;
int number;
bool hasException;
string exception;
LineBuffer (Compressor * const comp);
~LineBuffer ();
inline void wait () {_sem.wait();}
inline void post () {_sem.post();}
private:
Semaphore _sem;
};
LineBuffer::LineBuffer (Compressor *comp):
uncompressedData (0),
buffer (0),
dataSize (0),
compressor (comp),
format (defaultFormat(compressor)),
number (-1),
hasException (false),
exception (),
_sem (1)
{
// empty
}
LineBuffer::~LineBuffer ()
{
delete compressor;
}
/// helper struct used to detect the order that the channels are stored
struct sliceOptimizationData
{
const char * base; ///< pointer to pixel data
bool fill; ///< is this channel being filled with constant, instead of read?
half fillValue; ///< if filling, the value to use
size_t offset; ///< position this channel will be in the read buffer, accounting for previous channels, as well as their type
PixelType type; ///< type of channel
size_t xStride; ///< x-stride of channel in buffer (must be set to cause channels to interleave)
size_t yStride; ///< y-stride of channel in buffer (must be same in all channels, else order will change, which is bad)
int xSampling; ///< channel x sampling
int ySampling; ///< channel y sampling
/// we need to keep the list sorted in the order they'll be written to memory
bool operator<(const sliceOptimizationData& other ) const
{
return base < other.base;
}
};
} // namespace
struct ScanLineInputFile::Data: public Mutex
{
Header header; // the image header
int version; // file's version
FrameBuffer frameBuffer; // framebuffer to write into
LineOrder lineOrder; // order of the scanlines in file
int minX; // data window's min x coord
int maxX; // data window's max x coord
int minY; // data window's min y coord
int maxY; // data window's max x coord
vector<Int64> lineOffsets; // stores offsets in file for
// each line
bool fileIsComplete; // True if no scanlines are missing
// in the file
int nextLineBufferMinY; // minimum y of the next linebuffer
vector<size_t> bytesPerLine; // combined size of a line over all
// channels
vector<size_t> offsetInLineBuffer; // offset for each scanline in its
// linebuffer
vector<InSliceInfo> slices; // info about channels in file
vector<LineBuffer*> lineBuffers; // each holds one line buffer
int linesInBuffer; // number of scanlines each buffer
// holds
size_t lineBufferSize; // size of the line buffer
int partNumber; // part number
bool memoryMapped; // if the stream is memory mapped
OptimizationMode optimizationMode; // optimizibility of the input file
vector<sliceOptimizationData> optimizationData; ///< channel ordering for optimized reading
Data (int numThreads);
~Data ();
inline LineBuffer * getLineBuffer (int number); // hash function from line
// buffer indices into our
// vector of line buffers
};
ScanLineInputFile::Data::Data (int numThreads):
partNumber(-1),
memoryMapped(false)
{
//
// We need at least one lineBuffer, but if threading is used,
// to keep n threads busy we need 2*n lineBuffers
//
lineBuffers.resize (max (1, 2 * numThreads));
}
ScanLineInputFile::Data::~Data ()
{
for (size_t i = 0; i < lineBuffers.size(); i++)
delete lineBuffers[i];
}
inline LineBuffer *
ScanLineInputFile::Data::getLineBuffer (int lineBufferNumber)
{
return lineBuffers[lineBufferNumber % lineBuffers.size()];
}
namespace {
void
reconstructLineOffsets (OPENEXR_IMF_INTERNAL_NAMESPACE::IStream &is,
LineOrder lineOrder,
vector<Int64> &lineOffsets)
{
Int64 position = is.tellg();
try
{
for (unsigned int i = 0; i < lineOffsets.size(); i++)
{
Int64 lineOffset = is.tellg();
int y;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, y);
int dataSize;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, dataSize);
Xdr::skip <StreamIO> (is, dataSize);
if (lineOrder == INCREASING_Y)
lineOffsets[i] = lineOffset;
else
lineOffsets[lineOffsets.size() - i - 1] = lineOffset;
}
}
catch (...)
{
//
// Suppress all exceptions. This functions is
// called only to reconstruct the line offset
// table for incomplete files, and exceptions
// are likely.
//
}
is.clear();
is.seekg (position);
}
void
readLineOffsets (OPENEXR_IMF_INTERNAL_NAMESPACE::IStream &is,
LineOrder lineOrder,
vector<Int64> &lineOffsets,
bool &complete)
{
for (unsigned int i = 0; i < lineOffsets.size(); i++)
{
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (is, lineOffsets[i]);
}
complete = true;
for (unsigned int i = 0; i < lineOffsets.size(); i++)
{
if (lineOffsets[i] <= 0)
{
//
// Invalid data in the line offset table mean that
// the file is probably incomplete (the table is
// the last thing written to the file). Either
// some process is still busy writing the file,
// or writing the file was aborted.
//
// We should still be able to read the existing
// parts of the file. In order to do this, we
// have to make a sequential scan over the scan
// line data to reconstruct the line offset table.
