opencv/modules/imgproc/src/canny.cpp

1327 lines
46 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <queue>
#include "opencv2/core/openvx/ovx_defs.hpp"
#ifdef _MSC_VER
#pragma warning( disable: 4127 ) // conditional expression is constant
#endif
#if defined (HAVE_IPP) && (IPP_VERSION_X100 >= 700)
#define USE_IPP_CANNY 1
#else
#define USE_IPP_CANNY 0
#endif
namespace cv
{
static void CannyImpl(Mat& dx_, Mat& dy_, Mat& _dst, double low_thresh, double high_thresh, bool L2gradient);
#ifdef HAVE_IPP
template <bool useCustomDeriv>
static bool ippCanny(const Mat& _src, const Mat& dx_, const Mat& dy_, Mat& _dst, float low, float high)
{
CV_INSTRUMENT_REGION_IPP()
#if USE_IPP_CANNY
if (!useCustomDeriv && _src.isSubmatrix())
return false; // IPP Sobel doesn't support transparent ROI border
int size = 0, size1 = 0;
IppiSize roi = { _src.cols, _src.rows };
if (ippiCannyGetSize(roi, &size) < 0)
return false;
if (!useCustomDeriv)
{
#if IPP_VERSION_X100 < 900
if (ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size1) < 0)
return false;
size = std::max(size, size1);
if (ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size1) < 0)
return false;
#else
if (ippiFilterSobelNegVertBorderGetBufferSize(roi, ippMskSize3x3, ipp8u, ipp16s, 1, &size1) < 0)
return false;
size = std::max(size, size1);
if (ippiFilterSobelHorizBorderGetBufferSize(roi, ippMskSize3x3, ipp8u, ipp16s, 1, &size1) < 0)
return false;
#endif
size = std::max(size, size1);
}
AutoBuffer<uchar> buf(size + 64);
uchar* buffer = alignPtr((uchar*)buf, 32);
Mat dx, dy;
if (!useCustomDeriv)
{
Mat _dx(_src.rows, _src.cols, CV_16S);
if( CV_INSTRUMENT_FUN_IPP(ippiFilterSobelNegVertBorder_8u16s_C1R, _src.ptr(), (int)_src.step,
_dx.ptr<short>(), (int)_dx.step, roi,
ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 )
return false;
Mat _dy(_src.rows, _src.cols, CV_16S);
if( CV_INSTRUMENT_FUN_IPP(ippiFilterSobelHorizBorder_8u16s_C1R, _src.ptr(), (int)_src.step,
_dy.ptr<short>(), (int)_dy.step, roi,
ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 )
return false;
swap(dx, _dx);
swap(dy, _dy);
}
else
{
dx = dx_;
dy = dy_;
}
if( CV_INSTRUMENT_FUN_IPP(ippiCanny_16s8u_C1R, dx.ptr<short>(), (int)dx.step,
dy.ptr<short>(), (int)dy.step,
_dst.ptr(), (int)_dst.step, roi, low, high, buffer) < 0 )
return false;
return true;
#else
CV_UNUSED(_src); CV_UNUSED(dx_); CV_UNUSED(dy_); CV_UNUSED(_dst); CV_UNUSED(low); CV_UNUSED(high);
return false;
#endif
}
#endif
#ifdef HAVE_OPENCL
template <bool useCustomDeriv>
static bool ocl_Canny(InputArray _src, const UMat& dx_, const UMat& dy_, OutputArray _dst, float low_thresh, float high_thresh,
int aperture_size, bool L2gradient, int cn, const Size & size)
{
CV_INSTRUMENT_REGION_OPENCL()
UMat map;
const ocl::Device &dev = ocl::Device::getDefault();
int max_wg_size = (int)dev.maxWorkGroupSize();
int lSizeX = 32;
int lSizeY = max_wg_size / 32;
if (lSizeY == 0)
{
lSizeX = 16;
lSizeY = max_wg_size / 16;
}
if (lSizeY == 0)
{
lSizeY = 1;
}
if (L2gradient)
{
low_thresh = std::min(32767.0f, low_thresh);
high_thresh = std::min(32767.0f, high_thresh);
if (low_thresh > 0)
low_thresh *= low_thresh;
if (high_thresh > 0)
high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh), high = cvFloor(high_thresh);
if (!useCustomDeriv &&
aperture_size == 3 && !_src.isSubmatrix())
{
/*
stage1_with_sobel:
Sobel operator
Calc magnitudes
Non maxima suppression
Double thresholding
*/
char cvt[40];
