opencv/modules/core/src/split.cpp
2015-12-17 12:33:23 +03:00

429 lines
21 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv { namespace hal {
#if CV_NEON
template<typename T> struct VSplit2;
template<typename T> struct VSplit3;
template<typename T> struct VSplit4;
#define SPLIT2_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
template<> \
struct name<data_type> \
{ \
void operator()(const data_type* src, data_type* dst0, \
data_type* dst1) const \
{ \
reg_type r = load_func(src); \
store_func(dst0, r.val[0]); \
store_func(dst1, r.val[1]); \
} \
}
#define SPLIT3_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
template<> \
struct name<data_type> \
{ \
void operator()(const data_type* src, data_type* dst0, data_type* dst1, \
data_type* dst2) const \
{ \
reg_type r = load_func(src); \
store_func(dst0, r.val[0]); \
store_func(dst1, r.val[1]); \
store_func(dst2, r.val[2]); \
} \
}
#define SPLIT4_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
template<> \
struct name<data_type> \
{ \
void operator()(const data_type* src, data_type* dst0, data_type* dst1, \
data_type* dst2, data_type* dst3) const \
{ \
reg_type r = load_func(src); \
store_func(dst0, r.val[0]); \
store_func(dst1, r.val[1]); \
store_func(dst2, r.val[2]); \
store_func(dst3, r.val[3]); \
} \
}
SPLIT2_KERNEL_TEMPLATE(VSplit2, uchar , uint8x16x2_t, vld2q_u8 , vst1q_u8 );
SPLIT2_KERNEL_TEMPLATE(VSplit2, ushort, uint16x8x2_t, vld2q_u16, vst1q_u16);
SPLIT2_KERNEL_TEMPLATE(VSplit2, int , int32x4x2_t, vld2q_s32, vst1q_s32);
SPLIT2_KERNEL_TEMPLATE(VSplit2, int64 , int64x1x2_t, vld2_s64 , vst1_s64 );
SPLIT3_KERNEL_TEMPLATE(VSplit3, uchar , uint8x16x3_t, vld3q_u8 , vst1q_u8 );
SPLIT3_KERNEL_TEMPLATE(VSplit3, ushort, uint16x8x3_t, vld3q_u16, vst1q_u16);
SPLIT3_KERNEL_TEMPLATE(VSplit3, int , int32x4x3_t, vld3q_s32, vst1q_s32);
SPLIT3_KERNEL_TEMPLATE(VSplit3, int64 , int64x1x3_t, vld3_s64 , vst1_s64 );
SPLIT4_KERNEL_TEMPLATE(VSplit4, uchar , uint8x16x4_t, vld4q_u8 , vst1q_u8 );
SPLIT4_KERNEL_TEMPLATE(VSplit4, ushort, uint16x8x4_t, vld4q_u16, vst1q_u16);
SPLIT4_KERNEL_TEMPLATE(VSplit4, int , int32x4x4_t, vld4q_s32, vst1q_s32);
SPLIT4_KERNEL_TEMPLATE(VSplit4, int64 , int64x1x4_t, vld4_s64 , vst1_s64 );
#elif CV_SSE2
template <typename T>
struct VSplit2
{
VSplit2() : support(false) { }
void operator()(const T *, T *, T *) const { }
bool support;
};
template <typename T>
struct VSplit3
{
VSplit3() : support(false) { }
void operator()(const T *, T *, T *, T *) const { }
bool support;
};
template <typename T>
struct VSplit4
{
VSplit4() : support(false) { }
void operator()(const T *, T *, T *, T *, T *) const { }
bool support;
};
#define SPLIT2_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
template <> \
struct VSplit2<data_type> \
{ \
enum \
{ \
ELEMS_IN_VEC = 16 / sizeof(data_type) \
}; \
\
VSplit2() \
{ \
support = checkHardwareSupport(CV_CPU_SSE2); \
} \
\
void operator()(const data_type * src, \
data_type * dst0, data_type * dst1) const \
{ \
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
\
_mm_deinterleave(v_src0, v_src1, v_src2, v_src3); \
\
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
} \
\
bool support; \
}
#define SPLIT3_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
template <> \
struct VSplit3<data_type> \
{ \
enum \
{ \
ELEMS_IN_VEC = 16 / sizeof(data_type) \
}; \
\
VSplit3() \
{ \
support = checkHardwareSupport(CV_CPU_SSE2); \
} \
\
void operator()(const data_type * src, \
data_type * dst0, data_type * dst1, data_type * dst2) const \
{ \
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \
reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \
\
_mm_deinterleave(v_src0, v_src1, v_src2, \
v_src3, v_src4, v_src5); \
\
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
_mm_storeu_##flavor((cast_type *)(dst2), v_src4); \
_mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \
} \
\
bool support; \
}
#define SPLIT4_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
template <> \
struct VSplit4<data_type> \
{ \
enum \
{ \
ELEMS_IN_VEC = 16 / sizeof(data_type) \
}; \
\
VSplit4() \
{ \
support = checkHardwareSupport(CV_CPU_SSE2); \