//
complete = false;
reconstructLineOffsets (is, lineOrder, lineOffsets);
break;
}
}
}
void
readPixelData (InputStreamMutex *streamData,
ScanLineInputFile::Data *ifd,
int minY,
char *&buffer,
int &dataSize)
{
//
// Read a single line buffer from the input file.
//
// If the input file is not memory-mapped, we copy the pixel data into
// into the array pointed to by buffer. If the file is memory-mapped,
// then we change where buffer points to instead of writing into the
// array (hence buffer needs to be a reference to a char *).
//
int lineBufferNumber = (minY - ifd->minY) / ifd->linesInBuffer;
if (lineBufferNumber < 0 || lineBufferNumber >= int(ifd->lineOffsets.size()))
THROW (IEX_NAMESPACE::InputExc, "Invalid scan line " << minY << " requested or missing.");
Int64 lineOffset = ifd->lineOffsets[lineBufferNumber];
if (lineOffset == 0)
THROW (IEX_NAMESPACE::InputExc, "Scan line " << minY << " is missing.");
//
// Seek to the start of the scan line in the file,
// if necessary.
//
if ( !isMultiPart(ifd->version) )
{
if (ifd->nextLineBufferMinY != minY)
streamData->is->seekg (lineOffset);
}
else
{
//
// In a multi-part file, the file pointer may have been moved by
// other parts, so we have to ask tellg() where we are.
//
if (streamData->is->tellg() != ifd->lineOffsets[lineBufferNumber])
streamData->is->seekg (lineOffset);
}
//
// Read the data block's header.
//
int yInFile;
//
// Read the part number when we are dealing with a multi-part file.
//
if (isMultiPart(ifd->version))
{
int partNumber;
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*streamData->is, partNumber);
if (partNumber != ifd->partNumber)
{
THROW (IEX_NAMESPACE::ArgExc, "Unexpected part number " << partNumber
<< ", should be " << ifd->partNumber << ".");
}
}
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*streamData->is, yInFile);
OPENEXR_IMF_INTERNAL_NAMESPACE::Xdr::read <OPENEXR_IMF_INTERNAL_NAMESPACE::StreamIO> (*streamData->is, dataSize);
if (yInFile != minY)
throw IEX_NAMESPACE::InputExc ("Unexpected data block y coordinate.");
if (dataSize > (int) ifd->lineBufferSize)
throw IEX_NAMESPACE::InputExc ("Unexpected data block length.");
//
// Read the pixel data.
//
if (streamData->is->isMemoryMapped ())
buffer = streamData->is->readMemoryMapped (dataSize);
else
streamData->is->read (buffer, dataSize);
//
// Keep track of which scan line is the next one in
// the file, so that we can avoid redundant seekg()
// operations (seekg() can be fairly expensive).
//
if (ifd->lineOrder == INCREASING_Y)
ifd->nextLineBufferMinY = minY + ifd->linesInBuffer;
else
ifd->nextLineBufferMinY = minY - ifd->linesInBuffer;
}
//
// A LineBufferTask encapsulates the task uncompressing a set of
// scanlines (line buffer) and copying them into the frame buffer.
//
class LineBufferTask : public Task
{
public:
LineBufferTask (TaskGroup *group,
ScanLineInputFile::Data *ifd,
LineBuffer *lineBuffer,
int scanLineMin,
int scanLineMax,
OptimizationMode optimizationMode);
virtual ~LineBufferTask ();
virtual void execute ();
private:
ScanLineInputFile::Data * _ifd;
LineBuffer * _lineBuffer;
int _scanLineMin;
int _scanLineMax;
OptimizationMode _optimizationMode;
};
LineBufferTask::LineBufferTask
(TaskGroup *group,
ScanLineInputFile::Data *ifd,
LineBuffer *lineBuffer,
int scanLineMin,
int scanLineMax,OptimizationMode optimizationMode)
:
Task (group),
_ifd (ifd),
_lineBuffer (lineBuffer),
_scanLineMin (scanLineMin),
_scanLineMax (scanLineMax),
_optimizationMode(optimizationMode)
{
// empty
}
LineBufferTask::~LineBufferTask ()
{
//
// Signal that the line buffer is now free
//
_lineBuffer->post ();
}
void
LineBufferTask::execute ()
{
try
{
//
// Uncompress the data, if necessary
//
if (_lineBuffer->uncompressedData == 0)
{
int uncompressedSize = 0;
int maxY = min (_lineBuffer->maxY, _ifd->maxY);
for (int i = _lineBuffer->minY - _ifd->minY;
i <= maxY - _ifd->minY;
++i)
{
uncompressedSize += (int) _ifd->bytesPerLine[i];
}
if (_lineBuffer->compressor &&
_lineBuffer->dataSize < uncompressedSize)
{
_lineBuffer->format = _lineBuffer->compressor->format();
_lineBuffer->dataSize = _lineBuffer->compressor->uncompress
(_lineBuffer->buffer,
_lineBuffer->dataSize,
_lineBuffer->minY,
_lineBuffer->uncompressedData);
}
else
{
//
// If the line is uncompressed, it's in XDR format,
// regardless of the compressor's output format.