ocl::Kernel with_sobel("stage1_with_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITH_SOBEL -D cn=%d -D TYPE=%s -D convert_floatN=%s -D floatN=%s -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, ocl::memopTypeToStr(_src.depth()),
ocl::convertTypeStr(_src.depth(), CV_32F, cn, cvt),
ocl::typeToStr(CV_MAKE_TYPE(CV_32F, cn)),
lSizeX, lSizeY,
L2gradient ? " -D L2GRAD" : ""));
if (with_sobel.empty())
return false;
UMat src = _src.getUMat();
map.create(size, CV_32S);
with_sobel.args(ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::WriteOnlyNoSize(map),
(float) low, (float) high);
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height },
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY };
if (!with_sobel.run(2, globalsize, localsize, false))
return false;
}
else
{
/*
stage1_without_sobel:
Calc magnitudes
Non maxima suppression
Double thresholding
*/
UMat dx, dy;
if (!useCustomDeriv)
{
Sobel(_src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(_src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
}
else
{
dx = dx_;
dy = dy_;
}
ocl::Kernel without_sobel("stage1_without_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITHOUT_SOBEL -D cn=%d -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, lSizeX, lSizeY, L2gradient ? " -D L2GRAD" : ""));
if (without_sobel.empty())
return false;
map.create(size, CV_32S);
without_sobel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy),
ocl::KernelArg::WriteOnly(map),
low, high);
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height },
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY };
if (!without_sobel.run(2, globalsize, localsize, false))
return false;
}
int PIX_PER_WI = 8;
/*
stage2:
hysteresis (add weak edges if they are connected with strong edges)
*/
int sizey = lSizeY / PIX_PER_WI;
if (sizey == 0)
sizey = 1;
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + PIX_PER_WI - 1) / PIX_PER_WI }, localsize[2] = { (size_t)lSizeX, (size_t)sizey };
ocl::Kernel edgesHysteresis("stage2_hysteresis", ocl::imgproc::canny_oclsrc,
format("-D STAGE2 -D PIX_PER_WI=%d -D LOCAL_X=%d -D LOCAL_Y=%d",
PIX_PER_WI, lSizeX, sizey));
if (edgesHysteresis.empty())
return false;
edgesHysteresis.args(ocl::KernelArg::ReadWrite(map));
if (!edgesHysteresis.run(2, globalsize, localsize, false))
return false;
// get edges
ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc,
format("-D GET_EDGES -D PIX_PER_WI=%d", PIX_PER_WI));
if (getEdgesKernel.empty())
return false;
_dst.create(size, CV_8UC1);
UMat dst = _dst.getUMat();
getEdgesKernel.args(ocl::KernelArg::ReadOnly(map), ocl::KernelArg::WriteOnlyNoSize(dst));
return getEdgesKernel.run(2, globalsize, NULL, false);
}
#endif
class parallelCanny : public ParallelLoopBody
{
public:
parallelCanny(const Mat& _src, uchar* _map, int _low, int _high, int _aperture_size, bool _L2gradient, std::queue<uchar*> *borderPeaksParallel) :
src(_src), map(_map), low(_low), high(_high), aperture_size(_aperture_size), L2gradient(_L2gradient), _borderPeaksParallel(borderPeaksParallel)
{
}
~parallelCanny()
{
}
parallelCanny& operator=(const parallelCanny&) { return *this; }
void operator()(const Range &boundaries) const
{
#if CV_SIMD128
bool haveSIMD = hasSIMD128();
#endif
const int type = src.type(), cn = CV_MAT_CN(type);
Mat dx, dy;
std::queue<uchar*> borderPeaksLocal;
ptrdiff_t mapstep = src.cols + 2;
// In sobel transform we calculate ksize2 extra lines for the first and last rows of each slice
// because IPPDerivSobel expects only isolated ROIs, in contrast with the opencv version which
// uses the pixels outside of the ROI to form a border.