} \
\
void operator()(const data_type * src, data_type * dst0, data_type * dst1, \
data_type * dst2, data_type * dst3) const \
{ \
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \
reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \
reg_type v_src6 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 6)); \
reg_type v_src7 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 7)); \
\
_mm_deinterleave(v_src0, v_src1, v_src2, v_src3, \
v_src4, v_src5, v_src6, v_src7); \
\
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
_mm_storeu_##flavor((cast_type *)(dst2), v_src4); \
_mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \
_mm_storeu_##flavor((cast_type *)(dst3), v_src6); \
_mm_storeu_##flavor((cast_type *)(dst3 + ELEMS_IN_VEC), v_src7); \
} \
\
bool support; \
}
SPLIT2_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
SPLIT2_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
SPLIT2_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
SPLIT3_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
SPLIT3_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
SPLIT3_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
SPLIT4_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
SPLIT4_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
SPLIT4_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
#endif
template<typename T> static void
split_( const T* src, T** dst, int len, int cn )
{
int k = cn % 4 ? cn % 4 : 4;
int i, j;
if( k == 1 )
{
T* dst0 = dst[0];
if(cn == 1)
{
memcpy(dst0, src, len * sizeof(T));
}
else
{
for( i = 0, j = 0 ; i < len; i++, j += cn )
dst0[i] = src[j];
}
}
else if( k == 2 )
{
T *dst0 = dst[0], *dst1 = dst[1];
i = j = 0;
#if CV_NEON
if(cn == 2)
{
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
int inc_j = 2 * inc_i;
VSplit2<T> vsplit;
for( ; i < len - inc_i; i += inc_i, j += inc_j)
vsplit(src + j, dst0 + i, dst1 + i);
}
#elif CV_SSE2
if (cn == 2)
{
int inc_i = 32/sizeof(T);
int inc_j = 2 * inc_i;
VSplit2<T> vsplit;
if (vsplit.support)
{
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
vsplit(src + j, dst0 + i, dst1 + i);
}
}
#endif
for( ; i < len; i++, j += cn )
{
dst0[i] = src[j];
dst1[i] = src[j+1];
}
}
else if( k == 3 )
{
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2];
i = j = 0;
#if CV_NEON
if(cn == 3)
{
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
int inc_j = 3 * inc_i;
VSplit3<T> vsplit;
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i);
}
#elif CV_SSE2
if (cn == 3)
{
int inc_i = 32/sizeof(T);
int inc_j = 3 * inc_i;
VSplit3<T> vsplit;
if (vsplit.support)
{
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i);
}
}
#endif
for( ; i < len; i++, j += cn )
{
dst0[i] = src[j];
dst1[i] = src[j+1];
dst2[i] = src[j+2];
}
}
else
{
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3];
i = j = 0;
#if CV_NEON
if(cn == 4)
{
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
int inc_j = 4 * inc_i;
VSplit4<T> vsplit;
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i);
}
#elif CV_SSE2
if (cn == 4)
{
int inc_i = 32/sizeof(T);
int inc_j = 4 * inc_i;
VSplit4<T> vsplit;
if (vsplit.support)
{
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i);
}
}
#endif
for( ; i < len; i++, j += cn )
{
dst0[i] = src[j]; dst1[i] = src[j+1];
dst2[i] = src[j+2]; dst3[i] = src[j+3];
}
}
for( ; k < cn; k += 4 )
{
T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3];
for( i = 0, j = k; i < len; i++, j += cn )
{
dst0[i] = src[j]; dst1[i] = src[j+1];
dst2[i] = src[j+2]; dst3[i] = src[j+3];
}
}
}
void split8u(const uchar* src, uchar** dst, int len, int cn )
{
CALL_HAL(split8u, cv_hal_split8u, src,dst, len, cn)
split_(src, dst, len, cn);
}
void split16u(const ushort* src, ushort** dst, int len, int cn )
{
CALL_HAL(split16u, cv_hal_split16u, src,dst, len, cn)
split_(src, dst, len, cn);
}
void split32s(const int* src, int** dst, int len, int cn )
{
CALL_HAL(split32s, cv_hal_split32s, src,dst, len, cn)
split_(src, dst, len, cn);
}
void split64s(const int64* src, int64** dst, int len, int cn )
{
CALL_HAL(split64s, cv_hal_split64s, src,dst, len, cn)
split_(src, dst, len, cn);
}
}}