opencv/modules/cudaobjdetect/src/cuda/hog.cu
Tomoaki Teshima 40c71a2463 suppress noisy warning
* add -Wno-psabi when using GCC 6
  * add -Wundef for CUDA 10
  * add -Wdeprecated-declarations when using GCC 7
  * add -Wstrict-aliasing and -Wtautological-compare for GCC 7
  * replace cudaThreadSynchronize with cudaDeviceSynchronize
2019-08-08 21:49:32 +09:00

891 lines
41 KiB
Plaintext

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/reduce.hpp"
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/warp_shuffle.hpp"
namespace cv { namespace cuda { namespace device
{
namespace hog
{
__constant__ int cnbins;
__constant__ int cblock_stride_x;
__constant__ int cblock_stride_y;
__constant__ int cnblocks_win_x;
__constant__ int cnblocks_win_y;
__constant__ int cncells_block_x;
__constant__ int cncells_block_y;
__constant__ int cblock_hist_size;
__constant__ int cblock_hist_size_2up;
__constant__ int cdescr_size;
__constant__ int cdescr_width;
/* Returns the nearest upper power of two, works only for
the typical GPU thread count (pert block) values */
int power_2up(unsigned int n)
{
if (n <= 1) return 1;
else if (n <= 2) return 2;
else if (n <= 4) return 4;
else if (n <= 8) return 8;
else if (n <= 16) return 16;
else if (n <= 32) return 32;
else if (n <= 64) return 64;
else if (n <= 128) return 128;
else if (n <= 256) return 256;
else if (n <= 512) return 512;
else if (n <= 1024) return 1024;
return -1; // Input is too big
}
/* Returns the max size for nblocks */
int max_nblocks(int nthreads, int ncells_block = 1)
{
int threads = nthreads * ncells_block;
if(threads * 4 <= 256)
return 4;
else if(threads * 3 <= 256)
return 3;
else if(threads * 2 <= 256)
return 2;
else
return 1;
}
void set_up_constants(int nbins,
int block_stride_x, int block_stride_y,
int nblocks_win_x, int nblocks_win_y,
int ncells_block_x, int ncells_block_y,
const cudaStream_t& stream)
{
cudaSafeCall(cudaMemcpyToSymbolAsync(cnbins, &nbins, sizeof(nbins), 0, cudaMemcpyHostToDevice, stream));
cudaSafeCall(cudaMemcpyToSymbolAsync(cblock_stride_x, &block_stride_x, sizeof(block_stride_x), 0, cudaMemcpyHostToDevice, stream));
cudaSafeCall(cudaMemcpyToSymbolAsync(cblock_stride_y, &block_stride_y, sizeof(block_stride_y), 0, cudaMemcpyHostToDevice, stream));
cudaSafeCall(cudaMemcpyToSymbolAsync(cnblocks_win_x, &nblocks_win_x, sizeof(nblocks_win_x), 0, cudaMemcpyHostToDevice, stream));
cudaSafeCall(cudaMemcpyToSymbolAsync(cnblocks_win_y, &nblocks_win_y, sizeof(nblocks_win_y), 0, cudaMemcpyHostToDevice, stream));
cudaSafeCall(cudaMemcpyToSymbolAsync(cncells_block_x, &ncells_block_x, sizeof(ncells_block_x), 0, cudaMemcpyHostToDevice, stream));
cudaSafeCall(cudaMemcpyToSymbolAsync(cncells_block_y, &ncells_block_y, sizeof(ncells_block_y), 0, cudaMemcpyHostToDevice, stream));
int block_hist_size = nbins * ncells_block_x * ncells_block_y;
cudaSafeCall(cudaMemcpyToSymbolAsync(cblock_hist_size, &block_hist_size, sizeof(block_hist_size), 0, cudaMemcpyHostToDevice, stream));
int block_hist_size_2up = power_2up(block_hist_size);
cudaSafeCall(cudaMemcpyToSymbolAsync(cblock_hist_size_2up, &block_hist_size_2up, sizeof(block_hist_size_2up), 0, cudaMemcpyHostToDevice, stream));
int descr_width = nblocks_win_x * block_hist_size;
cudaSafeCall(cudaMemcpyToSymbolAsync(cdescr_width, &descr_width, sizeof(descr_width), 0, cudaMemcpyHostToDevice, stream));