int ksize2 = aperture_size / 2;
// If Scharr filter: aperture_size is 3 and ksize2 is 1
if(aperture_size == -1)
{
ksize2 = 1;
}
if (boundaries.start == 0 && boundaries.end == src.rows)
{
Mat tempdx(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn));
Mat tempdy(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn));
memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short));
memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short));
memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short));
memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short));
Sobel(src, tempdx.rowRange(1, tempdx.rows - 1), CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src, tempdy.rowRange(1, tempdy.rows - 1), CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
dx = tempdx;
dy = tempdy;
}
else if (boundaries.start == 0)
{
Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short));
memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short));
Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdx.rowRange(1, tempdx.rows),
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdy.rowRange(1, tempdy.rows),
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
dx = tempdx.rowRange(0, tempdx.rows - ksize2);
dy = tempdy.rowRange(0, tempdy.rows - ksize2);
}
else if (boundaries.end == src.rows)
{
Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short));
memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short));
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdx.rowRange(0, tempdx.rows - 1),
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdy.rowRange(0, tempdy.rows - 1),
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
dx = tempdx.rowRange(ksize2, tempdx.rows);
dy = tempdy.rowRange(ksize2, tempdy.rows);
}
else
{
Mat tempdx(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn));
Mat tempdy(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn));
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdx,
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdy,
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
dx = tempdx.rowRange(ksize2, tempdx.rows - ksize2);
dy = tempdy.rowRange(ksize2, tempdy.rows - ksize2);
}
int maxsize = std::max(1 << 10, src.cols * (boundaries.end - boundaries.start) / 10);
std::vector<uchar*> stack(maxsize);
uchar **stack_top = &stack[0];
uchar **stack_bottom = &stack[0];
AutoBuffer<uchar> buffer(cn * mapstep * 3 * sizeof(int));
int* mag_buf[3];
mag_buf[0] = (int*)(uchar*)buffer;
mag_buf[1] = mag_buf[0] + mapstep*cn;
mag_buf[2] = mag_buf[1] + mapstep*cn;
// calculate magnitude and angle of gradient, perform non-maxima suppression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge
// 1 - the pixel can not belong to an edge
// 2 - the pixel does belong to an edge
for (int i = boundaries.start - 1; i <= boundaries.end; i++)
{
int* _norm = mag_buf[(i > boundaries.start) - (i == boundaries.start - 1) + 1] + 1;
short* _dx = dx.ptr<short>(i - boundaries.start + 1);
short* _dy = dy.ptr<short>(i - boundaries.start + 1);
if (!L2gradient)
{
int j = 0, width = src.cols * cn;
#if CV_SIMD128
if (haveSIMD)
{
for ( ; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short *)(_dx + j));
v_int16x8 v_dy = v_load((const short *)(_dy + j));
v_dx = v_reinterpret_as_s16(v_abs(v_dx));
v_dy = v_reinterpret_as_s16(v_abs(v_dy));
v_int32x4 v_dx_ml;
v_int32x4 v_dy_ml;
v_int32x4 v_dx_mh;
v_int32x4 v_dy_mh;
v_expand(v_dx, v_dx_ml, v_dx_mh);
v_expand(v_dy, v_dy_ml, v_dy_mh);
v_store((int *)(_norm + j), v_dx_ml + v_dy_ml);
v_store((int *)(_norm + j + 4), v_dx_mh + v_dy_mh);
}
}
#endif
for ( ; j < width; ++j)
_norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
}
else
{
int j = 0, width = src.cols * cn;
#if CV_SIMD128
if (haveSIMD)
{
for ( ; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short*)(_dx + j));
v_int16x8 v_dy = v_load((const short*)(_dy + j));
v_int32x4 v_dxp_low, v_dxp_high;
v_int32x4 v_dyp_low, v_dyp_high;
v_expand(v_dx, v_dxp_low, v_dxp_high);
v_expand(v_dy, v_dyp_low, v_dyp_high);
v_store((int *)(_norm + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low);
v_store((int *)(_norm + j + 4), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high);
