mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 01:13:11 +08:00
490 lines
21 KiB
C++
490 lines
21 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_CUDAFEATURES2D_HPP__
|
|
#define __OPENCV_CUDAFEATURES2D_HPP__
|
|
|
|
#ifndef __cplusplus
|
|
# error cudafeatures2d.hpp header must be compiled as C++
|
|
#endif
|
|
|
|
#include "opencv2/core/cuda.hpp"
|
|
#include "opencv2/features2d.hpp"
|
|
#include "opencv2/cudafilters.hpp"
|
|
|
|
/**
|
|
@addtogroup cuda
|
|
@{
|
|
@defgroup cudafeatures2d Feature Detection and Description
|
|
@}
|
|
*/
|
|
|
|
namespace cv { namespace cuda {
|
|
|
|
//! @addtogroup cudafeatures2d
|
|
//! @{
|
|
|
|
//
|
|
// DescriptorMatcher
|
|
//
|
|
|
|
/** @brief Abstract base class for matching keypoint descriptors.
|
|
|
|
It has two groups of match methods: for matching descriptors of an image with another image or with
|
|
an image set.
|
|
*/
|
|
class CV_EXPORTS DescriptorMatcher : public cv::Algorithm
|
|
{
|
|
public:
|
|
//
|
|
// Factories
|
|
//
|
|
|
|
/** @brief Brute-force descriptor matcher.
|
|
|
|
For each descriptor in the first set, this matcher finds the closest descriptor in the second set
|
|
by trying each one. This descriptor matcher supports masking permissible matches of descriptor
|
|
sets.
|
|
|
|
@param normType One of NORM_L1, NORM_L2, NORM_HAMMING. L1 and L2 norms are
|
|
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
|
|
BRIEF).
|
|
*/
|
|
static Ptr<DescriptorMatcher> createBFMatcher(int normType = cv::NORM_L2);
|
|
|
|
//
|
|
// Utility
|
|
//
|
|
|
|
/** @brief Returns true if the descriptor matcher supports masking permissible matches.
|
|
*/
|
|
virtual bool isMaskSupported() const = 0;
|
|
|
|
//
|
|
// Descriptor collection
|
|
//
|
|
|
|
/** @brief Adds descriptors to train a descriptor collection.
|
|
|
|
If the collection is not empty, the new descriptors are added to existing train descriptors.
|
|
|
|
@param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same
|
|
train image.
|
|
*/
|
|
virtual void add(const std::vector<GpuMat>& descriptors) = 0;
|
|
|
|
/** @brief Returns a constant link to the train descriptor collection.
|
|
*/
|
|
virtual const std::vector<GpuMat>& getTrainDescriptors() const = 0;
|
|
|
|
/** @brief Clears the train descriptor collection.
|
|
*/
|
|
virtual void clear() = 0;
|
|
|
|
/** @brief Returns true if there are no train descriptors in the collection.
|
|
*/
|
|
virtual bool empty() const = 0;
|
|
|
|
/** @brief Trains a descriptor matcher.
|
|
|
|
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
|
|
train() is run every time before matching.
|
|
*/
|
|
virtual void train() = 0;
|
|
|
|
//
|
|
// 1 to 1 match
|
|
//
|
|
|
|
/** @brief Finds the best match for each descriptor from a query set (blocking version).
|
|
|
|
@param queryDescriptors Query set of descriptors.
|
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
|
collection stored in the class object.
|
|
@param matches Matches. If a query descriptor is masked out in mask , no match is added for this
|
|
descriptor. So, matches size may be smaller than the query descriptors count.
|
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
|
descriptors.
|
|
|
|
In the first variant of this method, the train descriptors are passed as an input argument. In the
|
|
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
|
|
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
|
|
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
|
|
mask.at\<uchar\>(i,j) is non-zero.
|
|
*/
|
|
virtual void match(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
std::vector<DMatch>& matches,
|
|
InputArray mask = noArray()) = 0;
|
|
|
|
/** @overload
|
|
*/
|
|
virtual void match(InputArray queryDescriptors,
|
|
std::vector<DMatch>& matches,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>()) = 0;
|
|
|
|
/** @brief Finds the best match for each descriptor from a query set (asynchronous version).
|
|
|
|
@param queryDescriptors Query set of descriptors.
|
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
|
collection stored in the class object.
|
|
@param matches Matches array stored in GPU memory. Internal representation is not defined.
|
|
Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.
|
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
|
descriptors.
|
|
@param stream CUDA stream.
|
|
|
|
In the first variant of this method, the train descriptors are passed as an input argument. In the
|
|
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
|
|
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
|
|
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
|
|
mask.at\<uchar\>(i,j) is non-zero.
|
|
*/
|
|
virtual void matchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
OutputArray matches,
|
|
InputArray mask = noArray(),
|
|
Stream& stream = Stream::Null()) = 0;
|
|
|
|
/** @overload
|
|
*/
|
|
virtual void matchAsync(InputArray queryDescriptors,
|
|
OutputArray matches,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
Stream& stream = Stream::Null()) = 0;
|
|
|
|
/** @brief Converts matches array from internal representation to standard matches vector.
