mirror of
https://github.com/opencv/opencv.git
synced 2024-12-29 12:38:19 +08:00
200 lines
7.8 KiB
Common Lisp
200 lines
7.8 KiB
Common Lisp
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Shengen Yan,yanshengen@gmail.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
/////////////////////////////////Macro for border type////////////////////////////////////////////
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef BORDER_CONSTANT
|
|
#elif defined BORDER_REPLICATE
|
|
#define EXTRAPOLATE(x, maxV) \
|
|
{ \
|
|
x = max(min(x, maxV - 1), 0); \
|
|
}
|
|
#elif defined BORDER_WRAP
|
|
#define EXTRAPOLATE(x, maxV) \
|
|
{ \
|
|
if (x < 0) \
|
|
x -= ((x - maxV + 1) / maxV) * maxV; \
|
|
if (x >= maxV) \
|
|
x %= maxV; \
|
|
}
|
|
#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT101)
|
|
#define EXTRAPOLATE_(x, maxV, delta) \
|
|
{ \
|
|
if (maxV == 1) \
|
|
x = 0; \
|
|
else \
|
|
do \
|
|
{ \
|
|
if ( x < 0 ) \
|
|
x = -x - 1 + delta; \
|
|
else \
|
|
x = maxV - 1 - (x - maxV) - delta; \
|
|
} \
|
|
while (x >= maxV || x < 0); \
|
|
}
|
|
#ifdef BORDER_REFLECT
|
|
#define EXTRAPOLATE(x, maxV) EXTRAPOLATE_(x, maxV, 0)
|
|
#else
|
|
#define EXTRAPOLATE(x, maxV) EXTRAPOLATE_(x, maxV, 1)
|
|
#endif
|
|
#else
|
|
#error No extrapolation method
|
|
#endif
|
|
|
|
#define THREADS 256
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
/////////////////////////////////////calcHarris////////////////////////////////////////////////////
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
__kernel void calcHarris(__global const float *Dx, __global const float *Dy, __global float *dst,
|
|
int dx_offset, int dx_whole_rows, int dx_whole_cols, int dx_step,
|
|
int dy_offset, int dy_whole_rows, int dy_whole_cols, int dy_step,
|
|
int dst_offset, int dst_rows, int dst_cols, int dst_step, float k)
|
|
{
|
|
int col = get_local_id(0);
|
|
int gX = get_group_id(0);
|
|
int gY = get_group_id(1);
|
|
int gly = get_global_id(1);
|
|
|
|
int dx_x_off = (dx_offset % dx_step) >> 2;
|
|
int dx_y_off = dx_offset / dx_step;
|
|
int dy_x_off = (dy_offset % dy_step) >> 2;
|
|
int dy_y_off = dy_offset / dy_step;
|
|
int dst_x_off = (dst_offset % dst_step) >> 2;
|
|
int dst_y_off = dst_offset / dst_step;
|
|
|
|
int dx_startX = gX * (THREADS-ksX+1) - anX + dx_x_off;
|
|
int dx_startY = (gY << 1) - anY + dx_y_off;
|
|
int dy_startX = gX * (THREADS-ksX+1) - anX + dy_x_off;
|
|
int dy_startY = (gY << 1) - anY + dy_y_off;
|
|
int dst_startX = gX * (THREADS-ksX+1) + dst_x_off;
|
|
int dst_startY = (gY << 1) + dst_y_off;
|
|
|
|
float dx_data[ksY+1],dy_data[ksY+1], data[3][ksY+1];
|
|
__local float temp[6][THREADS];
|
|
|
|
#ifdef BORDER_CONSTANT
|
|
for (int i=0; i < ksY+1; i++)
|
|
{
|
|
bool dx_con = dx_startX+col >= 0 && dx_startX+col < dx_whole_cols && dx_startY+i >= 0 && dx_startY+i < dx_whole_rows;
|
|
int indexDx = (dx_startY+i)*(dx_step>>2)+(dx_startX+col);
|
|
float dx_s = dx_con ? Dx[indexDx] : 0.0f;
|
|
dx_data[i] = dx_s;
|
|
bool dy_con = dy_startX+col >= 0 && dy_startX+col < dy_whole_cols && dy_startY+i >= 0 && dy_startY+i < dy_whole_rows;
|
|
int indexDy = (dy_startY+i)*(dy_step>>2)+(dy_startX+col);
|
|
float dy_s = dx_con ? Dy[indexDy] : 0.0f;
|
|
dy_data[i] = dy_s;
|
|
data[0][i] = dx_data[i] * dx_data[i];
|
|
data[1][i] = dx_data[i] * dy_data[i];
|
|
data[2][i] = dy_data[i] * dy_data[i];
|
|
}
|
|
#else
|
|
int clamped_col = min(dst_cols, col);
|
|
for (int i=0; i < ksY+1; i++)
|
|
{
|
|
int dx_selected_row = dx_startY+i, dx_selected_col = dx_startX+clamped_col;
|
|
EXTRAPOLATE(dx_selected_row, dx_whole_rows)
|
|
EXTRAPOLATE(dx_selected_col, dx_whole_cols)
|
|
dx_data[i] = Dx[dx_selected_row * (dx_step>>2) + dx_selected_col];
|
|
|
|
int dy_selected_row = dy_startY+i, dy_selected_col = dy_startX+clamped_col;
|
|
EXTRAPOLATE(dy_selected_row, dy_whole_rows)
|
|
EXTRAPOLATE(dy_selected_col, dy_whole_cols)
|
|
dy_data[i] = Dy[dy_selected_row * (dy_step>>2) + dy_selected_col];
|
|
|
|
data[0][i] = dx_data[i] * dx_data[i];
|
|
data[1][i] = dx_data[i] * dy_data[i];
|
|
data[2][i] = dy_data[i] * dy_data[i];
|
|
}
|
|
#endif
|
|
float sum0 = 0.0f, sum1 = 0.0f, sum2 = 0.0f;
|
|
for (int i=1; i < ksY; i++)
|
|
{
|
|
sum0 += data[0][i];
|
|
sum1 += data[1][i];
|
|
sum2 += data[2][i];
|
|
}
|
|
|
|
float sum01 = sum0 + data[0][0];
|
|
float sum02 = sum0 + data[0][ksY];
|
|
temp[0][col] = sum01;
|
|
temp[1][col] = sum02;
|
|
float sum11 = sum1 + data[1][0];
|
|
float sum12 = sum1 + data[1][ksY];
|
|
temp[2][col] = sum11;
|
|
temp[3][col] = sum12;
|
|
float sum21 = sum2 + data[2][0];
|
|
float sum22 = sum2 + data[2][ksY];
|
|
temp[4][col] = sum21;
|
|
temp[5][col] = sum22;
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
if (col < (THREADS- (ksX - 1)))
|
|
{
|
|
col += anX;
|
|
int posX = dst_startX - dst_x_off + col - anX;
|
|
int posY = (gly << 1);
|
|
int till = (ksX + 1)%2;
|
|
float tmp_sum[6] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
|
|
for (int k=0; k<6; k++)
|
|
for (int i=-anX; i<=anX - till; i++)
|
|
tmp_sum[k] += temp[k][col+i];
|
|
|
|
if (posX < dst_cols && (posY) < dst_rows)
|
|
{
|
|
dst[(dst_startY+0) * (dst_step>>2)+ dst_startX + col - anX] =
|
|
tmp_sum[0] * tmp_sum[4] - tmp_sum[2] * tmp_sum[2] - k * (tmp_sum[0] + tmp_sum[4]) * (tmp_sum[0] + tmp_sum[4]);
|
|
}
|
|
if (posX < dst_cols && (posY + 1) < dst_rows)
|
|
{
|
|
dst[(dst_startY+1) * (dst_step>>2)+ dst_startX + col - anX] =
|
|
tmp_sum[1] * tmp_sum[5] - tmp_sum[3] * tmp_sum[3] - k * (tmp_sum[1] + tmp_sum[5]) * (tmp_sum[1] + tmp_sum[5]);
|
|
}
|
|
}
|
|
}
|