}
}
#endif
for ( ; j < width; ++j)
_norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
}
if (cn > 1)
{
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
{
int maxIdx = jn;
for(int k = 1; k < cn; ++k)
if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;
_norm[j] = _norm[maxIdx];
_dx[j] = _dx[maxIdx];
_dy[j] = _dy[maxIdx];
}
}
_norm[-1] = _norm[src.cols] = 0;
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if (i <= boundaries.start)
continue;
uchar* _map = map + mapstep*i + 1;
_map[-1] = _map[src.cols] = 1;
int* _mag = mag_buf[1] + 1; // take the central row
ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];
const short* _x = dx.ptr<short>(i - boundaries.start);
const short* _y = dy.ptr<short>(i - boundaries.start);
if ((stack_top - stack_bottom) + src.cols > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = std::max(maxsize * 3/2, sz + src.cols);
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
#define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d)
#define CANNY_POP(d) (d) = *--stack_top
#define CANNY_SHIFT 15
const int TG22 = (int)(0.4142135623730950488016887242097*(1 << CANNY_SHIFT) + 0.5);
int prev_flag = 0, j = 0;
#if CV_SIMD128
if (haveSIMD)
{
v_int32x4 v_low = v_setall_s32(low);
v_int8x16 v_one = v_setall_s8(1);
for (; j <= src.cols - 16; j += 16)
{
v_int32x4 v_m1 = v_load((const int*)(_mag + j));
v_int32x4 v_m2 = v_load((const int*)(_mag + j + 4));
v_int32x4 v_m3 = v_load((const int*)(_mag + j + 8));
v_int32x4 v_m4 = v_load((const int*)(_mag + j + 12));
v_store((signed char*)(_map + j), v_one);
v_int32x4 v_cmp1 = v_m1 > v_low;
v_int32x4 v_cmp2 = v_m2 > v_low;
v_int32x4 v_cmp3 = v_m3 > v_low;
v_int32x4 v_cmp4 = v_m4 > v_low;
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4);
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81);
unsigned int mask = v_signmask(v_cmp);
if (mask)
{
int m, k = j;
for (; mask; ++k, mask >>= 1)
{
if (mask & 0x00000001)
{
m = _mag[k];
int xs = _x[k];
int ys = _y[k];
int x = std::abs(xs);
int y = std::abs(ys) << CANNY_SHIFT;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag[k - 1] && m >= _mag[k + 1]) goto _canny_push_sse;
}
else
{
int tg67x = tg22x + (x << (CANNY_SHIFT + 1));
if (y > tg67x)
{
if (m > _mag[k + magstep2] && m >= _mag[k + magstep1]) goto _canny_push_sse;
} else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if (m > _mag[k + magstep2 - s] && m > _mag[k + magstep1 + s]) goto _canny_push_sse;
}
}
}
prev_flag = 0;
continue;
_canny_push_sse:
// _map[k-mapstep] is short-circuited at the start because previous thread is
// responsible for initializing it.
if (m > high && !prev_flag && (i <= boundaries.start + 1 || _map[k - mapstep] != 2))
{
CANNY_PUSH(_map + k);
prev_flag = 1;
} else
_map[k] = 0;
}
if (prev_flag && ((k < j+16) || (k < src.cols && _mag[k] <= high)))
prev_flag = 0;
}
}
}
#endif
for (; j < src.cols; j++)
{
int m = _mag[j];
if (m > low)
{
int xs = _x[j];
int ys = _y[j];
int x = std::abs(xs);
int y = std::abs(ys) << CANNY_SHIFT;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag[j-1] && m >= _mag[j+1]) goto _canny_push;
}
else
{
int tg67x = tg22x + (x << (CANNY_SHIFT+1));
if (y > tg67x)
{
if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto _canny_push;
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto _canny_push;
}
}
}
prev_flag = 0;
_map[j] = uchar(1);
continue;
_canny_push:
// _map[j-mapstep] is short-circuited at the start because previous thread is
// responsible for initializing it.
if (!prev_flag && m > high && (i <= boundaries.start+1 || _map[j-mapstep] != 2) )
{
CANNY_PUSH(_map + j);
prev_flag = 1;
}
else
_map[j] = 0;
}
// scroll the ring buffer
_mag = mag_buf[0];
mag_buf[0] = mag_buf[1];
mag_buf[1] = mag_buf[2];
mag_buf[2] = _mag;
}
// now track the edges (hysteresis thresholding)
while (stack_top > stack_bottom)
{
if ((stack_top - stack_bottom) + 8 > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = maxsize * 3/2;
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
uchar* m;
CANNY_POP(m);
// Stops thresholding from expanding to other slices by sending pixels in the borders of each
// slice in a queue to be serially processed later.