//
_lineBuffer->format = Compressor::XDR;
_lineBuffer->uncompressedData = _lineBuffer->buffer;
}
}
int yStart, yStop, dy;
if (_ifd->lineOrder == INCREASING_Y)
{
yStart = _scanLineMin;
yStop = _scanLineMax + 1;
dy = 1;
}
else
{
yStart = _scanLineMax;
yStop = _scanLineMin - 1;
dy = -1;
}
for (int y = yStart; y != yStop; y += dy)
{
//
// Convert one scan line's worth of pixel data back
// from the machine-independent representation, and
// store the result in the frame buffer.
//
const char *readPtr = _lineBuffer->uncompressedData +
_ifd->offsetInLineBuffer[y - _ifd->minY];
//
// Iterate over all image channels.
//
for (unsigned int i = 0; i < _ifd->slices.size(); ++i)
{
//
// Test if scan line y of this channel contains any data
// (the scan line contains data only if y % ySampling == 0).
//
const InSliceInfo &slice = _ifd->slices[i];
if (modp (y, slice.ySampling) != 0)
continue;
//
// Find the x coordinates of the leftmost and rightmost
// sampled pixels (i.e. pixels within the data window
// for which x % xSampling == 0).
//
int dMinX = divp (_ifd->minX, slice.xSampling);
int dMaxX = divp (_ifd->maxX, slice.xSampling);
//
// Fill the frame buffer with pixel data.
//
if (slice.skip)
{
//
// The file contains data for this channel, but
// the frame buffer contains no slice for this channel.
//
skipChannel (readPtr, slice.typeInFile, dMaxX - dMinX + 1);
}
else
{
//
// The frame buffer contains a slice for this channel.
//
char *linePtr = slice.base +
divp (y, slice.ySampling) *
slice.yStride;
char *writePtr = linePtr + dMinX * slice.xStride;
char *endPtr = linePtr + dMaxX * slice.xStride;
copyIntoFrameBuffer (readPtr, writePtr, endPtr,
slice.xStride, slice.fill,
slice.fillValue, _lineBuffer->format,
slice.typeInFrameBuffer,
slice.typeInFile);
}
}
}
}
catch (std::exception &e)
{
if (!_lineBuffer->hasException)
{
_lineBuffer->exception = e.what();
_lineBuffer->hasException = true;
}
}
catch (...)
{
if (!_lineBuffer->hasException)
{
_lineBuffer->exception = "unrecognized exception";
_lineBuffer->hasException = true;
}
}
}
#ifdef IMF_HAVE_SSE2
//
// IIF format is more restricted than a perfectly generic one,
// so it is possible to perform some optimizations.
//
class LineBufferTaskIIF : public Task
{
public:
LineBufferTaskIIF (TaskGroup *group,
ScanLineInputFile::Data *ifd,
LineBuffer *lineBuffer,
int scanLineMin,
int scanLineMax,
OptimizationMode optimizationMode);
virtual ~LineBufferTaskIIF ();
virtual void execute ();
template<typename TYPE>
void getWritePointer (int y,
unsigned short*& pOutWritePointerRight,
size_t& outPixelsToCopySSE,
size_t& outPixelsToCopyNormal,int bank=0) const;
template<typename TYPE>
void getWritePointerStereo (int y,
unsigned short*& outWritePointerRight,
unsigned short*& outWritePointerLeft,
size_t& outPixelsToCopySSE,
size_t& outPixelsToCopyNormal) const;
private:
ScanLineInputFile::Data * _ifd;
LineBuffer * _lineBuffer;
int _scanLineMin;
int _scanLineMax;
OptimizationMode _optimizationMode;
};
LineBufferTaskIIF::LineBufferTaskIIF
(TaskGroup *group,
ScanLineInputFile::Data *ifd,
LineBuffer *lineBuffer,
int scanLineMin,
int scanLineMax,
OptimizationMode optimizationMode
)
:
Task (group),
_ifd (ifd),
_lineBuffer (lineBuffer),
_scanLineMin (scanLineMin),
_scanLineMax (scanLineMax),
_optimizationMode (optimizationMode)
{
/*
//
// indicates the optimised path has been taken
//
static bool could_optimise=false;
if(could_optimise==false)
{
std::cerr << " optimised path\n";
could_optimise=true;
}
*/
}
LineBufferTaskIIF::~LineBufferTaskIIF ()
{
//
// Signal that the line buffer is now free
//
_lineBuffer->post ();
}
// Return 0 if we are to skip because of sampling
// channelBank is 0 for the first group of channels, 1 for the second
template<typename TYPE>
void LineBufferTaskIIF::getWritePointer
(int y,
unsigned short*& outWritePointerRight,
size_t& outPixelsToCopySSE,
size_t& outPixelsToCopyNormal,
int channelBank
) const
{
// Channels are saved alphabetically, so the order is B G R.