int descr_size = descr_width * nblocks_win_y;
cudaSafeCall(cudaMemcpyToSymbolAsync(cdescr_size, &descr_size, sizeof(descr_size), 0, cudaMemcpyHostToDevice, stream));
}
//----------------------------------------------------------------------------
// Histogram computation
//
// CUDA kernel to compute the histograms
template <int nblocks> // Number of histogram blocks processed by single GPU thread block
__global__ void compute_hists_kernel_many_blocks(const int img_block_width, const PtrStepf grad,
const PtrStepb qangle, float scale, float* block_hists,
int cell_size, int patch_size, int block_patch_size,
int threads_cell, int threads_block, int half_cell_size)
{
const int block_x = threadIdx.z;
const int cell_x = threadIdx.x / threads_cell;
const int cell_y = threadIdx.y;
const int cell_thread_x = threadIdx.x & (threads_cell - 1);
if (blockIdx.x * blockDim.z + block_x >= img_block_width)
return;
extern __shared__ float smem[];
float* hists = smem;
float* final_hist = smem + cnbins * block_patch_size * nblocks;
// patch_size means that patch_size pixels affect on block's cell
if (cell_thread_x < patch_size)
{
const int offset_x = (blockIdx.x * blockDim.z + block_x) * cblock_stride_x +
half_cell_size * cell_x + cell_thread_x;
const int offset_y = blockIdx.y * cblock_stride_y + half_cell_size * cell_y;
const float* grad_ptr = grad.ptr(offset_y) + offset_x * 2;
const unsigned char* qangle_ptr = qangle.ptr(offset_y) + offset_x * 2;
float* hist = hists + patch_size * (cell_y * blockDim.z * cncells_block_y +
cell_x + block_x * cncells_block_x) +
cell_thread_x;
for (int bin_id = 0; bin_id < cnbins; ++bin_id)
hist[bin_id * block_patch_size * nblocks] = 0.f;
//(dist_x, dist_y) : distance between current pixel in patch and cell's center
const int dist_x = -half_cell_size + (int)cell_thread_x - half_cell_size * cell_x;
const int dist_y_begin = -half_cell_size - half_cell_size * (int)threadIdx.y;
for (int dist_y = dist_y_begin; dist_y < dist_y_begin + patch_size; ++dist_y)
{
float2 vote = *(const float2*)grad_ptr;
uchar2 bin = *(const uchar2*)qangle_ptr;
grad_ptr += grad.step/sizeof(float);
qangle_ptr += qangle.step;
//(dist_center_x, dist_center_y) : distance between current pixel in patch and block's center
int dist_center_y = dist_y - half_cell_size * (1 - 2 * cell_y);
int dist_center_x = dist_x - half_cell_size * (1 - 2 * cell_x);
float gaussian = ::expf(-(dist_center_y * dist_center_y +
dist_center_x * dist_center_x) * scale);
float interp_weight = ((float)cell_size - ::fabs(dist_y + 0.5f)) *
((float)cell_size - ::fabs(dist_x + 0.5f)) / (float)threads_block;
hist[bin.x * block_patch_size * nblocks] += gaussian * interp_weight * vote.x;
hist[bin.y * block_patch_size * nblocks] += gaussian * interp_weight * vote.y;
}
//reduction of the histograms
volatile float* hist_ = hist;
for (int bin_id = 0; bin_id < cnbins; ++bin_id, hist_ += block_patch_size * nblocks)
{
if (cell_thread_x < patch_size/2) hist_[0] += hist_[patch_size/2];
if (cell_thread_x < patch_size/4 && (!((patch_size/4) < 3 && cell_thread_x == 0)))
hist_[0] += hist_[patch_size/4];
if (cell_thread_x == 0)
final_hist[((cell_x + block_x * cncells_block_x) * cncells_block_y + cell_y) * cnbins + bin_id]
= hist_[0] + hist_[1] + hist_[2];
}
}
__syncthreads();
float* block_hist = block_hists + (blockIdx.y * img_block_width +
blockIdx.x * blockDim.z + block_x) *
cblock_hist_size;