if ( (m < map + (boundaries.start + 2) * mapstep) || (m >= map + boundaries.end * mapstep) )
{
borderPeaksLocal.push(m);
continue;
}
if (!m[-1]) CANNY_PUSH(m - 1);
if (!m[1]) CANNY_PUSH(m + 1);
if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
if (!m[-mapstep]) CANNY_PUSH(m - mapstep);
if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1);
if (!m[mapstep]) CANNY_PUSH(m + mapstep);
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1);
}
AutoLock lock(mutex);
while (!borderPeaksLocal.empty()) {
_borderPeaksParallel->push(borderPeaksLocal.front());
borderPeaksLocal.pop();
}
}
private:
const Mat& src;
uchar* map;
int low, high, aperture_size;
bool L2gradient;
std::queue<uchar*> *_borderPeaksParallel;
mutable Mutex mutex;
};
class finalPass : public ParallelLoopBody
{
public:
finalPass(uchar *_map, Mat &_dst, ptrdiff_t _mapstep) :
map(_map), dst(_dst), mapstep(_mapstep) {}
~finalPass() {}
finalPass& operator=(const finalPass&) {return *this;}
void operator()(const Range &boundaries) const
{
// the final pass, form the final image
const uchar* pmap = map + mapstep + 1 + (ptrdiff_t)(mapstep * boundaries.start);
uchar* pdst = dst.ptr() + (ptrdiff_t)(dst.step * boundaries.start);
#if CV_SIMD128
bool haveSIMD = hasSIMD128();
#endif
for (int i = boundaries.start; i < boundaries.end; i++, pmap += mapstep, pdst += dst.step)
{
int j = 0;
#if CV_SIMD128
if(haveSIMD) {
const v_int8x16 v_zero = v_setzero_s8();
for(; j <= dst.cols - 32; j += 32) {
v_uint8x16 v_pmap1 = v_load((const unsigned char*)(pmap + j));
v_uint8x16 v_pmap2 = v_load((const unsigned char*)(pmap + j + 16));
v_uint16x8 v_pmaplo1;
v_uint16x8 v_pmaphi1;
v_uint16x8 v_pmaplo2;
v_uint16x8 v_pmaphi2;
v_expand(v_pmap1, v_pmaplo1, v_pmaphi1);
v_expand(v_pmap2, v_pmaplo2, v_pmaphi2);
v_pmaplo1 = v_pmaplo1 >> 1;
v_pmaphi1 = v_pmaphi1 >> 1;
v_pmaplo2 = v_pmaplo2 >> 1;
v_pmaphi2 = v_pmaphi2 >> 1;
v_pmap1 = v_pack(v_pmaplo1, v_pmaphi1);
v_pmap2 = v_pack(v_pmaplo2, v_pmaphi2);
v_pmap1 = v_reinterpret_as_u8(v_zero - v_reinterpret_as_s8(v_pmap1));
v_pmap2 = v_reinterpret_as_u8(v_zero - v_reinterpret_as_s8(v_pmap2));
v_store((pdst + j), v_pmap1);
v_store((pdst + j + 16), v_pmap2);
}
for(; j <= dst.cols - 16; j += 16) {
v_uint8x16 v_pmap = v_load((const unsigned char*)(pmap + j));
v_uint16x8 v_pmaplo;
v_uint16x8 v_pmaphi;
v_expand(v_pmap, v_pmaplo, v_pmaphi);
v_pmaplo = v_pmaplo >> 1;
v_pmaphi = v_pmaphi >> 1;
v_pmap = v_pack(v_pmaplo, v_pmaphi);
v_pmap = v_reinterpret_as_u8(v_zero - v_reinterpret_as_s8(v_pmap));
v_store((pdst + j), v_pmap);
}
}
#endif
for (; j < dst.cols; j++)
pdst[j] = (uchar)-(pmap[j] >> 1);
}
}
private:
uchar *map;
Mat &dst;
ptrdiff_t mapstep;
};
#ifdef HAVE_OPENVX
static bool openvx_canny(const Mat& src, Mat& dst, int loVal, int hiVal, int kSize, bool useL2)
{
using namespace ivx;
Context context = ovx::getOpenVXContext();
try
{
Image _src = Image::createFromHandle(
context,
Image::matTypeToFormat(src.type()),
Image::createAddressing(src),
src.data );
Image _dst = Image::createFromHandle(
context,
Image::matTypeToFormat(dst.type()),
Image::createAddressing(dst),
dst.data );
Threshold threshold = Threshold::createRange(context, VX_TYPE_UINT8, saturate_cast<uchar>(loVal), saturate_cast<uchar>(hiVal));
#if 0
// the code below is disabled because vxuCannyEdgeDetector()
// ignores context attribute VX_CONTEXT_IMMEDIATE_BORDER
// FIXME: may fail in multithread case
border_t prevBorder = context.immediateBorder();
context.setImmediateBorder(VX_BORDER_REPLICATE);
IVX_CHECK_STATUS( vxuCannyEdgeDetector(context, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) );
context.setImmediateBorder(prevBorder);
#else
// alternative code without vxuCannyEdgeDetector()
Graph graph = Graph::create(context);
ivx::Node node = ivx::Node(vxCannyEdgeDetectorNode(graph, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) );