// The last slice (R) will give us the location of our write pointer.
// The only slice that we support skipping is alpha, i.e. the first one.
// This does not impact the write pointer or the pixels to copy at all.
size_t nbSlicesInBank = _ifd->optimizationData.size();
int sizeOfSingleValue = sizeof(TYPE);
if(_ifd->optimizationData.size()>4)
{
// there are two banks - we only copy one at once
nbSlicesInBank/=2;
}
size_t firstChannel = 0;
if(channelBank==1)
{
firstChannel = _ifd->optimizationData.size()/2;
}
sliceOptimizationData& firstSlice = _ifd->optimizationData[firstChannel];
if (modp (y, firstSlice.ySampling) != 0)
{
outPixelsToCopySSE = 0;
outPixelsToCopyNormal = 0;
outWritePointerRight = 0;
}
const char* linePtr1 = firstSlice.base +
divp (y, firstSlice.ySampling) *
firstSlice.yStride;
int dMinX1 = divp (_ifd->minX, firstSlice.xSampling);
int dMaxX1 = divp (_ifd->maxX, firstSlice.xSampling);
// Construct the writePtr so that we start writing at
// linePtr + Min offset in the line.
outWritePointerRight = (unsigned short*)(linePtr1 +
dMinX1 * firstSlice.xStride );
size_t bytesToCopy = ((linePtr1 + dMaxX1 * firstSlice.xStride ) -
(linePtr1 + dMinX1 * firstSlice.xStride )) + 2;
size_t shortsToCopy = bytesToCopy / sizeOfSingleValue;
size_t pixelsToCopy = (shortsToCopy / nbSlicesInBank ) + 1;
// We only support writing to SSE if we have no pixels to copy normally
outPixelsToCopySSE = pixelsToCopy / 8;
outPixelsToCopyNormal = pixelsToCopy % 8;
}
template<typename TYPE>
void LineBufferTaskIIF::getWritePointerStereo
(int y,
unsigned short*& outWritePointerRight,
unsigned short*& outWritePointerLeft,
size_t& outPixelsToCopySSE,
size_t& outPixelsToCopyNormal) const
{
getWritePointer<TYPE>(y,outWritePointerRight,outPixelsToCopySSE,outPixelsToCopyNormal,0);
if(outWritePointerRight)
{
getWritePointer<TYPE>(y,outWritePointerLeft,outPixelsToCopySSE,outPixelsToCopyNormal,1);
}
}
void
LineBufferTaskIIF::execute()
{
try
{
//
// Uncompress the data, if necessary
//
if (_lineBuffer->uncompressedData == 0)
{
int uncompressedSize = 0;
int maxY = min (_lineBuffer->maxY, _ifd->maxY);
for (int i = _lineBuffer->minY - _ifd->minY;
i <= maxY - _ifd->minY;
++i)
{
uncompressedSize += (int) _ifd->bytesPerLine[i];
}
if (_lineBuffer->compressor &&
_lineBuffer->dataSize < uncompressedSize)
{
_lineBuffer->format = _lineBuffer->compressor->format();
_lineBuffer->dataSize =
_lineBuffer->compressor->uncompress (_lineBuffer->buffer,
_lineBuffer->dataSize,
_lineBuffer->minY,
_lineBuffer->uncompressedData);
}
else
{
//
// If the line is uncompressed, it's in XDR format,
// regardless of the compressor's output format.
//
_lineBuffer->format = Compressor::XDR;
_lineBuffer->uncompressedData = _lineBuffer->buffer;
}
}
int yStart, yStop, dy;
if (_ifd->lineOrder == INCREASING_Y)
{
yStart = _scanLineMin;
yStop = _scanLineMax + 1;
dy = 1;
}
else
{
yStart = _scanLineMax;
yStop = _scanLineMin - 1;
dy = -1;
}
for (int y = yStart; y != yStop; y += dy)
{
if (modp (y, _optimizationMode._ySampling) != 0)
continue;
//
// Convert one scan line's worth of pixel data back
// from the machine-independent representation, and
// store the result in the frame buffer.
//
// Set the readPtr to read at the start of uncompressedData
// but with an offet based on calculated array.
// _ifd->offsetInLineBuffer contains offsets based on which
// line we are currently processing.
