mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 19:54:18 +08:00
1082 lines
40 KiB
C++
1082 lines
40 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
const string FEATURES2D_DIR = "features2d";
|
|
const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors";
|
|
const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors";
|
|
const string IMAGE_FILENAME = "tsukuba.png";
|
|
|
|
/****************************************************************************************\
|
|
* Regression tests for feature detectors comparing keypoints. *
|
|
\****************************************************************************************/
|
|
|
|
class CV_FeatureDetectorTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) :
|
|
name(_name), fdetector(_fdetector) {}
|
|
|
|
protected:
|
|
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
|
|
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
|
|
|
|
void emptyDataTest();
|
|
void regressionTest(); // TODO test of detect() with mask
|
|
|
|
virtual void run( int );
|
|
|
|
string name;
|
|
Ptr<FeatureDetector> fdetector;
|
|
};
|
|
|
|
void CV_FeatureDetectorTest::emptyDataTest()
|
|
{
|
|
// One image.
|
|
Mat image;
|
|
vector<KeyPoint> keypoints;
|
|
try
|
|
{
|
|
fdetector->detect( image, keypoints );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
if( !keypoints.empty() )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
|
|
// Several images.
|
|
vector<Mat> images;
|
|
vector<vector<KeyPoint> > keypointCollection;
|
|
try
|
|
{
|
|
fdetector->detect( images, keypointCollection );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
}
|
|
|
|
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
|
|
{
|
|
const float maxPtDif = 1.f;
|
|
const float maxSizeDif = 1.f;
|
|
const float maxAngleDif = 2.f;
|
|
const float maxResponseDif = 0.1f;
|
|
|
|
float dist = (float)norm( p1.pt - p2.pt );
|
|
return (dist < maxPtDif &&
|
|
fabs(p1.size - p2.size) < maxSizeDif &&
|
|
abs(p1.angle - p2.angle) < maxAngleDif &&
|
|
abs(p1.response - p2.response) < maxResponseDif &&
|
|
p1.octave == p2.octave &&
|
|
p1.class_id == p2.class_id );
|
|
}
|
|
|
|
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
|
|
{
|
|
const float maxCountRatioDif = 0.01f;
|
|
|
|
// Compare counts of validation and calculated keypoints.
|
|
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
|
|
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n",
|
|
validKeypoints.size(), calcKeypoints.size() );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
|
|
int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size());
|
|
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
|
|
for( size_t v = 0; v < validKeypoints.size(); v++ )
|
|
{
|
|
int nearestIdx = -1;
|
|
float minDist = std::numeric_limits<float>::max();
|
|
|
|
for( size_t c = 0; c < calcKeypoints.size(); c++ )
|
|
{
|
|
progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 );
|
|
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
|
|
if( curDist < minDist )
|
|
{
|
|
minDist = curDist;
|
|
nearestIdx = (int)c;
|
|
}
|
|
}
|
|
|
|
assert( minDist >= 0 );
|
|
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
|
|
badPointCount++;
|
|
}
|
|
ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
|
|
badPointCount, validKeypoints.size(), calcKeypoints.size() );
|
|
if( badPointCount > 0.9 * commonPointCount )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
return;
|
|
}
|
|
ts->printf( cvtest::TS::LOG, " - OK\n" );
|
|
}
|
|
|
|
void CV_FeatureDetectorTest::regressionTest()
|
|
{
|
|
assert( !fdetector.empty() );
|
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
|
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
|
|
|
|
// Read the test image.
|
|
Mat image = imread( imgFilename );
|
|
if( image.empty() )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
|
|
FileStorage fs( resFilename, FileStorage::READ );
|
|
|
|
// Compute keypoints.
|
|
vector<KeyPoint> calcKeypoints;
|
|
fdetector->detect( image, calcKeypoints );
|
|
|
|
if( fs.isOpened() ) // Compare computed and valid keypoints.
|
|
{
|
|
// TODO compare saved feature detector params with current ones
|
|
|
|
// Read validation keypoints set.
|
|
vector<KeyPoint> validKeypoints;
|
|
read( fs["keypoints"], validKeypoints );
|
|
if( validKeypoints.empty() )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
|
|
compareKeypointSets( validKeypoints, calcKeypoints );
|
|
}
|
|
else // Write detector parameters and computed keypoints as validation data.
