mirror of
https://github.com/opencv/opencv.git
synced 2025-01-15 12:13:32 +08:00
350 lines
11 KiB
C++
350 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
namespace {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// StereoBM
|
|
|
|
struct StereoBM : testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(StereoBM, Regression)
|
|
{
|
|
cv::Mat left_image = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
|
|
cv::Mat right_image = readImage("stereobm/aloe-R.png", cv::IMREAD_GRAYSCALE);
|
|
cv::Mat disp_gold = readImage("stereobm/aloe-disp.png", cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(left_image.empty());
|
|
ASSERT_FALSE(right_image.empty());
|
|
ASSERT_FALSE(disp_gold.empty());
|
|
|
|
cv::gpu::StereoBM_GPU bm(0, 128, 19);
|
|
cv::gpu::GpuMat disp;
|
|
|
|
bm(loadMat(left_image), loadMat(right_image), disp);
|
|
|
|
EXPECT_MAT_NEAR(disp_gold, disp, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoBM, ALL_DEVICES);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// StereoBeliefPropagation
|
|
|
|
struct StereoBeliefPropagation : testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(StereoBeliefPropagation, Regression)
|
|
{
|
|
cv::Mat left_image = readImage("stereobp/aloe-L.png");
|
|
cv::Mat right_image = readImage("stereobp/aloe-R.png");
|
|
cv::Mat disp_gold = readImage("stereobp/aloe-disp.png", cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(left_image.empty());
|
|
ASSERT_FALSE(right_image.empty());
|
|
ASSERT_FALSE(disp_gold.empty());
|
|
|
|
cv::gpu::StereoBeliefPropagation bp(64, 8, 2, 25, 0.1f, 15, 1, CV_16S);
|
|
cv::gpu::GpuMat disp;
|
|
|
|
bp(loadMat(left_image), loadMat(right_image), disp);
|
|
|
|
cv::Mat h_disp(disp);
|
|
h_disp.convertTo(h_disp, disp_gold.depth());
|
|
|
|
EXPECT_MAT_NEAR(disp_gold, h_disp, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoBeliefPropagation, ALL_DEVICES);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// StereoConstantSpaceBP
|
|
|
|
struct StereoConstantSpaceBP : testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(StereoConstantSpaceBP, Regression)
|
|
{
|
|
cv::Mat left_image = readImage("csstereobp/aloe-L.png");
|
|
cv::Mat right_image = readImage("csstereobp/aloe-R.png");
|
|
|
|
cv::Mat disp_gold;
|
|
|
|
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
|
|
disp_gold = readImage("csstereobp/aloe-disp.png", cv::IMREAD_GRAYSCALE);
|
|
else
|
|
disp_gold = readImage("csstereobp/aloe-disp_CC1X.png", cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(left_image.empty());
|
|
ASSERT_FALSE(right_image.empty());
|
|
ASSERT_FALSE(disp_gold.empty());
|
|
|
|
cv::gpu::StereoConstantSpaceBP csbp(128, 16, 4, 4);
|
|
cv::gpu::GpuMat disp;
|
|
|
|
csbp(loadMat(left_image), loadMat(right_image), disp);
|
|
|
|
cv::Mat h_disp(disp);
|
|
h_disp.convertTo(h_disp, disp_gold.depth());
|
|
|
|
EXPECT_MAT_NEAR(disp_gold, h_disp, 1.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoConstantSpaceBP, ALL_DEVICES);
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// transformPoints
|
|
|
|
struct TransformPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(TransformPoints, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
|
|
cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
|
|
cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
|
|
|
|
cv::gpu::GpuMat dst;
|
|
cv::gpu::transformPoints(loadMat(src), rvec, tvec, dst);
|
|
|
|
ASSERT_EQ(src.size(), dst.size());
|
|
ASSERT_EQ(src.type(), dst.type());
|
|
|
|
cv::Mat h_dst(dst);
|
|
|
|
cv::Mat rot;
|
|
cv::Rodrigues(rvec, rot);
|
|
|
|
for (int i = 0; i < h_dst.cols; ++i)
|
|
{
|
|
cv::Point3f res = h_dst.at<cv::Point3f>(0, i);
|
|
|
|
cv::Point3f p = src.at<cv::Point3f>(0, i);
|
|
cv::Point3f res_gold(
|
|
rot.at<float>(0, 0) * p.x + rot.at<float>(0, 1) * p.y + rot.at<float>(0, 2) * p.z + tvec.at<float>(0, 0),