// Stride will be taken into consideration later.
const char* readPtr = _lineBuffer->uncompressedData +
_ifd->offsetInLineBuffer[y - _ifd->minY];
size_t pixelsToCopySSE = 0;
size_t pixelsToCopyNormal = 0;
unsigned short* writePtrLeft = 0;
unsigned short* writePtrRight = 0;
size_t channels = _ifd->optimizationData.size();
if(channels>4)
{
getWritePointerStereo<half>(y, writePtrRight, writePtrLeft, pixelsToCopySSE, pixelsToCopyNormal);
}
else
{
getWritePointer<half>(y, writePtrRight, pixelsToCopySSE, pixelsToCopyNormal);
}
if (writePtrRight == 0 && pixelsToCopySSE == 0 && pixelsToCopyNormal == 0)
{
continue;
}
//
// support reading up to eight channels
//
unsigned short* readPointers[8];
for (size_t i = 0; i < channels ; ++i)
{
readPointers[i] = (unsigned short*)readPtr + (_ifd->optimizationData[i].offset * (pixelsToCopySSE * 8 + pixelsToCopyNormal));
}
//RGB only
if(channels==3 || channels == 6 )
{
optimizedWriteToRGB(readPointers[0], readPointers[1], readPointers[2], writePtrRight, pixelsToCopySSE, pixelsToCopyNormal);
//stereo RGB
if( channels == 6)
{
optimizedWriteToRGB(readPointers[3], readPointers[4], readPointers[5], writePtrLeft, pixelsToCopySSE, pixelsToCopyNormal);
}
//RGBA
}else if(channels==4 || channels==8)
{
if(_ifd->optimizationData[3].fill)
{
optimizedWriteToRGBAFillA(readPointers[0], readPointers[1], readPointers[2], _ifd->optimizationData[3].fillValue.bits() , writePtrRight, pixelsToCopySSE, pixelsToCopyNormal);
}else{
optimizedWriteToRGBA(readPointers[0], readPointers[1], readPointers[2], readPointers[3] , writePtrRight, pixelsToCopySSE, pixelsToCopyNormal);
}
//stereo RGBA
if( channels == 8)
{
if(_ifd->optimizationData[7].fill)
{
optimizedWriteToRGBAFillA(readPointers[4], readPointers[5], readPointers[6], _ifd->optimizationData[7].fillValue.bits() , writePtrLeft, pixelsToCopySSE, pixelsToCopyNormal);
}else{
optimizedWriteToRGBA(readPointers[4], readPointers[5], readPointers[6], readPointers[7] , writePtrLeft, pixelsToCopySSE, pixelsToCopyNormal);
}
}
}
else {
throw(IEX_NAMESPACE::LogicExc("IIF mode called with incorrect channel pattern"));
}
// If we are in NO_OPTIMIZATION mode, this class will never
// get instantiated, so no need to check for it and duplicate
// the code.
}
}
catch (std::exception &e)
{
if (!_lineBuffer->hasException)
{
_lineBuffer->exception = e.what();
_lineBuffer->hasException = true;
}
}
catch (...)
{
if (!_lineBuffer->hasException)
{
_lineBuffer->exception = "unrecognized exception";
_lineBuffer->hasException = true;
}
}
}
#endif
Task *
newLineBufferTask (TaskGroup *group,
InputStreamMutex *streamData,
ScanLineInputFile::Data *ifd,
int number,
int scanLineMin,
int scanLineMax,
OptimizationMode optimizationMode)
{
//
// Wait for a line buffer to become available, fill the line
// buffer with raw data from the file if necessary, and create
// a new LineBufferTask whose execute() method will uncompress
// the contents of the buffer and copy the pixels into the
// frame buffer.
//
LineBuffer *lineBuffer = ifd->getLineBuffer (number);
try
{
lineBuffer->wait ();
if (lineBuffer->number != number)
{
lineBuffer->minY = ifd->minY + number * ifd->linesInBuffer;
lineBuffer->maxY = lineBuffer->minY + ifd->linesInBuffer - 1;
lineBuffer->number = number;
lineBuffer->uncompressedData = 0;
readPixelData (streamData, ifd, lineBuffer->minY,
lineBuffer->buffer,
lineBuffer->dataSize);
}
}
catch (std::exception &e)
{
if (!lineBuffer->hasException)
{
lineBuffer->exception = e.what();
lineBuffer->hasException = true;
}
lineBuffer->number = -1;
lineBuffer->post();
throw;
}
catch (...)
{
//
// Reading from the file caused an exception.
// Signal that the line buffer is free, and
// re-throw the exception.