|
|
{
|
|
fs.open( resFilename, FileStorage::WRITE );
|
|
if( !fs.isOpened() )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
fs << "detector_params" << "{";
|
|
fdetector->write( fs );
|
|
fs << "}";
|
|
|
|
write( fs, "keypoints", calcKeypoints );
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_FeatureDetectorTest::run( int /*start_from*/ )
|
|
{
|
|
if( fdetector.empty() )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
|
|
emptyDataTest();
|
|
regressionTest();
|
|
|
|
ts->set_failed_test_info( cvtest::TS::OK );
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Regression tests for descriptor extractors. *
|
|
\****************************************************************************************/
|
|
static void writeMatInBin( const Mat& mat, const string& filename )
|
|
{
|
|
FILE* f = fopen( filename.c_str(), "wb");
|
|
if( f )
|
|
{
|
|
int type = mat.type();
|
|
fwrite( (void*)&mat.rows, sizeof(int), 1, f );
|
|
fwrite( (void*)&mat.cols, sizeof(int), 1, f );
|
|
fwrite( (void*)&type, sizeof(int), 1, f );
|
|
int dataSize = (int)(mat.step * mat.rows * mat.channels());
|
|
fwrite( (void*)&dataSize, sizeof(int), 1, f );
|
|
fwrite( (void*)mat.data, 1, dataSize, f );
|
|
fclose(f);
|
|
}
|
|
}
|
|
|
|
static Mat readMatFromBin( const string& filename )
|
|
{
|
|
FILE* f = fopen( filename.c_str(), "rb" );
|
|
if( f )
|
|
{
|
|
int rows, cols, type, dataSize;
|
|
size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f );
|
|
size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f );
|
|
size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f );
|
|
size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f );
|
|
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
|
|
|
|
uchar* data = (uchar*)cvAlloc(dataSize);
|
|
size_t elements_read = fread( (void*)data, 1, dataSize, f );
|
|
CV_Assert(elements_read == (size_t)(dataSize));
|
|
fclose(f);
|
|
|
|
return Mat( rows, cols, type, data );
|
|
}
|
|
return Mat();
|
|
}
|
|
|
|
template<class Distance>
|
|
class CV_DescriptorExtractorTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
typedef typename Distance::ValueType ValueType;
|
|
typedef typename Distance::ResultType DistanceType;
|
|
|
|
CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor,
|
|
Distance d = Distance() ):
|
|
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) {}
|
|
protected:
|
|
virtual void createDescriptorExtractor() {}
|
|
|
|
void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors )
|
|
{
|
|
if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() )
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n");
|
|
ts->printf(cvtest::TS::LOG, "Valid size is (%d x %d) actual size is (%d x %d).\n", validDescriptors.rows, validDescriptors.cols, calcDescriptors.rows, calcDescriptors.cols);
|
|
ts->printf(cvtest::TS::LOG, "Valid type is %d actual type is %d.\n", validDescriptors.type(), calcDescriptors.type());
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
|
|
CV_Assert( DataType<ValueType>::type == validDescriptors.type() );
|
|
|
|
int dimension = validDescriptors.cols;
|
|
DistanceType curMaxDist = std::numeric_limits<DistanceType>::min();
|
|
for( int y = 0; y < validDescriptors.rows; y++ )
|
|
{
|
|
DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension );
|
|
if( dist > curMaxDist )
|
|
curMaxDist = dist;
|
|
}
|
|
|
|
stringstream ss;
|
|
ss << "Max distance between valid and computed descriptors " << curMaxDist;
|
|
if( curMaxDist < maxDist )
|
|
ss << "." << endl;
|
|
else
|
|
{
|
|
ss << ">" << maxDist << " - bad accuracy!"<< endl;
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
}
|
|
ts->printf(cvtest::TS::LOG, ss.str().c_str() );
|
|
}
|
|
|
|
void emptyDataTest()
|
|
{
|
|
assert( !dextractor.empty() );
|
|
|
|
// One image.
|
|
Mat image;
|
|
vector<KeyPoint> keypoints;
|
|
Mat descriptors;
|
|
|
|
try
|
|
{
|
|
dextractor->compute( image, keypoints, descriptors );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
}
|
|
|
|
image.create( 50, 50, CV_8UC3 );
|
|
try
|
|
{
|
|
dextractor->compute( image, keypoints, descriptors );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
}
|
|
|
|
// Several images.