|
|
rot.at<float>(1, 0) * p.x + rot.at<float>(1, 1) * p.y + rot.at<float>(1, 2) * p.z + tvec.at<float>(0, 1),
|
|
rot.at<float>(2, 0) * p.x + rot.at<float>(2, 1) * p.y + rot.at<float>(2, 2) * p.z + tvec.at<float>(0, 2));
|
|
|
|
ASSERT_POINT3_NEAR(res_gold, res, 1e-5);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, TransformPoints, ALL_DEVICES);
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ProjectPoints
|
|
|
|
struct ProjectPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(ProjectPoints, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
|
|
cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
|
|
cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
|
|
cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
|
|
camera_mat.at<float>(0, 1) = 0.f;
|
|
camera_mat.at<float>(1, 0) = 0.f;
|
|
camera_mat.at<float>(2, 0) = 0.f;
|
|
camera_mat.at<float>(2, 1) = 0.f;
|
|
|
|
cv::gpu::GpuMat dst;
|
|
cv::gpu::projectPoints(loadMat(src), rvec, tvec, camera_mat, cv::Mat(), dst);
|
|
|
|
ASSERT_EQ(1, dst.rows);
|
|
ASSERT_EQ(MatType(CV_32FC2), MatType(dst.type()));
|
|
|
|
std::vector<cv::Point2f> dst_gold;
|
|
cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold);
|
|
|
|
ASSERT_EQ(dst_gold.size(), static_cast<size_t>(dst.cols));
|
|
|
|
cv::Mat h_dst(dst);
|
|
|
|
for (size_t i = 0; i < dst_gold.size(); ++i)
|
|
{
|
|
cv::Point2f res = h_dst.at<cv::Point2f>(0, (int)i);
|
|
cv::Point2f res_gold = dst_gold[i];
|
|
|
|
ASSERT_LE(cv::norm(res_gold - res) / cv::norm(res_gold), 1e-3f);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ProjectPoints, ALL_DEVICES);
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// SolvePnPRansac
|
|
|
|
struct SolvePnPRansac : testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(SolvePnPRansac, Accuracy)
|
|
{
|
|
cv::Mat object = randomMat(cv::Size(5000, 1), CV_32FC3, 0, 100);
|
|
cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
|
|
camera_mat.at<float>(0, 1) = 0.f;
|
|
camera_mat.at<float>(1, 0) = 0.f;
|
|
camera_mat.at<float>(2, 0) = 0.f;
|
|
camera_mat.at<float>(2, 1) = 0.f;
|
|
|
|
std::vector<cv::Point2f> image_vec;
|
|
cv::Mat rvec_gold;
|
|
cv::Mat tvec_gold;
|
|
rvec_gold = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
|
|
tvec_gold = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
|
|
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec);
|
|
|
|
cv::Mat rvec, tvec;
|
|
std::vector<int> inliers;
|
|
cv::gpu::solvePnPRansac(object, cv::Mat(1, (int)image_vec.size(), CV_32FC2, &image_vec[0]),
|
|
camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)),
|
|
rvec, tvec, false, 200, 2.f, 100, &inliers);
|
|
|
|
ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3);
|
|
ASSERT_LE(cv::norm(tvec - tvec_gold), 1e-3);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, SolvePnPRansac, ALL_DEVICES);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// reprojectImageTo3D
|
|
|
|
PARAM_TEST_CASE(ReprojectImageTo3D, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int depth;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
depth = GET_PARAM(2);
|
|
useRoi = GET_PARAM(3);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(ReprojectImageTo3D, Accuracy)
|
|
{
|
|
cv::Mat disp = randomMat(size, depth, 5.0, 30.0);
|
|
cv::Mat Q = randomMat(cv::Size(4, 4), CV_32FC1, 0.1, 1.0);
|
|
|
|
cv::gpu::GpuMat dst;
|
|
cv::gpu::reprojectImageTo3D(loadMat(disp, useRoi), dst, Q, 3);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::reprojectImageTo3D(disp, dst_gold, Q, false);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ReprojectImageTo3D, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Values(MatDepth(CV_8U), MatDepth(CV_16S)),
|
|
WHOLE_SUBMAT));
|
|
|
|
} // namespace
|
|
|
|
#endif // HAVE_CUDA
|