//copying from final_hist to block_hist
int tid;
if(threads_cell < cnbins)
{
tid = (cell_y * cncells_block_y + cell_x) * cnbins + cell_thread_x;
} else
{
tid = (cell_y * cncells_block_y + cell_x) * threads_cell + cell_thread_x;
}
if (tid < cblock_hist_size)
{
block_hist[tid] = final_hist[block_x * cblock_hist_size + tid];
if(threads_cell < cnbins && cell_thread_x == (threads_cell-1))
{
for(int i=1;i<=(cnbins - threads_cell);++i)
{
block_hist[tid + i] = final_hist[block_x * cblock_hist_size + tid + i];
}
}
}
}
//declaration of variables and invoke the kernel with the calculated number of blocks
void compute_hists(int nbins,
int block_stride_x, int block_stride_y,
int height, int width,
const PtrStepSzf& grad, const PtrStepSzb& qangle,
float sigma,
float* block_hists,
int cell_size_x, int cell_size_y,
int ncells_block_x, int ncells_block_y,
const cudaStream_t& stream)
{
const int ncells_block = ncells_block_x * ncells_block_y;
const int patch_side = cell_size_x / 4;
const int patch_size = cell_size_x + (patch_side * 2);
const int block_patch_size = ncells_block * patch_size;
const int threads_cell = power_2up(patch_size);
const int threads_block = ncells_block * threads_cell;
const int half_cell_size = cell_size_x / 2;
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) /
block_stride_x;
int img_block_height = (height - ncells_block_y * cell_size_y + block_stride_y) /
block_stride_y;
const int nblocks = max_nblocks(threads_cell, ncells_block);
dim3 grid(divUp(img_block_width, nblocks), img_block_height);
dim3 threads(threads_cell * ncells_block_x, ncells_block_y, nblocks);
// Precompute gaussian spatial window parameter
float scale = 1.f / (2.f * sigma * sigma);
int hists_size = (nbins * ncells_block * patch_size * nblocks) * sizeof(float);
int final_hists_size = (nbins * ncells_block * nblocks) * sizeof(float);
int smem = hists_size + final_hists_size;
if (nblocks == 4)
compute_hists_kernel_many_blocks<4><<<grid, threads, smem, stream>>>(img_block_width, grad, qangle, scale, block_hists, cell_size_x, patch_size, block_patch_size, threads_cell, threads_block, half_cell_size);
else if (nblocks == 3)
compute_hists_kernel_many_blocks<3><<<grid, threads, smem, stream>>>(img_block_width, grad, qangle, scale, block_hists, cell_size_x, patch_size, block_patch_size, threads_cell, threads_block, half_cell_size);
else if (nblocks == 2)
compute_hists_kernel_many_blocks<2><<<grid, threads, smem, stream>>>(img_block_width, grad, qangle, scale, block_hists, cell_size_x, patch_size, block_patch_size, threads_cell, threads_block, half_cell_size);
else
compute_hists_kernel_many_blocks<1><<<grid, threads, smem, stream>>>(img_block_width, grad, qangle, scale, block_hists, cell_size_x, patch_size, block_patch_size, threads_cell, threads_block, half_cell_size);
cudaSafeCall( cudaGetLastError() );
}
//-------------------------------------------------------------
// Normalization of histograms via L2Hys_norm
//
template<int size>
__device__ float reduce_smem(float* smem, float val)
{
unsigned int tid = threadIdx.x;
float sum = val;
reduce<size>(smem, sum, tid, plus<float>());
if (size == 32)
{
#if __CUDA_ARCH__ >= 300
return shfl(sum, 0);
#else
return smem[0];
#endif
}
else
{
#if __CUDA_ARCH__ >= 300
if (threadIdx.x == 0)
smem[0] = sum;
#endif
__syncthreads();
return smem[0];
}
}
template <int nthreads, // Number of threads which process one block historgam