|
|
vector<Mat> images;
|
|
vector<vector<KeyPoint> > keypointsCollection;
|
|
vector<Mat> descriptorsCollection;
|
|
try
|
|
{
|
|
dextractor->compute( images, keypointsCollection, descriptorsCollection );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
}
|
|
}
|
|
|
|
void regressionTest()
|
|
{
|
|
assert( !dextractor.empty() );
|
|
|
|
// Read the test image.
|
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
|
|
|
Mat img = imread( imgFilename );
|
|
if( img.empty() )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
|
|
vector<KeyPoint> keypoints;
|
|
FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ );
|
|
if( fs.isOpened() )
|
|
{
|
|
read( fs.getFirstTopLevelNode(), keypoints );
|
|
|
|
Mat calcDescriptors;
|
|
double t = (double)getTickCount();
|
|
dextractor->compute( img, keypoints, calcDescriptors );
|
|
t = getTickCount() - t;
|
|
ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows );
|
|
|
|
if( calcDescriptors.rows != (int)keypoints.size() )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" );
|
|
ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() );
|
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
|
|
if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" );
|
|
ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() );
|
|
ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols );
|
|
ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() );
|
|
ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
|
|
// TODO read and write descriptor extractor parameters and check them
|
|
Mat validDescriptors = readDescriptors();
|
|
if( !validDescriptors.empty() )
|
|
compareDescriptors( validDescriptors, calcDescriptors );
|
|
else
|
|
{
|
|
if( !writeDescriptors( calcDescriptors ) )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" );
|
|
fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE );
|
|
if( fs.isOpened() )
|
|
{
|
|
SurfFeatureDetector fd;
|
|
fd.detect(img, keypoints);
|
|
write( fs, "keypoints", keypoints );
|
|
}
|
|
else
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void run(int)
|
|
{
|
|
createDescriptorExtractor();
|
|
if( dextractor.empty() )
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
|
|
emptyDataTest();
|
|
regressionTest();
|
|
|
|
ts->set_failed_test_info( cvtest::TS::OK );
|
|
}
|
|
|
|
virtual Mat readDescriptors()
|
|
{
|
|
Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
|
|
return res;
|
|
}
|
|
|
|
virtual bool writeDescriptors( Mat& descs )
|
|
{
|
|
writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
|
|
return true;
|
|
}
|
|
|
|
string name;
|
|
const DistanceType maxDist;
|
|
Ptr<DescriptorExtractor> dextractor;
|
|
Distance distance;
|
|
|
|
private:
|
|
CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; }
|
|
};
|
|
|
|
/*template<typename T, typename Distance>
|
|
class CV_CalonderDescriptorExtractorTest : public CV_DescriptorExtractorTest<Distance>
|
|
{
|
|
public:
|
|
CV_CalonderDescriptorExtractorTest( const char* testName, float _normDif, float _prevTime ) :
|
|
CV_DescriptorExtractorTest<Distance>( testName, _normDif, Ptr<DescriptorExtractor>(), _prevTime )
|
|
{}
|
|
|
|
protected:
|
|
virtual void createDescriptorExtractor()
|
|
{
|
|
CV_DescriptorExtractorTest<Distance>::dextractor =
|
|
new CalonderDescriptorExtractor<T>( string(CV_DescriptorExtractorTest<Distance>::ts->get_data_path()) +
|
|
FEATURES2D_DIR + "/calonder_classifier.rtc");
|
|
}
|
|
};*/
|
|
|
|
/****************************************************************************************\
|
|
* Algorithmic tests for descriptor matchers *
|
|
\****************************************************************************************/
|
|
class CV_DescriptorMatcherTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_DescriptorMatcherTest( const string& _name, const Ptr<DescriptorMatcher>& _dmatcher, float _badPart ) :
|
|
badPart(_badPart), name(_name), dmatcher(_dmatcher)
|
|
{}
|
|
protected:
|
|
static const int dim = 500;
|
|
static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
|
|
static const int countFactor = 4; // do not change it
|
|
const float badPart;
|
|
|
|
virtual void run( int );
|
|
void generateData( Mat& query, Mat& train );
|
|
|
|
void emptyDataTest();
|
|
void matchTest( const Mat& query, const Mat& train );
|
|
void knnMatchTest( const Mat& query, const Mat& train );
|
|
void radiusMatchTest( const Mat& query, const Mat& train );
|
|
|
|
string name;
|
|
Ptr<DescriptorMatcher> dmatcher;
|
|
|
|
private:
|
|
CV_DescriptorMatcherTest& operator=(const CV_DescriptorMatcherTest&) { return *this; }
|
|
};
|
|
|
|
void CV_DescriptorMatcherTest::emptyDataTest()
|
|
{
|
|
assert( !dmatcher.empty() );
|
|
Mat queryDescriptors, trainDescriptors, mask;
|
|
vector<Mat> trainDescriptorCollection, masks;
|
|
vector<DMatch> matches;
|
|
vector<vector<DMatch> > vmatches;
|
|
|
|
try
|
|
{
|
|
dmatcher->match( queryDescriptors, trainDescriptors, matches, mask );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->add( trainDescriptorCollection );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->match( queryDescriptors, matches, masks );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks );
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
}
|
|
|
|
void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train )
|
|
{
|
|
RNG& rng = theRNG();
|
|
|
|
// Generate query descriptors randomly.