|
|
|
|
The method is supposed to be used with DescriptorMatcher::matchAsync to get final result.
|
|
Call this method only after DescriptorMatcher::matchAsync is completed (ie. after synchronization).
|
|
|
|
@param gpu_matches Matches, returned from DescriptorMatcher::matchAsync.
|
|
@param matches Vector of DMatch objects.
|
|
*/
|
|
virtual void matchConvert(InputArray gpu_matches,
|
|
std::vector<DMatch>& matches) = 0;
|
|
|
|
//
|
|
// knn match
|
|
//
|
|
|
|
/** @brief Finds the k best matches for each descriptor from a query set (blocking version).
|
|
|
|
@param queryDescriptors Query set of descriptors.
|
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
|
collection stored in the class object.
|
|
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
|
|
@param k Count of best matches found per each query descriptor or less if a query descriptor has
|
|
less than k possible matches in total.
|
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
|
descriptors.
|
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
|
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
|
the matches vector does not contain matches for fully masked-out query descriptors.
|
|
|
|
These extended variants of DescriptorMatcher::match methods find several best matches for each query
|
|
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
|
|
for the details about query and train descriptors.
|
|
*/
|
|
virtual void knnMatch(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
int k,
|
|
InputArray mask = noArray(),
|
|
bool compactResult = false) = 0;
|
|
|
|
/** @overload
|
|
*/
|
|
virtual void knnMatch(InputArray queryDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
int k,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
bool compactResult = false) = 0;
|
|
|
|
/** @brief Finds the k best matches for each descriptor from a query set (asynchronous version).
|
|
|
|
@param queryDescriptors Query set of descriptors.
|
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
|
collection stored in the class object.
|
|
@param matches Matches array stored in GPU memory. Internal representation is not defined.
|
|
Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.
|
|
@param k Count of best matches found per each query descriptor or less if a query descriptor has
|
|
less than k possible matches in total.
|
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
|
descriptors.
|
|
@param stream CUDA stream.
|
|
|
|
These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query
|
|
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync
|
|
for the details about query and train descriptors.
|
|
*/
|
|
virtual void knnMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
OutputArray matches,
|
|
int k,
|
|
InputArray mask = noArray(),
|
|
Stream& stream = Stream::Null()) = 0;
|
|
|
|
/** @overload
|
|
*/
|
|
virtual void knnMatchAsync(InputArray queryDescriptors,
|
|
OutputArray matches,
|
|
int k,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
Stream& stream = Stream::Null()) = 0;
|
|
|
|
/** @brief Converts matches array from internal representation to standard matches vector.
|
|
|
|
The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result.
|
|
Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
|
|
|
|
@param gpu_matches Matches, returned from DescriptorMatcher::knnMatchAsync.
|
|
@param matches Vector of DMatch objects.
|
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
|
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
|
the matches vector does not contain matches for fully masked-out query descriptors.
|
|
*/
|
|
virtual void knnMatchConvert(InputArray gpu_matches,
|
|
std::vector< std::vector<DMatch> >& matches,
|
|
bool compactResult = false) = 0;
|
|
|
|
//
|
|
// radius match
|
|
//
|
|
|
|
/** @brief For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
|
|
|
|
@param queryDescriptors Query set of descriptors.
|
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
|
collection stored in the class object.
|
|
@param matches Found matches.
|
|
@param maxDistance Threshold for the distance between matched descriptors. Distance means here
|
|
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
|
|
in Pixels)!
|
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
|
descriptors.
|
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
|
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
|
the matches vector does not contain matches for fully masked-out query descriptors.
|
|
|
|
For each query descriptor, the methods find such training descriptors that the distance between the
|
|
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
|
|
returned in the distance increasing order.
|
|
*/
|
|
virtual void radiusMatch(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
float maxDistance,
|
|
InputArray mask = noArray(),
|
|
bool compactResult = false) = 0;
|
|
|
|
/** @overload
|
|
*/
|
|
virtual void radiusMatch(InputArray queryDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
float maxDistance,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
bool compactResult = false) = 0;
|
|
|
|
/** @brief For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
|
|
|
|
@param queryDescriptors Query set of descriptors.
|
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
|
collection stored in the class object.
|
|
@param matches Matches array stored in GPU memory. Internal representation is not defined.
|
|
Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.
|
|
@param maxDistance Threshold for the distance between matched descriptors. Distance means here
|
|
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
|
|
in Pixels)!
|
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
|
descriptors.
|
|
@param stream CUDA stream.
|
|
|
|
For each query descriptor, the methods find such training descriptors that the distance between the
|
|
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
|
|
returned in the distance increasing order.
|
|
*/
|
|
virtual void radiusMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
OutputArray matches,
|
|
float maxDistance,
|
|
InputArray mask = noArray(),
|
|
Stream& stream = Stream::Null()) = 0;
|
|
|
|
/** @overload
|
|
*/
|
|
virtual void radiusMatchAsync(InputArray queryDescriptors,
|
|
OutputArray matches,
|
|
float maxDistance,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
Stream& stream = Stream::Null()) = 0;
|
|
|
|
/** @brief Converts matches array from internal representation to standard matches vector.