node.setBorder(VX_BORDER_REPLICATE);
graph.verify();
graph.process();
#endif
#ifdef VX_VERSION_1_1
_src.swapHandle();
_dst.swapHandle();
#endif
}
catch(const WrapperError& e)
{
VX_DbgThrow(e.what());
}
catch(const RuntimeError& e)
{
VX_DbgThrow(e.what());
}
return true;
}
#endif // HAVE_OPENVX
void Canny( InputArray _src, OutputArray _dst,
double low_thresh, double high_thresh,
int aperture_size, bool L2gradient )
{
CV_INSTRUMENT_REGION()
const int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
const Size size = _src.size();
CV_Assert( depth == CV_8U );
_dst.create(size, CV_8U);
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)
{
// backward compatibility
aperture_size &= ~CV_CANNY_L2_GRADIENT;
L2gradient = true;
}
if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)))
CV_Error(CV_StsBadFlag, "Aperture size should be odd between 3 and 7");
if (low_thresh > high_thresh)
std::swap(low_thresh, high_thresh);
CV_OCL_RUN(_dst.isUMat() && (cn == 1 || cn == 3),
ocl_Canny<false>(_src, UMat(), UMat(), _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, cn, size))
Mat src = _src.getMat(), dst = _dst.getMat();
CV_OVX_RUN(
false && /* disabling due to accuracy issues */
src.type() == CV_8UC1 &&
!src.isSubmatrix() &&
src.cols >= aperture_size &&
src.rows >= aperture_size,
openvx_canny(
src,
dst,
cvFloor(low_thresh),
cvFloor(high_thresh),
aperture_size,
L2gradient ) )
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient))
return;
#endif
CV_IPP_RUN(USE_IPP_CANNY && (aperture_size == 3 && !L2gradient && 1 == cn), ippCanny<false>(src, Mat(), Mat(), dst, (float)low_thresh, (float)high_thresh))
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh;
if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);
ptrdiff_t mapstep = src.cols + 2;
AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2) + cn * mapstep * 3 * sizeof(int));
int* mag_buf[3];
mag_buf[0] = (int*)(uchar*)buffer;
mag_buf[1] = mag_buf[0] + mapstep*cn;
mag_buf[2] = mag_buf[1] + mapstep*cn;
memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int));
uchar *map = (uchar*)(mag_buf[2] + mapstep*cn);
memset(map, 1, mapstep);
memset(map + mapstep*(src.rows + 1), 1, mapstep);
// Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead
int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs()));
// Make a fallback for pictures with too few rows.
int grainSize = src.rows / numOfThreads;
int ksize2 = aperture_size / 2;
// If Scharr filter: aperture size is 3, ksize2 is 1
if(aperture_size == -1)
{
ksize2 = 1;
}
int minGrainSize = 2 * (ksize2 + 1);
if (grainSize < minGrainSize)
{
numOfThreads = std::max(1, src.rows / minGrainSize);
}
std::queue<uchar*> borderPeaksParallel;
parallel_for_(Range(0, src.rows), parallelCanny(src, map, low, high, aperture_size, L2gradient, &borderPeaksParallel), numOfThreads);
#define CANNY_PUSH_SERIAL(d) *(d) = uchar(2), borderPeaksParallel.push(d)
// now track the edges (hysteresis thresholding)
uchar* m;
while (!borderPeaksParallel.empty())
{
m = borderPeaksParallel.front();
borderPeaksParallel.pop();
if (!m[-1]) CANNY_PUSH_SERIAL(m - 1);
if (!m[1]) CANNY_PUSH_SERIAL(m + 1);
if (!m[-mapstep-1]) CANNY_PUSH_SERIAL(m - mapstep - 1);
if (!m[-mapstep]) CANNY_PUSH_SERIAL(m - mapstep);
if (!m[-mapstep+1]) CANNY_PUSH_SERIAL(m - mapstep + 1);
if (!m[mapstep-1]) CANNY_PUSH_SERIAL(m + mapstep - 1);
if (!m[mapstep]) CANNY_PUSH_SERIAL(m + mapstep);
if (!m[mapstep+1]) CANNY_PUSH_SERIAL(m + mapstep + 1);
}
parallel_for_(Range(0, dst.rows), finalPass(map, dst, mapstep), dst.total()/(double)(1<<16));
}
void Canny( InputArray _dx, InputArray _dy, OutputArray _dst,
double low_thresh, double high_thresh,
bool L2gradient )
{
CV_Assert(_dx.dims() == 2);
CV_Assert(_dx.type() == CV_16SC1 || _dx.type() == CV_16SC3);