//
lineBuffer->exception = "unrecognized exception";
lineBuffer->hasException = true;
lineBuffer->number = -1;
lineBuffer->post();
throw;
}
scanLineMin = max (lineBuffer->minY, scanLineMin);
scanLineMax = min (lineBuffer->maxY, scanLineMax);
Task* retTask = 0;
#ifdef IMF_HAVE_SSE2
if (optimizationMode._optimizable)
{
retTask = new LineBufferTaskIIF (group, ifd, lineBuffer,
scanLineMin, scanLineMax,
optimizationMode);
}
else
#endif
{
retTask = new LineBufferTask (group, ifd, lineBuffer,
scanLineMin, scanLineMax,
optimizationMode);
}
return retTask;
}
} // namespace
void ScanLineInputFile::initialize(const Header& header)
{
try
{
_data->header = header;
_data->lineOrder = _data->header.lineOrder();
const Box2i &dataWindow = _data->header.dataWindow();
_data->minX = dataWindow.min.x;
_data->maxX = dataWindow.max.x;
_data->minY = dataWindow.min.y;
_data->maxY = dataWindow.max.y;
size_t maxBytesPerLine = bytesPerLineTable (_data->header,
_data->bytesPerLine);
for (size_t i = 0; i < _data->lineBuffers.size(); i++)
{
_data->lineBuffers[i] = new LineBuffer (newCompressor
(_data->header.compression(),
maxBytesPerLine,
_data->header));
}
_data->linesInBuffer =
numLinesInBuffer (_data->lineBuffers[0]->compressor);
_data->lineBufferSize = maxBytesPerLine * _data->linesInBuffer;
if (!_streamData->is->isMemoryMapped())
{
for (size_t i = 0; i < _data->lineBuffers.size(); i++)
{
_data->lineBuffers[i]->buffer = (char *) EXRAllocAligned(_data->lineBufferSize*sizeof(char),16);
}
}
_data->nextLineBufferMinY = _data->minY - 1;
offsetInLineBufferTable (_data->bytesPerLine,
_data->linesInBuffer,
_data->offsetInLineBuffer);
int lineOffsetSize = (dataWindow.max.y - dataWindow.min.y +
_data->linesInBuffer) / _data->linesInBuffer;
_data->lineOffsets.resize (lineOffsetSize);
}
catch (...)
{
delete _data;
_data=NULL;
throw;
}
}
ScanLineInputFile::ScanLineInputFile(InputPartData* part)
{
if (part->header.type() != SCANLINEIMAGE)
throw IEX_NAMESPACE::ArgExc("Can't build a ScanLineInputFile from a type-mismatched part.");
_data = new Data(part->numThreads);
_streamData = part->mutex;
_data->memoryMapped = _streamData->is->isMemoryMapped();
_data->version = part->version;
initialize(part->header);
_data->lineOffsets = part->chunkOffsets;
_data->partNumber = part->partNumber;
//
// (TODO) change this code later.
// The completeness of the file should be detected in MultiPartInputFile.
//
_data->fileIsComplete = true;
}
ScanLineInputFile::ScanLineInputFile
(const Header &header,
OPENEXR_IMF_INTERNAL_NAMESPACE::IStream *is,
int numThreads)
:
_data (new Data (numThreads)),
_streamData (new InputStreamMutex())
{
_streamData->is = is;
_data->memoryMapped = is->isMemoryMapped();
initialize(header);
//
// (TODO) this is nasty - we need a better way of working out what type of file has been used.
// in any case I believe this constructor only gets used with single part files
// and 'version' currently only tracks multipart state, so setting to 0 (not multipart) works for us
//
_data->version=0;
readLineOffsets (*_streamData->is,
_data->lineOrder,
_data->lineOffsets,
_data->fileIsComplete);
}
ScanLineInputFile::~ScanLineInputFile ()
{
if (!_data->memoryMapped)
{
for (size_t i = 0; i < _data->lineBuffers.size(); i++)
{
EXRFreeAligned(_data->lineBuffers[i]->buffer);
}
}
//
// ScanLineInputFile should never delete the stream,
// because it does not own the stream.
// We just delete the Mutex here.
//
if (_data->partNumber == -1)
delete _streamData;
delete _data;
}
const char *
ScanLineInputFile::fileName () const
{
return _streamData->is->fileName();
}
const Header &
ScanLineInputFile::header () const
{
return _data->header;
}
int
ScanLineInputFile::version () const
{
return _data->version;
}
namespace
{
// returns the optimization state for the given arrangement of frame bufers
// this assumes:
// both the file and framebuffer are half float data
// both the file and framebuffer have xSampling and ySampling=1
// entries in optData are sorted into their interleave order (i.e. by base address)
// These tests are done by SetFrameBuffer as it is building optData
//
OptimizationMode
detectOptimizationMode (const vector<sliceOptimizationData>& optData)
{
OptimizationMode w;
// need to be compiled with SSE optimisations: if not, just returns false
#ifdef IMF_HAVE_SSE2
// only handle reading 3,4,6 or 8 channels
switch(optData.size())
{
case 3 : break;
case 4 : break;
case 6 : break;
case 8 : break;
default :
return w;
}
//
// the point at which data switches between the primary and secondary bank
//
size_t bankSize = optData.size()>4 ? optData.size()/2 : optData.size();
for(size_t i=0;i<optData.size();i++)
{
const sliceOptimizationData& data = optData[i];
// can't fill anything other than channel 3 or channel 7
if(data.fill)
{
if(i!=3 && i!=7)
{
return w;
}
}
// cannot have gaps in the channel layout, so the stride must be (number of channels written in the bank)*2
if(data.xStride !=bankSize*2)
{
return w;
}
// each bank of channels must be channel interleaved: each channel base pointer must be (previous channel+2)
// this also means channel sampling pattern must be consistent, as must yStride
if(i!=0 && i!=bankSize)
{
if(data.base!=optData[i-1].base+2)
{
return w;
}
}
if(i!=0)
{
if(data.yStride!=optData[i-1].yStride)
{
return w;
}
}
}
w._ySampling=optData[0].ySampling;
w._optimizable=true;
#endif
return w;
}
} // Anonymous namespace
void
ScanLineInputFile::setFrameBuffer (const FrameBuffer &frameBuffer)
{
Lock lock (*_streamData);
const ChannelList &channels = _data->header.channels();
for (FrameBuffer::ConstIterator j = frameBuffer.begin();
j != frameBuffer.end();
++j)
{
ChannelList::ConstIterator i = channels.find (j.name());
if (i == channels.end())
continue;
if (i.channel().xSampling != j.slice().xSampling ||
i.channel().ySampling != j.slice().ySampling)
THROW (IEX_NAMESPACE::ArgExc, "X and/or y subsampling factors "
"of \"" << i.name() << "\" channel "
"of input file \"" << fileName() << "\" are "
"not compatible with the frame buffer's "
"subsampling factors.");
}
// optimization is possible if this is a little endian system
// and both inputs and outputs are half floats
//
bool optimizationPossible = true;
if (!GLOBAL_SYSTEM_LITTLE_ENDIAN)
{
optimizationPossible =false;
}
vector<sliceOptimizationData> optData;
//
// Initialize the slice table for readPixels().