int nblocks> // Number of block hisograms processed by one GPU thread block
__global__ void normalize_hists_kernel_many_blocks(const int block_hist_size,
const int img_block_width,
float* block_hists, float threshold)
{
if (blockIdx.x * blockDim.z + threadIdx.z >= img_block_width)
return;
float* hist = block_hists + (blockIdx.y * img_block_width +
blockIdx.x * blockDim.z + threadIdx.z) *
block_hist_size + threadIdx.x;
__shared__ float sh_squares[nthreads * nblocks];
float* squares = sh_squares + threadIdx.z * nthreads;
float elem = 0.f;
if (threadIdx.x < block_hist_size)
elem = hist[0];
__syncthreads(); // prevent race condition (redundant?)
float sum = reduce_smem<nthreads>(squares, elem * elem);
float scale = 1.0f / (::sqrtf(sum) + 0.1f * block_hist_size);
elem = ::min(elem * scale, threshold);
__syncthreads(); // prevent race condition
sum = reduce_smem<nthreads>(squares, elem * elem);
scale = 1.0f / (::sqrtf(sum) + 1e-3f);
if (threadIdx.x < block_hist_size)
hist[0] = elem * scale;
}
void normalize_hists(int nbins,
int block_stride_x, int block_stride_y,
int height, int width,
float* block_hists,
float threshold,
int cell_size_x, int cell_size_y,
int ncells_block_x, int ncells_block_y,
const cudaStream_t& stream)
{
const int nblocks = 1;
int block_hist_size = nbins * ncells_block_x * ncells_block_y;
int nthreads = power_2up(block_hist_size);
dim3 threads(nthreads, 1, nblocks);
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) / block_stride_x;
int img_block_height = (height - ncells_block_y * cell_size_y + block_stride_y) / block_stride_y;
dim3 grid(divUp(img_block_width, nblocks), img_block_height);
if (nthreads == 32)
normalize_hists_kernel_many_blocks<32, nblocks><<<grid, threads, 0, stream>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 64)
normalize_hists_kernel_many_blocks<64, nblocks><<<grid, threads, 0, stream>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 128)
normalize_hists_kernel_many_blocks<128, nblocks><<<grid, threads, 0, stream>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 256)
normalize_hists_kernel_many_blocks<256, nblocks><<<grid, threads, 0, stream>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 512)
normalize_hists_kernel_many_blocks<512, nblocks><<<grid, threads, 0, stream>>>(block_hist_size, img_block_width, block_hists, threshold);
else
CV_Error(cv::Error::StsBadArg, "normalize_hists: histogram's size is too big, try to decrease number of bins");
cudaSafeCall( cudaGetLastError() );
}
//---------------------------------------------------------------------
// Linear SVM based classification
//
// return confidence values not just positive location
template <int nthreads, // Number of threads per one histogram block
int nblocks> // Number of histogram block processed by single GPU thread block
__global__ void compute_confidence_hists_kernel_many_blocks(const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
const float* block_hists, const float* coefs,
float free_coef, float threshold, float* confidences)
{
const int win_x = threadIdx.z;
if (blockIdx.x * blockDim.z + win_x >= img_win_width)
return;
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
blockIdx.x * win_block_stride_x * blockDim.z + win_x) *
cblock_hist_size;
float product = 0.f;
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