CV_Assert(_dy.type() == _dx.type());
CV_Assert(_dx.sameSize(_dy));
if (low_thresh > high_thresh)
std::swap(low_thresh, high_thresh);
const int cn = _dx.channels();
const Size size = _dx.size();
CV_OCL_RUN(_dst.isUMat(),
ocl_Canny<true>(UMat(), _dx.getUMat(), _dy.getUMat(), _dst, (float)low_thresh, (float)high_thresh, 0, L2gradient, cn, size))
_dst.create(size, CV_8U);
Mat dst = _dst.getMat();
Mat dx = _dx.getMat();
Mat dy = _dy.getMat();
CV_IPP_RUN(USE_IPP_CANNY && (!L2gradient && 1 == cn), ippCanny<true>(Mat(), dx, dy, dst, (float)low_thresh, (float)high_thresh))
if (cn > 1)
{
dx = dx.clone();
dy = dy.clone();
}
CannyImpl(dx, dy, dst, low_thresh, high_thresh, L2gradient);
}
static void CannyImpl(Mat& dx, Mat& dy, Mat& dst,
double low_thresh, double high_thresh, bool L2gradient)
{
const int cn = dx.channels();
const int cols = dx.cols, rows = dx.rows;
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh;
if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);
ptrdiff_t mapstep = cols + 2;
AutoBuffer<uchar> buffer((cols+2)*(rows+2) + cn * mapstep * 3 * sizeof(int));
int* mag_buf[3];
mag_buf[0] = (int*)(uchar*)buffer;
mag_buf[1] = mag_buf[0] + mapstep*cn;
mag_buf[2] = mag_buf[1] + mapstep*cn;
memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int));
uchar* map = (uchar*)(mag_buf[2] + mapstep*cn);
memset(map, 1, mapstep);
memset(map + mapstep*(rows + 1), 1, mapstep);
int maxsize = std::max(1 << 10, cols * rows / 10);
std::vector<uchar*> stack(maxsize);
uchar **stack_top = &stack[0];
uchar **stack_bottom = &stack[0];
/* sector numbers
(Top-Left Origin)
1 2 3
* * *
* * *
0*******0
* * *
* * *
3 2 1
*/
#define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d)
#define CANNY_POP(d) (d) = *--stack_top
#if CV_SIMD128
bool haveSIMD = hasSIMD128();
#endif
// calculate magnitude and angle of gradient, perform non-maxima suppression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge
// 1 - the pixel can not belong to an edge
// 2 - the pixel does belong to an edge
for (int i = 0; i <= rows; i++)
{
int* _norm = mag_buf[(i > 0) + 1] + 1;
if (i < rows)
{
short* _dx = dx.ptr<short>(i);
short* _dy = dy.ptr<short>(i);
if (!L2gradient)
{
int j = 0, width = cols * cn;
#if CV_SIMD128
if (haveSIMD)
{
for ( ; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short*)(_dx + j));
v_int16x8 v_dy = v_load((const short*)(_dy + j));
v_int32x4 v_dx0, v_dx1, v_dy0, v_dy1;
v_expand(v_dx, v_dx0, v_dx1);
v_expand(v_dy, v_dy0, v_dy1);
v_dx0 = v_reinterpret_as_s32(v_abs(v_dx0));
v_dx1 = v_reinterpret_as_s32(v_abs(v_dx1));
v_dy0 = v_reinterpret_as_s32(v_abs(v_dy0));
v_dy1 = v_reinterpret_as_s32(v_abs(v_dy1));
v_store(_norm + j, v_dx0 + v_dy0);
v_store(_norm + j + 4, v_dx1 + v_dy1);
}
}
#endif
for ( ; j < width; ++j)
_norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
}
else
{
int j = 0, width = cols * cn;
#if CV_SIMD128
if (haveSIMD)
{
for ( ; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short*)(_dx + j));
v_int16x8 v_dy = v_load((const short*)(_dy + j));
v_int16x8 v_dx_dy0, v_dx_dy1;
v_zip(v_dx, v_dy, v_dx_dy0, v_dx_dy1);
v_int32x4 v_dst0 = v_dotprod(v_dx_dy0, v_dx_dy0);
v_int32x4 v_dst1 = v_dotprod(v_dx_dy1, v_dx_dy1);
v_store(_norm + j, v_dst0);
v_store(_norm + j + 4, v_dst1);
}
}
#endif
for ( ; j < width; ++j)
_norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
}
if (cn > 1)
{
for(int j = 0, jn = 0; j < cols; ++j, jn += cn)
{
int maxIdx = jn;
for(int k = 1; k < cn; ++k)
if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;
_norm[j] = _norm[maxIdx];
_dx[j] = _dx[maxIdx];
_dy[j] = _dy[maxIdx];
}
}
_norm[-1] = _norm[cols] = 0;
}
else
memset(_norm-1, 0, /* cn* */mapstep*sizeof(int));
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if (i == 0)
continue;
uchar* _map = map + mapstep*i + 1;
_map[-1] = _map[cols] = 1;
int* _mag = mag_buf[1] + 1; // take the central row
ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];
const short* _x = dx.ptr<short>(i-1);
const short* _y = dy.ptr<short>(i-1);
if ((stack_top - stack_bottom) + cols > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = std::max(maxsize * 3/2, sz + cols);
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
#define CANNY_SHIFT 15
const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5);
int prev_flag = 0, j = 0;
#if CV_SIMD128
if (haveSIMD)
{
v_int32x4 v_low = v_setall_s32(low);
v_int8x16 v_one = v_setall_s8(1);
for (; j <= cols - 16; j += 16)
{
v_int32x4 v_m1 = v_load((const int*)(_mag + j));
v_int32x4 v_m2 = v_load((const int*)(_mag + j + 4));
v_int32x4 v_m3 = v_load((const int*)(_mag + j + 8));
v_int32x4 v_m4 = v_load((const int*)(_mag + j + 12));
v_store((signed char*)(_map + j), v_one);
v_int32x4 v_cmp1 = v_m1 > v_low;
v_int32x4 v_cmp2 = v_m2 > v_low;
v_int32x4 v_cmp3 = v_m3 > v_low;
v_int32x4 v_cmp4 = v_m4 > v_low;
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4);
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81);
unsigned int mask = v_signmask(v_cmp);
if (mask)
{
int m, k = j;
for (; mask; ++k, mask >>= 1)
{
if (mask & 0x00000001)
{
m = _mag[k];
int xs = _x[k];
int ys = _y[k];
int x = std::abs(xs);
int y = std::abs(ys) << CANNY_SHIFT;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag[k - 1] && m >= _mag[k + 1]) goto ocv_canny_push_sse;
}
else
{
int tg67x = tg22x + (x << (CANNY_SHIFT + 1));
if (y > tg67x)
{
if (m > _mag[k + magstep2] && m >= _mag[k + magstep1]) goto ocv_canny_push_sse;
} else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if (m > _mag[k + magstep2 - s] && m > _mag[k + magstep1 + s]) goto ocv_canny_push_sse;
}
}
}
prev_flag = 0;
continue;
ocv_canny_push_sse:
// _map[k-mapstep] is short-circuited at the start because previous thread is
// responsible for initializing it.
if (!prev_flag && m > high && _map[k-mapstep] != 2)
{
CANNY_PUSH(_map + k);
prev_flag = 1;
} else
_map[k] = 0;
}
if (prev_flag && ((k < j+16) || (k < cols && _mag[k] <= high)))
prev_flag = 0;
}
}
}
#endif
for (; j < cols; j++)
{
int m = _mag[j];
if (m > low)
{
int xs = _x[j];
int ys = _y[j];
int x = std::abs(xs);
int y = std::abs(ys) << CANNY_SHIFT;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push;
}
else
{
int tg67x = tg22x + (x << (CANNY_SHIFT+1));
if (y > tg67x)
{
if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push;
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push;
}
}
}
prev_flag = 0;
_map[j] = uchar(1);
continue;
__ocv_canny_push:
if (!prev_flag && m > high && _map[j-mapstep] != 2)
{
CANNY_PUSH(_map + j);
prev_flag = 1;
}
else
_map[j] = 0;
}
// scroll the ring buffer
_mag = mag_buf[0];
mag_buf[0] = mag_buf[1];
mag_buf[1] = mag_buf[2];
mag_buf[2] = _mag;
}
// now track the edges (hysteresis thresholding)
while (stack_top > stack_bottom)
{
uchar* m;
if ((stack_top - stack_bottom) + 8 > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = maxsize * 3/2;
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
CANNY_POP(m);
if (!m[-1]) CANNY_PUSH(m - 1);
if (!m[1]) CANNY_PUSH(m + 1);
if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
if (!m[-mapstep]) CANNY_PUSH(m - mapstep);
if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1);
if (!m[mapstep]) CANNY_PUSH(m + mapstep);
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1);
}
parallel_for_(Range(0, dst.rows), finalPass(map, dst, mapstep), dst.total()/(double)(1<<16));
}
} // namespace cv
void cvCanny( const CvArr* image, CvArr* edges, double threshold1,
double threshold2, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges);
CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U );
cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255,
(aperture_size & CV_CANNY_L2_GRADIENT) != 0);
}
/* End of file. */