//
vector<InSliceInfo> slices;
ChannelList::ConstIterator i = channels.begin();
// current offset of channel: pixel data starts at offset*width into the
// decompressed scanline buffer
size_t offset = 0;
for (FrameBuffer::ConstIterator j = frameBuffer.begin();
j != frameBuffer.end();
++j)
{
while (i != channels.end() && strcmp (i.name(), j.name()) < 0)
{
//
// Channel i is present in the file but not
// in the frame buffer; data for channel i
// will be skipped during readPixels().
//
slices.push_back (InSliceInfo (i.channel().type,
i.channel().type,
0, // base
0, // xStride
0, // yStride
i.channel().xSampling,
i.channel().ySampling,
false, // fill
true, // skip
0.0)); // fillValue
switch(i.channel().type)
{
case OPENEXR_IMF_INTERNAL_NAMESPACE::HALF :
offset++;
break;
case OPENEXR_IMF_INTERNAL_NAMESPACE::FLOAT :
offset+=2;
break;
case OPENEXR_IMF_INTERNAL_NAMESPACE::UINT :
offset+=2;
break;
}
++i;
}
bool fill = false;
if (i == channels.end() || strcmp (i.name(), j.name()) > 0)
{
//
// Channel i is present in the frame buffer, but not in the file.
// In the frame buffer, slice j will be filled with a default value.
//
fill = true;
}
slices.push_back (InSliceInfo (j.slice().type,
fill? j.slice().type:
i.channel().type,
j.slice().base,
j.slice().xStride,
j.slice().yStride,
j.slice().xSampling,
j.slice().ySampling,
fill,
false, // skip
j.slice().fillValue));
if(!fill && i.channel().type!=OPENEXR_IMF_INTERNAL_NAMESPACE::HALF)
{
optimizationPossible = false;
}
if(j.slice().type != OPENEXR_IMF_INTERNAL_NAMESPACE::HALF)
{
optimizationPossible = false;
}
if(j.slice().xSampling!=1 || j.slice().ySampling!=1)
{
optimizationPossible = false;
}
if(optimizationPossible)
{
sliceOptimizationData dat;
dat.base = j.slice().base;
dat.fill = fill;
dat.fillValue = j.slice().fillValue;
dat.offset = offset;
dat.xStride = j.slice().xStride;
dat.yStride = j.slice().yStride;
dat.xSampling = j.slice().xSampling;
dat.ySampling = j.slice().ySampling;
optData.push_back(dat);
}
if(!fill)
{
switch(i.channel().type)
{
case OPENEXR_IMF_INTERNAL_NAMESPACE::HALF :
offset++;
break;
case OPENEXR_IMF_INTERNAL_NAMESPACE::FLOAT :
offset+=2;
break;
case OPENEXR_IMF_INTERNAL_NAMESPACE::UINT :
offset+=2;
break;
}
}
if (i != channels.end() && !fill)
++i;
}
if(optimizationPossible)
{
//
// check optimisibility
// based on channel ordering and fill channel positions
//
sort(optData.begin(),optData.end());
_data->optimizationMode = detectOptimizationMode(optData);
}
if(!optimizationPossible || _data->optimizationMode._optimizable==false)
{
optData = vector<sliceOptimizationData>();
_data->optimizationMode._optimizable=false;
}
//
// Store the new frame buffer.