product += coefs[i] * hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
__shared__ float products[nthreads * nblocks];
const int tid = threadIdx.z * nthreads + threadIdx.x;
reduce<nthreads>(products, product, tid, plus<float>());
if (threadIdx.x == 0)
confidences[blockIdx.y * img_win_width + blockIdx.x * blockDim.z + win_x] = product + free_coef;
}
void compute_confidence_hists(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
float* coefs, float free_coef, float threshold, int cell_size_x, int ncells_block_x, float *confidences)
{
const int nthreads = 256;
const int nblocks = 1;
int win_block_stride_x = win_stride_x / block_stride_x;
int win_block_stride_y = win_stride_y / block_stride_y;
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
dim3 threads(nthreads, 1, nblocks);
dim3 grid(divUp(img_win_width, nblocks), img_win_height);
cudaSafeCall(cudaFuncSetCacheConfig(compute_confidence_hists_kernel_many_blocks<nthreads, nblocks>,
cudaFuncCachePreferL1));
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) /
block_stride_x;
compute_confidence_hists_kernel_many_blocks<nthreads, nblocks><<<grid, threads>>>(
img_win_width, img_block_width, win_block_stride_x, win_block_stride_y,
block_hists, coefs, free_coef, threshold, confidences);
cudaSafeCall(cudaDeviceSynchronize());
}
template <int nthreads, // Number of threads per one histogram block
int nblocks> // Number of histogram block processed by single GPU thread block
__global__ void classify_hists_kernel_many_blocks(const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
const float* block_hists, const float* coefs,
float free_coef, float threshold, unsigned char* labels)
{
const int win_x = threadIdx.z;
if (blockIdx.x * blockDim.z + win_x >= img_win_width)
return;
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
blockIdx.x * win_block_stride_x * blockDim.z + win_x) *
cblock_hist_size;
float product = 0.f;
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
product += coefs[i] * hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
__shared__ float products[nthreads * nblocks];
const int tid = threadIdx.z * nthreads + threadIdx.x;
reduce<nthreads>(products, product, tid, plus<float>());
if (threadIdx.x == 0)
labels[blockIdx.y * img_win_width + blockIdx.x * blockDim.z + win_x] = (product + free_coef >= threshold);
}
void classify_hists(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
float* coefs, float free_coef, float threshold, int cell_size_x, int ncells_block_x, unsigned char* labels)
{
const int nthreads = 256;
const int nblocks = 1;
int win_block_stride_x = win_stride_x / block_stride_x;
int win_block_stride_y = win_stride_y / block_stride_y;
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
dim3 threads(nthreads, 1, nblocks);
dim3 grid(divUp(img_win_width, nblocks), img_win_height);
cudaSafeCall(cudaFuncSetCacheConfig(classify_hists_kernel_many_blocks<nthreads, nblocks>, cudaFuncCachePreferL1));
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) / block_stride_x;
classify_hists_kernel_many_blocks<nthreads, nblocks><<<grid, threads>>>(
img_win_width, img_block_width, win_block_stride_x, win_block_stride_y,
block_hists, coefs, free_coef, threshold, labels);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//----------------------------------------------------------------------------
// Extract descriptors
template <int nthreads>
__global__ void extract_descrs_by_rows_kernel(const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
const float* block_hists,
PtrStepf descriptors)
{
// Get left top corner of the window in src
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
blockIdx.x * win_block_stride_x) * cblock_hist_size;
// Get left top corner of the window in dst
float* descriptor = descriptors.ptr(blockIdx.y * gridDim.x + blockIdx.x);
// Copy elements from src to dst
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
descriptor[i] = hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
}
void extract_descrs_by_rows(int win_height, int win_width,
int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x,
int height, int width,
float* block_hists, int cell_size_x,
int ncells_block_x,
PtrStepSzf descriptors,
const cudaStream_t& stream)
{
const int nthreads = 256;
int win_block_stride_x = win_stride_x / block_stride_x;
int win_block_stride_y = win_stride_y / block_stride_y;
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
dim3 threads(nthreads, 1);
dim3 grid(img_win_width, img_win_height);
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) / block_stride_x;
extract_descrs_by_rows_kernel<nthreads><<<grid, threads, 0, stream>>>(img_block_width, win_block_stride_x, win_block_stride_y, block_hists, descriptors);
cudaSafeCall( cudaGetLastError() );
}
template <int nthreads>
__global__ void extract_descrs_by_cols_kernel(const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
const float* block_hists,
PtrStepf descriptors)
{
// Get left top corner of the window in src
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
blockIdx.x * win_block_stride_x) * cblock_hist_size;
// Get left top corner of the window in dst
float* descriptor = descriptors.ptr(blockIdx.y * gridDim.x + blockIdx.x);
// Copy elements from src to dst
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
{
int block_idx = i / cblock_hist_size;
int idx_in_block = i - block_idx * cblock_hist_size;
int y = block_idx / cnblocks_win_x;
int x = block_idx - y * cnblocks_win_x;
descriptor[(x * cnblocks_win_y + y) * cblock_hist_size + idx_in_block]
= hist[(y * img_block_width + x) * cblock_hist_size + idx_in_block];
}
}
void extract_descrs_by_cols(int win_height, int win_width,
int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x,
int height, int width,
float* block_hists,
int cell_size_x, int ncells_block_x,
PtrStepSzf descriptors,
const cudaStream_t& stream)
{
const int nthreads = 256;
int win_block_stride_x = win_stride_x / block_stride_x;
int win_block_stride_y = win_stride_y / block_stride_y;
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
dim3 threads(nthreads, 1);
dim3 grid(img_win_width, img_win_height);
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) / block_stride_x;
extract_descrs_by_cols_kernel<nthreads><<<grid, threads, 0, stream>>>(img_block_width, win_block_stride_x, win_block_stride_y, block_hists, descriptors);
cudaSafeCall( cudaGetLastError() );
}
//----------------------------------------------------------------------------
// Gradients computation
template <int nthreads, int correct_gamma>
__global__ void compute_gradients_8UC4_kernel(int height, int width, const PtrStepb img,
float angle_scale, PtrStepf grad, PtrStepb qangle)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const uchar4* row = (const uchar4*)img.ptr(blockIdx.y);
__shared__ float sh_row[(nthreads + 2) * 3];
uchar4 val;
if (x < width)
val = row[x];
else
val = row[width - 2];
sh_row[threadIdx.x + 1] = val.x;
sh_row[threadIdx.x + 1 + (nthreads + 2)] = val.y;
sh_row[threadIdx.x + 1 + 2 * (nthreads + 2)] = val.z;
if (threadIdx.x == 0)
{
val = row[::max(x - 1, 1)];
sh_row[0] = val.x;
sh_row[(nthreads + 2)] = val.y;
sh_row[2 * (nthreads + 2)] = val.z;
}
if (threadIdx.x == blockDim.x - 1)
{
val = row[::min(x + 1, width - 2)];
sh_row[blockDim.x + 1] = val.x;
sh_row[blockDim.x + 1 + (nthreads + 2)] = val.y;
sh_row[blockDim.x + 1 + 2 * (nthreads + 2)] = val.z;
}
__syncthreads();
if (x < width)
{
float3 a, b;
b.x = sh_row[threadIdx.x + 2];
b.y = sh_row[threadIdx.x + 2 + (nthreads + 2)];
b.z = sh_row[threadIdx.x + 2 + 2 * (nthreads + 2)];
a.x = sh_row[threadIdx.x];
a.y = sh_row[threadIdx.x + (nthreads + 2)];
a.z = sh_row[threadIdx.x + 2 * (nthreads + 2)];
float3 dx;
if (correct_gamma)
dx = make_float3(::sqrtf(b.x) - ::sqrtf(a.x), ::sqrtf(b.y) - ::sqrtf(a.y), ::sqrtf(b.z) - ::sqrtf(a.z));
else
dx = make_float3(b.x - a.x, b.y - a.y, b.z - a.z);
float3 dy = make_float3(0.f, 0.f, 0.f);
if (blockIdx.y > 0 && blockIdx.y < height - 1)
{
val = ((const uchar4*)img.ptr(blockIdx.y - 1))[x];
a = make_float3(val.x, val.y, val.z);
val = ((const uchar4*)img.ptr(blockIdx.y + 1))[x];
b = make_float3(val.x, val.y, val.z);
if (correct_gamma)
dy = make_float3(::sqrtf(b.x) - ::sqrtf(a.x), ::sqrtf(b.y) - ::sqrtf(a.y), ::sqrtf(b.z) - ::sqrtf(a.z));
else
dy = make_float3(b.x - a.x, b.y - a.y, b.z - a.z);
}
float best_dx = dx.x;
float best_dy = dy.x;
float mag0 = dx.x * dx.x + dy.x * dy.x;
float mag1 = dx.y * dx.y + dy.y * dy.y;
if (mag0 < mag1)
{
best_dx = dx.y;
best_dy = dy.y;
mag0 = mag1;
}
mag1 = dx.z * dx.z + dy.z * dy.z;
if (mag0 < mag1)
{
best_dx = dx.z;
best_dy = dy.z;
mag0 = mag1;
}
mag0 = ::sqrtf(mag0);
float ang = (::atan2f(best_dy, best_dx) + CV_PI_F) * angle_scale - 0.5f;
int hidx = (int)::floorf(ang);
ang -= hidx;
hidx = (hidx + cnbins) % cnbins;
((uchar2*)qangle.ptr(blockIdx.y))[x] = make_uchar2(hidx, (hidx + 1) % cnbins);
((float2*)grad.ptr(blockIdx.y))[x] = make_float2(mag0 * (1.f - ang), mag0 * ang);
}
}
void compute_gradients_8UC4(int nbins,
int height, int width, const PtrStepSzb& img,
float angle_scale,
PtrStepSzf grad, PtrStepSzb qangle,
bool correct_gamma,
const cudaStream_t& stream)
{
CV_UNUSED(nbins);
const int nthreads = 256;
dim3 bdim(nthreads, 1);
dim3 gdim(divUp(width, bdim.x), divUp(height, bdim.y));
if (correct_gamma)
compute_gradients_8UC4_kernel<nthreads, 1><<<gdim, bdim, 0, stream>>>(height, width, img, angle_scale, grad, qangle);
else
compute_gradients_8UC4_kernel<nthreads, 0><<<gdim, bdim, 0, stream>>>(height, width, img, angle_scale, grad, qangle);
cudaSafeCall( cudaGetLastError() );
}
template <int nthreads, int correct_gamma>
__global__ void compute_gradients_8UC1_kernel(int height, int width, const PtrStepb img,
float angle_scale, PtrStepf grad, PtrStepb qangle)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned char* row = (const unsigned char*)img.ptr(blockIdx.y);
__shared__ float sh_row[nthreads + 2];
if (x < width)
sh_row[threadIdx.x + 1] = row[x];
else
sh_row[threadIdx.x + 1] = row[width - 2];
if (threadIdx.x == 0)
sh_row[0] = row[::max(x - 1, 1)];
if (threadIdx.x == blockDim.x - 1)
sh_row[blockDim.x + 1] = row[::min(x + 1, width - 2)];