|
|
// Descriptor vector elements are integer values.
|
|
Mat buf( queryDescCount, dim, CV_32SC1 );
|
|
rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
|
|
buf.convertTo( query, CV_32FC1 );
|
|
|
|
// Generate train decriptors as follows:
|
|
// copy each query descriptor to train set countFactor times
|
|
// and perturb some one element of the copied descriptors in
|
|
// in ascending order. General boundaries of the perturbation
|
|
// are (0.f, 1.f).
|
|
train.create( query.rows*countFactor, query.cols, CV_32FC1 );
|
|
float step = 1.f / countFactor;
|
|
for( int qIdx = 0; qIdx < query.rows; qIdx++ )
|
|
{
|
|
Mat queryDescriptor = query.row(qIdx);
|
|
for( int c = 0; c < countFactor; c++ )
|
|
{
|
|
int tIdx = qIdx * countFactor + c;
|
|
Mat trainDescriptor = train.row(tIdx);
|
|
queryDescriptor.copyTo( trainDescriptor );
|
|
int elem = rng(dim);
|
|
float diff = rng.uniform( step*c, step*(c+1) );
|
|
trainDescriptor.at<float>(0, elem) += diff;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_DescriptorMatcherTest::matchTest( const Mat& query, const Mat& train )
|
|
{
|
|
dmatcher->clear();
|
|
|
|
// test const version of match()
|
|
{
|
|
vector<DMatch> matches;
|
|
dmatcher->match( query, train, matches );
|
|
|
|
if( (int)matches.size() != queryDescCount )
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
DMatch match = matches[i];
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
|
|
badCount++;
|
|
}
|
|
if( (float)badCount > (float)queryDescCount*badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n",
|
|
(float)badCount/(float)queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
}
|
|
}
|
|
|
|
// test version of match() with add()
|
|
{
|
|
vector<DMatch> matches;
|
|
// make add() twice to test such case
|
|
dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
|
|
dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
|
|
// prepare masks (make first nearest match illegal)
|
|
vector<Mat> masks(2);
|
|
for(int mi = 0; mi < 2; mi++ )
|
|
{
|
|
masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
|
for( int di = 0; di < queryDescCount/2; di++ )
|
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
|
}
|
|
|
|
dmatcher->match( query, matches, masks );
|
|
|
|
if( (int)matches.size() != queryDescCount )
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
DMatch match = matches[i];
|
|
int shift = dmatcher->isMaskSupported() ? 1 : 0;
|
|
{
|
|
if( i < queryDescCount/2 )
|
|
{
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) )
|
|
badCount++;
|
|
}
|
|
else
|
|
{
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) )
|
|
badCount++;
|
|
}
|
|
}
|
|
}
|
|
if( (float)badCount > (float)queryDescCount*badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n",
|
|
(float)badCount/(float)queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_DescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train )
|
|
{
|
|
dmatcher->clear();
|
|
|
|
// test const version of knnMatch()
|
|
{
|
|
const int knn = 3;
|
|
|
|
vector<vector<DMatch> > matches;
|
|
dmatcher->knnMatch( query, train, matches, knn );
|
|
|
|
if( (int)matches.size() != queryDescCount )
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
if( (int)matches[i].size() != knn )
|
|
badCount++;
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for( int k = 0; k < knn; k++ )
|
|
{
|
|
DMatch match = matches[i][k];
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) )
|
|
localBadCount++;
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
if( (float)badCount > (float)queryDescCount*badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n",
|
|
(float)badCount/(float)queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
}
|
|
}
|
|
|
|
// test version of knnMatch() with add()
|
|
{
|
|
const int knn = 2;
|
|
vector<vector<DMatch> > matches;
|
|
// make add() twice to test such case
|
|
dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
|
|
dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
|
|
// prepare masks (make first nearest match illegal)
|
|
vector<Mat> masks(2);
|
|
for(int mi = 0; mi < 2; mi++ )
|
|
{
|
|
masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
|
for( int di = 0; di < queryDescCount/2; di++ )
|
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
|
}
|
|
|
|
dmatcher->knnMatch( query, matches, knn, masks );
|
|
|
|
if( (int)matches.size() != queryDescCount )
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
int shift = dmatcher->isMaskSupported() ? 1 : 0;
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
if( (int)matches[i].size() != knn )
|
|
badCount++;
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for( int k = 0; k < knn; k++ )
|
|
{
|
|
DMatch match = matches[i][k];
|
|
{
|
|
if( i < queryDescCount/2 )
|
|
{
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
|
|
(match.imgIdx != 0) )
|
|
localBadCount++;
|
|
}
|
|
else
|
|
{
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
|
|
(match.imgIdx != 1) )
|
|
localBadCount++;
|
|
}
|
|
}
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
if( (float)badCount > (float)queryDescCount*badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n",
|
|
(float)badCount/(float)queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train )
|
|
{
|
|
dmatcher->clear();
|
|
// test const version of match()
|
|
{
|
|
const float radius = 1.f/countFactor;
|
|
vector<vector<DMatch> > matches;
|
|
dmatcher->radiusMatch( query, train, matches, radius );
|
|
|
|
if( (int)matches.size() != queryDescCount )
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
if( (int)matches[i].size() != 1 )
|
|
badCount++;
|
|
else
|
|
{
|
|
DMatch match = matches[i][0];
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
|
|
badCount++;
|
|
}
|
|
}
|
|
if( (float)badCount > (float)queryDescCount*badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n",
|
|
(float)badCount/(float)queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
}
|
|
}
|
|
|
|
// test version of match() with add()
|
|
{
|
|
int n = 3;
|
|
const float radius = 1.f/countFactor * n;
|
|
vector<vector<DMatch> > matches;
|
|
// make add() twice to test such case
|
|
dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
|
|
dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
|
|
// prepare masks (make first nearest match illegal)
|
|
vector<Mat> masks(2);
|
|
for(int mi = 0; mi < 2; mi++ )
|
|
{
|
|
masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
|
for( int di = 0; di < queryDescCount/2; di++ )
|
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
|
}
|
|
|
|
dmatcher->radiusMatch( query, matches, radius, masks );
|
|
|
|
//int curRes = cvtest::TS::OK;
|
|
if( (int)matches.size() != queryDescCount )
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
int badCount = 0;
|
|
int shift = dmatcher->isMaskSupported() ? 1 : 0;
|
|
int needMatchCount = dmatcher->isMaskSupported() ? n-1 : n;
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
if( (int)matches[i].size() != needMatchCount )
|
|
badCount++;
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for( int k = 0; k < needMatchCount; k++ )
|
|
{
|
|
DMatch match = matches[i][k];
|
|
{
|
|
if( i < queryDescCount/2 )
|
|
{
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
|
|
(match.imgIdx != 0) )
|
|
localBadCount++;
|
|
}
|
|
else
|
|
{
|
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
|
|
(match.imgIdx != 1) )
|
|
localBadCount++;
|
|
}
|
|
}
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
if( (float)badCount > (float)queryDescCount*badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
|
|
(float)badCount/(float)queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_DescriptorMatcherTest::run( int )
|
|
{
|
|
Mat query, train;
|
|
generateData( query, train );
|
|
|
|
matchTest( query, train );
|
|