|
|
|
|
The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result.
|
|
Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
|
|
|
|
@param gpu_matches Matches, returned from DescriptorMatcher::radiusMatchAsync.
|
|
@param matches Vector of DMatch objects.
|
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
|
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
|
the matches vector does not contain matches for fully masked-out query descriptors.
|
|
*/
|
|
virtual void radiusMatchConvert(InputArray gpu_matches,
|
|
std::vector< std::vector<DMatch> >& matches,
|
|
bool compactResult = false) = 0;
|
|
};
|
|
|
|
//
|
|
// Feature2DAsync
|
|
//
|
|
|
|
/** @brief Abstract base class for CUDA asynchronous 2D image feature detectors and descriptor extractors.
|
|
*/
|
|
class CV_EXPORTS Feature2DAsync
|
|
{
|
|
public:
|
|
virtual ~Feature2DAsync();
|
|
|
|
/** @brief Detects keypoints in an image.
|
|
|
|
@param image Image.
|
|
@param keypoints The detected keypoints.
|
|
@param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
|
|
matrix with non-zero values in the region of interest.
|
|
@param stream CUDA stream.
|
|
*/
|
|
virtual void detectAsync(InputArray image,
|
|
OutputArray keypoints,
|
|
InputArray mask = noArray(),
|
|
Stream& stream = Stream::Null());
|
|
|
|
/** @brief Computes the descriptors for a set of keypoints detected in an image.
|
|
|
|
@param image Image.
|
|
@param keypoints Input collection of keypoints.
|
|
@param descriptors Computed descriptors. Row j is the descriptor for j-th keypoint.
|
|
@param stream CUDA stream.
|
|
*/
|
|
virtual void computeAsync(InputArray image,
|
|
OutputArray keypoints,
|
|
OutputArray descriptors,
|
|
Stream& stream = Stream::Null());
|
|
|
|
/** Detects keypoints and computes the descriptors. */
|
|
virtual void detectAndComputeAsync(InputArray image,
|
|
InputArray mask,
|
|
OutputArray keypoints,
|
|
OutputArray descriptors,
|
|
bool useProvidedKeypoints = false,
|
|
Stream& stream = Stream::Null());
|
|
|
|
/** Converts keypoints array from internal representation to standard vector. */
|
|
virtual void convert(InputArray gpu_keypoints,
|
|
std::vector<KeyPoint>& keypoints) = 0;
|
|
};
|
|
|
|
//
|
|
// FastFeatureDetector
|
|
//
|
|
|
|
/** @brief Wrapping class for feature detection using the FAST method.
|
|
*/
|
|
class CV_EXPORTS FastFeatureDetector : public cv::FastFeatureDetector, public Feature2DAsync
|
|
{
|
|
public:
|
|
enum
|
|
{
|
|
LOCATION_ROW = 0,
|
|
RESPONSE_ROW,
|
|
ROWS_COUNT,
|
|
|
|
FEATURE_SIZE = 7
|
|
};
|
|
|
|
static Ptr<FastFeatureDetector> create(int threshold=10,
|
|
bool nonmaxSuppression=true,
|
|
int type=FastFeatureDetector::TYPE_9_16,
|
|
int max_npoints = 5000);
|
|
|
|
virtual void setMaxNumPoints(int max_npoints) = 0;
|
|
virtual int getMaxNumPoints() const = 0;
|
|
};
|
|
|
|
//
|
|
// ORB
|
|
//
|
|
|
|
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
|
|
*
|
|
* @sa cv::ORB
|
|
*/
|
|
class CV_EXPORTS ORB : public cv::ORB, public Feature2DAsync
|
|
{
|
|
public:
|
|
enum
|
|
{
|
|
X_ROW = 0,
|
|
Y_ROW,
|
|
RESPONSE_ROW,
|
|
ANGLE_ROW,
|
|
OCTAVE_ROW,
|
|
SIZE_ROW,
|
|
ROWS_COUNT
|
|
};
|
|
|
|
static Ptr<ORB> create(int nfeatures=500,
|
|
float scaleFactor=1.2f,
|
|
int nlevels=8,
|
|
int edgeThreshold=31,
|
|
int firstLevel=0,
|
|
int WTA_K=2,
|
|
int scoreType=ORB::HARRIS_SCORE,
|
|
int patchSize=31,
|
|
int fastThreshold=20,
|
|
bool blurForDescriptor=false);
|
|
|
|
//! if true, image will be blurred before descriptors calculation
|
|
virtual void setBlurForDescriptor(bool blurForDescriptor) = 0;
|
|
virtual bool getBlurForDescriptor() const = 0;
|
|
};
|
|
|
|
//! @}
|
|
|
|
}} // namespace cv { namespace cuda {
|
|
|
|
#endif /* __OPENCV_CUDAFEATURES2D_HPP__ */
|