//
_data->frameBuffer = frameBuffer;
_data->slices = slices;
_data->optimizationData = optData;
}
const FrameBuffer &
ScanLineInputFile::frameBuffer () const
{
Lock lock (*_streamData);
return _data->frameBuffer;
}
bool
ScanLineInputFile::isComplete () const
{
return _data->fileIsComplete;
}
bool ScanLineInputFile::isOptimizationEnabled() const
{
if (_data->slices.size() == 0)
throw IEX_NAMESPACE::ArgExc ("No frame buffer specified "
"as pixel data destination.");
return _data->optimizationMode._optimizable;
}
void
ScanLineInputFile::readPixels (int scanLine1, int scanLine2)
{
try
{
Lock lock (*_streamData);
if (_data->slices.size() == 0)
throw IEX_NAMESPACE::ArgExc ("No frame buffer specified "
"as pixel data destination.");
int scanLineMin = min (scanLine1, scanLine2);
int scanLineMax = max (scanLine1, scanLine2);
if (scanLineMin < _data->minY || scanLineMax > _data->maxY)
throw IEX_NAMESPACE::ArgExc ("Tried to read scan line outside "
"the image file's data window.");
//
// We impose a numbering scheme on the lineBuffers where the first
// scanline is contained in lineBuffer 1.
//
// Determine the first and last lineBuffer numbers in this scanline
// range. We always attempt to read the scanlines in the order that
// they are stored in the file.
//
int start, stop, dl;
if (_data->lineOrder == INCREASING_Y)
{
start = (scanLineMin - _data->minY) / _data->linesInBuffer;
stop = (scanLineMax - _data->minY) / _data->linesInBuffer + 1;
dl = 1;
}
else
{
start = (scanLineMax - _data->minY) / _data->linesInBuffer;
stop = (scanLineMin - _data->minY) / _data->linesInBuffer - 1;
dl = -1;
}
//
// Create a task group for all line buffer tasks. When the
// task group goes out of scope, the destructor waits until
// all tasks are complete.
//
{
TaskGroup taskGroup;
//
// Add the line buffer tasks.
//
// The tasks will execute in the order that they are created
// because we lock the line buffers during construction and the
// constructors are called by the main thread. Hence, in order
// for a successive task to execute the previous task which
// used that line buffer must have completed already.
//
for (int l = start; l != stop; l += dl)
{
ThreadPool::addGlobalTask (newLineBufferTask (&taskGroup,
_streamData,
_data, l,
scanLineMin,
scanLineMax,
_data->optimizationMode));
}
//
// finish all tasks
//
}
//
// Exeption handling:
//
// LineBufferTask::execute() may have encountered exceptions, but
// those exceptions occurred in another thread, not in the thread
// that is executing this call to ScanLineInputFile::readPixels().
// LineBufferTask::execute() has caught all exceptions and stored
// the exceptions' what() strings in the line buffers.
// Now we check if any line buffer contains a stored exception; if
// this is the case then we re-throw the exception in this thread.
// (It is possible that multiple line buffers contain stored
// exceptions. We re-throw the first exception we find and
// ignore all others.)
//
const string *exception = 0;
for (size_t i = 0; i < _data->lineBuffers.size(); ++i)
{
LineBuffer *lineBuffer = _data->lineBuffers[i];
if (lineBuffer->hasException && !exception)
exception = &lineBuffer->exception;
lineBuffer->hasException = false;
}
if (exception)
throw IEX_NAMESPACE::IoExc (*exception);
}
catch (IEX_NAMESPACE::BaseExc &e)
{
REPLACE_EXC (e, "Error reading pixel data from image "
"file \"" << fileName() << "\". " << e.what());
throw;
}
}
void
ScanLineInputFile::readPixels (int scanLine)
{
readPixels (scanLine, scanLine);
}
void
ScanLineInputFile::rawPixelData (int firstScanLine,
const char *&pixelData,
int &pixelDataSize)
{
try
{
Lock lock (*_streamData);
if (firstScanLine < _data->minY || firstScanLine > _data->maxY)
{
throw IEX_NAMESPACE::ArgExc ("Tried to read scan line outside "
"the image file's data window.");
}
int minY = lineBufferMinY
(firstScanLine, _data->minY, _data->linesInBuffer);
readPixelData
(_streamData, _data, minY, _data->lineBuffers[0]->buffer, pixelDataSize);
pixelData = _data->lineBuffers[0]->buffer;
}
catch (IEX_NAMESPACE::BaseExc &e)
{
REPLACE_EXC (e, "Error reading pixel data from image "
"file \"" << fileName() << "\". " << e.what());
throw;
}
}
void ScanLineInputFile::rawPixelDataToBuffer(int scanLine,
char *pixelData,
int &pixelDataSize) const
{
if (_data->memoryMapped) {
throw IEX_NAMESPACE::ArgExc ("Reading raw pixel data to a buffer "
"is not supported for memory mapped "
"streams." );
}
try
{
Lock lock (*_streamData);
if (scanLine < _data->minY || scanLine > _data->maxY)
{
throw IEX_NAMESPACE::ArgExc ("Tried to read scan line outside "
"the image file's data window.");
}
readPixelData
(_streamData, _data, scanLine, pixelData, pixelDataSize);
}
catch (IEX_NAMESPACE::BaseExc &e)
{
REPLACE_EXC (e, "Error reading pixel data from image "
"file \"" << fileName() << "\". " << e.what());
throw;
}
}
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT