opencv/modules/ocl/src/kalman.cpp
Andrey Pavlenko 2b6fca68bf fixing typo
2013-10-25 18:00:46 +04:00

135 lines
4.6 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::ocl;
KalmanFilter::KalmanFilter()
{
}
KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type)
{
init(dynamParams, measureParams, controlParams, type);
}
void KalmanFilter::init(int DP, int MP, int CP, int type)
{
CV_Assert( DP > 0 && MP > 0 );
CV_Assert( type == CV_32F || type == CV_64F );
CP = cv::max(CP, 0);
statePre.create(DP, 1, type);
statePre.setTo(Scalar::all(0));
statePost.create(DP, 1, type);
statePost.setTo(Scalar::all(0));
transitionMatrix.create(DP, DP, type);
setIdentity(transitionMatrix, 1);
processNoiseCov.create(DP, DP, type);
setIdentity(processNoiseCov, 1);
measurementNoiseCov.create(MP, MP, type);
setIdentity(measurementNoiseCov, 1);
measurementMatrix.create(MP, DP, type);
measurementMatrix.setTo(Scalar::all(0));
errorCovPre.create(DP, DP, type);
errorCovPre.setTo(Scalar::all(0));
errorCovPost.create(DP, DP, type);
errorCovPost.setTo(Scalar::all(0));
gain.create(DP, MP, type);
gain.setTo(Scalar::all(0));
if( CP > 0 )
{
controlMatrix.create(DP, CP, type);
controlMatrix.setTo(Scalar::all(0));
}
else
controlMatrix.release();
temp1.create(DP, DP, type);
temp2.create(MP, DP, type);
temp3.create(MP, MP, type);
temp4.create(MP, DP, type);
temp5.create(MP, 1, type);
}
CV_EXPORTS const oclMat& KalmanFilter::predict(const oclMat& control)
{
gemm(transitionMatrix, statePost, 1, oclMat(), 0, statePre);
oclMat temp;
if(control.data)
gemm(controlMatrix, control, 1, statePre, 1, statePre);
gemm(transitionMatrix, errorCovPost, 1, oclMat(), 0, temp1);
gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T);
statePre.copyTo(statePost);
return statePre;
}
CV_EXPORTS const oclMat& KalmanFilter::correct(const oclMat& measurement)
{
CV_Assert(measurement.empty() == false);
gemm(measurementMatrix, errorCovPre, 1, oclMat(), 0, temp2);
gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T);
Mat temp;
solve(Mat(temp3), Mat(temp2), temp, DECOMP_SVD);
temp4.upload(temp);
gain = temp4.t();
gemm(measurementMatrix, statePre, -1, measurement, 1, temp5);
gemm(gain, temp5, 1, statePre, 1, statePost);
gemm(gain, temp2, -1, errorCovPre, 1, errorCovPost);
return statePost;
}