__syncthreads();
if (x < width)
{
float dx;
if (correct_gamma)
dx = ::sqrtf(sh_row[threadIdx.x + 2]) - ::sqrtf(sh_row[threadIdx.x]);
else
dx = sh_row[threadIdx.x + 2] - sh_row[threadIdx.x];
float dy = 0.f;
if (blockIdx.y > 0 && blockIdx.y < height - 1)
{
float a = ((const unsigned char*)img.ptr(blockIdx.y + 1))[x];
float b = ((const unsigned char*)img.ptr(blockIdx.y - 1))[x];
if (correct_gamma)
dy = ::sqrtf(a) - ::sqrtf(b);
else
dy = a - b;
}
float mag = ::sqrtf(dx * dx + dy * dy);
float ang = (::atan2f(dy, dx) + CV_PI_F) * angle_scale - 0.5f;
int hidx = (int)::floorf(ang);
ang -= hidx;
hidx = (hidx + cnbins) % cnbins;
((uchar2*)qangle.ptr(blockIdx.y))[x] = make_uchar2(hidx, (hidx + 1) % cnbins);
((float2*) grad.ptr(blockIdx.y))[x] = make_float2(mag * (1.f - ang), mag * ang);
}
}
void compute_gradients_8UC1(int nbins,
int height, int width, const PtrStepSzb& img,
float angle_scale,
PtrStepSzf grad, PtrStepSzb qangle,
bool correct_gamma,
const cudaStream_t& stream)
{
CV_UNUSED(nbins);
const int nthreads = 256;
dim3 bdim(nthreads, 1);
dim3 gdim(divUp(width, bdim.x), divUp(height, bdim.y));
if (correct_gamma)
compute_gradients_8UC1_kernel<nthreads, 1><<<gdim, bdim, 0, stream>>>(height, width, img, angle_scale, grad, qangle);
else
compute_gradients_8UC1_kernel<nthreads, 0><<<gdim, bdim, 0, stream>>>(height, width, img, angle_scale, grad, qangle);
cudaSafeCall( cudaGetLastError() );
}
//-------------------------------------------------------------------
// Resize
texture<uchar4, 2, cudaReadModeNormalizedFloat> resize8UC4_tex;
texture<uchar, 2, cudaReadModeNormalizedFloat> resize8UC1_tex;
__global__ void resize_for_hog_kernel(float sx, float sy, PtrStepSz<uchar> dst, int colOfs)
{
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst.cols && y < dst.rows)
dst.ptr(y)[x] = tex2D(resize8UC1_tex, x * sx + colOfs, y * sy) * 255;
}
__global__ void resize_for_hog_kernel(float sx, float sy, PtrStepSz<uchar4> dst, int colOfs)
{
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst.cols && y < dst.rows)
{
float4 val = tex2D(resize8UC4_tex, x * sx + colOfs, y * sy);
dst.ptr(y)[x] = make_uchar4(val.x * 255, val.y * 255, val.z * 255, val.w * 255);
}
}
template<class T, class TEX>
static void resize_for_hog(const PtrStepSzb& src, PtrStepSzb dst, TEX& tex)
{
tex.filterMode = cudaFilterModeLinear;
size_t texOfs = 0;
int colOfs = 0;
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
cudaSafeCall( cudaBindTexture2D(&texOfs, tex, src.data, desc, src.cols, src.rows, src.step) );
if (texOfs != 0)
{
colOfs = static_cast<int>( texOfs/sizeof(T) );
cudaSafeCall( cudaUnbindTexture(tex) );
cudaSafeCall( cudaBindTexture2D(&texOfs, tex, src.data, desc, src.cols, src.rows, src.step) );
}
dim3 threads(32, 8);
dim3 grid(divUp(dst.cols, threads.x), divUp(dst.rows, threads.y));
float sx = static_cast<float>(src.cols) / dst.cols;
float sy = static_cast<float>(src.rows) / dst.rows;
resize_for_hog_kernel<<<grid, threads>>>(sx, sy, (PtrStepSz<T>)dst, colOfs);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaUnbindTexture(tex) );
}
void resize_8UC1(const PtrStepSzb& src, PtrStepSzb dst) { resize_for_hog<uchar> (src, dst, resize8UC1_tex); }
void resize_8UC4(const PtrStepSzb& src, PtrStepSzb dst) { resize_for_hog<uchar4>(src, dst, resize8UC4_tex); }
} // namespace hog
}}} // namespace cv { namespace cuda { namespace cudev
#endif /* CUDA_DISABLER */