|
|
knnMatchTest( query, train );
|
|
|
|
radiusMatchTest( query, train );
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Tests registrations *
|
|
\****************************************************************************************/
|
|
|
|
/*
|
|
* Detectors
|
|
*/
|
|
|
|
|
|
TEST( Features2d_Detector_SIFT, regression )
|
|
{
|
|
CV_FeatureDetectorTest test( "detector-sift", FeatureDetector::create("SIFT") );
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_Detector_SURF, regression )
|
|
{
|
|
CV_FeatureDetectorTest test( "detector-surf", FeatureDetector::create("SURF") );
|
|
test.safe_run();
|
|
}
|
|
|
|
/*
|
|
* Descriptors
|
|
*/
|
|
TEST( Features2d_DescriptorExtractor_SIFT, regression )
|
|
{
|
|
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-sift", 0.03f,
|
|
DescriptorExtractor::create("SIFT") );
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor_SURF, regression )
|
|
{
|
|
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-surf", 0.05f,
|
|
DescriptorExtractor::create("SURF") );
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor_OpponentSIFT, regression )
|
|
{
|
|
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-opponent-sift", 0.18f,
|
|
DescriptorExtractor::create("OpponentSIFT") );
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor_OpponentSURF, regression )
|
|
{
|
|
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-opponent-surf", 0.3f,
|
|
DescriptorExtractor::create("OpponentSURF") );
|
|
test.safe_run();
|
|
}
|
|
|
|
/*#if CV_SSE2
|
|
TEST( Features2d_DescriptorExtractor_Calonder_uchar, regression )
|
|
{
|
|
CV_CalonderDescriptorExtractorTest<uchar, L2<uchar> > test( "descriptor-calonder-uchar",
|
|
std::numeric_limits<float>::epsilon() + 1,
|
|
0.0132175f );
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor_Calonder_float, regression )
|
|
{
|
|
CV_CalonderDescriptorExtractorTest<float, L2<float> > test( "descriptor-calonder-float",
|
|
std::numeric_limits<float>::epsilon(),
|
|
0.0221308f );
|
|
test.safe_run();
|
|
}
|
|
#endif*/ // CV_SSE2
|
|
|
|
TEST(Features2d_BruteForceDescriptorMatcher_knnMatch, regression)
|
|
{
|
|
const int sz = 100;
|
|
const int k = 3;
|
|
|
|
Ptr<DescriptorExtractor> ext = DescriptorExtractor::create("SURF");
|
|
ASSERT_TRUE(ext != NULL);
|
|
|
|
Ptr<FeatureDetector> det = FeatureDetector::create("SURF");
|
|
//"%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n"
|
|
ASSERT_TRUE(det != NULL);
|
|
|
|
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce");
|
|
ASSERT_TRUE(matcher != NULL);
|
|
|
|
Mat imgT(sz, sz, CV_8U, Scalar(255));
|
|
line(imgT, Point(20, sz/2), Point(sz-21, sz/2), Scalar(100), 2);
|
|
line(imgT, Point(sz/2, 20), Point(sz/2, sz-21), Scalar(100), 2);
|
|
vector<KeyPoint> kpT;
|
|
kpT.push_back( KeyPoint(50, 50, 16, 0, 20000, 1, -1) );
|
|
kpT.push_back( KeyPoint(42, 42, 16, 160, 10000, 1, -1) );
|
|
Mat descT;
|
|
ext->compute(imgT, kpT, descT);
|
|
|
|
Mat imgQ(sz, sz, CV_8U, Scalar(255));
|
|
line(imgQ, Point(30, sz/2), Point(sz-31, sz/2), Scalar(100), 3);
|
|
line(imgQ, Point(sz/2, 30), Point(sz/2, sz-31), Scalar(100), 3);
|
|
vector<KeyPoint> kpQ;
|
|
det->detect(imgQ, kpQ);
|
|
Mat descQ;
|
|
ext->compute(imgQ, kpQ, descQ);
|
|
|
|
vector<vector<DMatch> > matches;
|
|
|
|
matcher->knnMatch(descQ, descT, matches, k);
|
|
|
|
//cout << "\nBest " << k << " matches to " << descT.rows << " train desc-s." << endl;
|
|
ASSERT_EQ(descQ.rows, static_cast<int>(matches.size()));
|
|
for(size_t i = 0; i<matches.size(); i++)
|
|
{
|
|
//cout << "\nmatches[" << i << "].size()==" << matches[i].size() << endl;
|
|
ASSERT_GE(min(k, descT.rows), static_cast<int>(matches[i].size()));
|
|
for(size_t j = 0; j<matches[i].size(); j++)
|
|
{
|
|
//cout << "\t" << matches[i][j].queryIdx << " -> " << matches[i][j].trainIdx << endl;
|
|
ASSERT_EQ(matches[i][j].queryIdx, static_cast<int>(i));
|
|
}
|
|
}
|
|
}
|